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1 Clustering with Sample Techniques

Consider the k-center clustering problem: given a set of n points, find a set of k cluster
centers with minimum radius. The radius of a solution is the maximum distance from a
point the closest center. Finding the optimal solution R for a given instance is NP-hard.
However, we can use the polynomial-time 2-approximation algorithm seen in Lecture 12 to
find a solution whose radius is no greater than 2R for the same instance.

We are now interested in the following situation. Instead of applying our algorithm to all
n points, we apply it to a random sample of size O((k log n)/ε). Since usually k � n, this
tends to be a small fraction of the input points. Dealing with the sample should be much
cheaper than dealing with the whole set.

If the optimal solution for the original set is R, it is easy to see that the solution of the
2-approximate algorithm on the sample will have value no greater than 2R. One only has to
note that the optimal solution of the sample has radius no greater than R, as long as we do
not require cluster centers also belong to the set of points. Since the proof shown in Lecture
12 does not assume the presence of the cluster centers, it still holds in this case.

Even though we can find a valid solution to the sample with radius no greater than 2R,
it may not cover some of the points in the original instance. Fortunately, as seen in the
previous lecture, with high probability the fraction of points that are not covered by the
solution is small, at most ε. If more than an ε fraction of the points were not covered, with
high probability one of them would be in the sample (and, therefore, covered).

Therefore, we have proven that, given an instance with n points of radius R, we can
sample just O((k log n)/ε) points and still find (in polynomial time) a solution a solution
with radius 2R that with high probability will cover at least a 1 − ε fraction of the points.
Note that our analysis relies on some properties of the 2-approximate algorithm we are using
to find a solution to the sample. If we used an exact algorithm instead, the nice properties
found in this case would not necessarily carry on.

2 Ranking Web Pages

The amount of information available on the Web is huge. However, it is often the case that
we need information on a particular topic. We cannot even hope to be able to read all pages
to get this information. Instead, it would be interested if we could automatically find the
pages that are most relevant to our query. That is the main task of search engines, such as
Google.
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To determine which pages are the most relevant, we need some objective method to rank

those pages. This section presents two such methods, PageRank and Hubs and Authori-

ties. As we will see, PageRank is basically query-indepedent, whereas Hubs and Authorities
depends heavily on the subject we are interested in.

Both methods rely on the link structure of the Web to rank pages. If a page A contains
a certain page B, we can infer that the author of A for some reason thinks B is relevant. If
many pages point to B, a reasonable conclusion is that B must be an important page, and
therefore should have a high rank. Of course, people can be (and often are) malicious: the
same person can create several pages whose only purpose is to link to some other page just
to make it look relevant. For most of this section, we will assume a more “honest” model for
the Web. It should be clear though that real-life implementations of the methods presented
here must take human nature into account, or else they risk being useless in practice.

As an aside, it is important to notice that the idea of examining the link structure of
a graph is not used exclusively to rank web pages. It is often used in citation analysis: if
an academic paper is cited a lot, it is probably useful and contains important information.
Similar concepts are often used in social networks to analyze interrelationships in social
groups.

2.1 PageRank

An important aspect of PageRank is that it is query-independent. All pages on the web are
ranked on their “intrinsic” value, regardless of topic. Whenever a query is made, PageRank
must be combined with query-specific measures to determine the relative importance in a
given context.

Let v be some web page, and let Bv be the set of pages that contain links to v, and let
Fv be the set of pages v points to, with |Fv| = Nv. The rank of v is denoted by R(v). The
higher the rank, the more relevant the page is. According to PageRank, if a well-ranked
page u points to page v, page v must have some importance. In a sense, u contributes to
increase the rank of v. In a first approximation, we could recursively define the PageRank
of v as follows:

R(v) =
∑

u∈Bv

R(u)

Nu

. (1)

This equation shows that each page u that points to v contributes with some of its rank.
More precisely, the rank of a given page u is split evenly among all pages it points to (as the
term R(u)/Nu shows). This is a recursive definition; the actual rank of the pages would be
calculated iteratively.

There is a problem, though. It would be desirable (although not strictly necessary) to
preserve the total rank during the iterative calculation. The total rank is just the sum of
the left-hand side of equation 1 for all existing pages (represented by P):

LHS =
∑

v∈P

R(v),
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If we instead choose to sum the right-hand sides, we get a similar expression:

RHS =
∑

u∈P ′

R(u)

The problem is that the set P ′ over which the sum is taken in the latter expression is not

equal to P , the complete set of pages. P ′ is restricted to pages that have links to other
pages. This would cause the total rank to decrease from one iteration to another. To avoid
this problem, we add a normalization factor c:

R(v) = c
∑

u∈Bv

R(u)

Nu

. (2)

There are other problems that are not addressed by this expression. Consider a situation
in which two pages point to each other (and to nowhere else). If there is a link from the
“rest” of the Web (assume it is biconnected) to this little cluster, it will tend to get all the
available rank to itself. To minimize this problem, we can require that each page has a
minimum rank. This is captured by the following expression:

R(v) = c
∑

u∈Bv

R(u)

Nu

+ E(v). (3)

The new vector E can be seen as a “source” of PageRank. The next section presents an
alternative way to interpret its entries.

