
CS 493: Algorithms for Massive Data Sets Streaming Algorithms
March 26, 2002 Scribe: Yitzhak Mandelbaum

1 Review

The last class ended with a discussion of clustering algorithms. The focus was comparing
the clusters produced by these algorithms to the optimal clusters.

1.1 k-Center Problem

Start with a collection of points. Divide them into k clusters. Then, choose a single point
in each cluster as the center of the cluster. The goal is to minimize the maximum distance
of any given point to its cluster center. The number of clusters, k, is given in advance.

1.2 k-Median Problem

A similar problem is the k-median problem. Here the goal is to minimize the sum of the
distances between all points and the cluster center.

Suppose that you know R∗, the minimum possible distance of a point to its cluster center.
Then, we can find a solution with maximum radius 2R∗. Pick a point to be a cluster center
and then add all points within a distance of 2R∗. Repeat until all of the points belong to
clusters.

Claim 1.1 This algorithm