2.1.1 The Random Surfer Model

Consider the following model for a “typical” person surfing the Web. After reading a certain
page, the person may decide, with probability α, to go to some (random) other page on the
Web (by explicitly typing its URL, for instance). With probability 1 − α, the surfer follows
one of the outgoing links of the page, selected at random and uniformly.

What is the probability p(v) that the random surfer is at page v at any given moment?
It’s easy to see that it is

p(v) = α · e(v) + (1 − α) ·
∑

u∈Bv

p(u)

Nu

.

As before, Bv represents the set of pages that point to v, and Nu represents the number of
links in page u. In this case e is the vector of reset probabilities; for each page, it contains
the probability that this page will be selected when the surfer performs a random jump (i.e.,
when she doesn’t follow a link).

This expression is remarkably similar to Equation 3, which indicates that this Random

Surfer Model just provides a different way to look at PageRank. Although this model does
not capture in full the behavior of a “real” surfer, it does provide some insight into why
PageRank should work reasonably well.
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2.1.2 PageRank in Practice

PageRank was introduced by Larry Page et al. in “The PageRank Citation Ranking: Bring-
ing Order to the Web” (Stanford Digital Library Working Papers, 1998). The search engine
presented in that paper would later become Google.

In the paper, it is suggested that defining e(v) to be the same for all pages on the Web
is a reasonable approach. However, the author also looked at what would happen if some
pages were given greater initial rank than others. In their experiments, two possible scenarios
were considered. In the first one, Netscape’s Home Page (a relevant commercial site) was
given a reset probability of 1, and all other pages were given zero to start with. The second
scenario was similar, but John McCarthy’s home page at Stanford was given the highest
reset probability.

As expected, these variations very noticeable local effects. Home pages of faculty mem-
bers at the Stanford’s Department of Computer Science had a much higher PageRank in
the second scenario. However, these changes have a global effect that is still perceptible.
Academic pages in general (as opposed to commercial pages) were ranked higher when John
McCarthy’s was assigned a higher reset probability.

This experiment shows that it is possible — at least in theory — to customize PageRank
to fit individual interests. By adjusting the reset probabilities (the values in e), a personalized
set of ranks could be create. In practice, however, creating a different set of ranks for each
individual is prohibitive, given the iterative and global nature of PageRank calculations. A
less ambitious approach, such as creating static categories, may be feasible instead.

2.2 Hubs and Authorities

We now discuss another ranking strategy. Instead of globally ranking pages, this methods
assigns ranks that are specific to query we are interested in. This method, for reasons that
we become clear soon, is called Hubs and Authorities, and was proposed by Jon Kleinberg in
the paper “Authoritative Sources in a Hyperlinked Environment” (presented at SODA’98).

The basic idea is as follows. First, submit a query to a search engine (in the original
paper, tests were made with Altavista). The query could be “automibile manufacturers”,
for instance. This will return several pages in which this string occurs. However, note that
this may not include obvious candidates such as GM or Ford, simply because that particular
expression may not appear in their Web pages. Pick the top 200 pages returned by the
query, together with at most 50 of the pages they point to, and 50 of the pages that point
to them. Together, these pages induce a relatively small subgraph G = (V, E) of the Web
graph, where V is the set of pages (|V | ≤ 300) and E is the set of (directed) links.

The basic idea is to look at the structure of the links, trying to determine the relative
importance of those 300 pages. Intuitively, a page should be an authority on the subject
matter determined by the query — i.e., a page with relevant information — if there are
several pages pointing to it. Some other pages may have very limited specific information on
the subject, but contain links to several authorities. Such pages are called hubs. Of course,
it is possible for a single page to be both an authority and a hub.
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We can further refine our definition as follows: an authority is a page that is linked to
by lots of hubs, and a hub is a page that points to lots authority. Although these definition
have a circular “flavor”, they can in fact be translated into an iterative computation process.

We associate to each page p a pair (xp, yp) of values, where xp is the authority score and
yp is the hub score. These values are initially the same for all pages, and are further refined
by two operations. An I (“input”) operation, consists of recomputing the values of xp as
follows:

xp =
∑

(q,p)∈E

yp.

This means simply that the authority score of each page p will be recomputed as the sum of
the hub scores of all pages that point to it. Then we perform an O (“output”) operation:

yp =
∑

(p,q)∈E

xp.

The hub score of a page p is recalculated as the sum of the authority scores of all pages p
has links to.

After several iterations (alternating between these definitions), each page will have scores
that actually represent its relative rank as a hub and an an authority. Typically, reporting
the pages with the top 5 to 10 authority scores and the pages with the top 5 to 10 hub scores
is a reasonable strategy.

Note that the underlying assumption made by this method is that a link of page A to
page B reflects the fact that the author of page A confers a certain degree of authority to
page B. This sounds reasonable, but one must be careful. A large portion of the links found
on the Web are purely navigational (“Click here to return to the main menu”). To improve
the quality of the results provided by the algorithm, it is suggested that only cross-domain
links are considered when G is built.
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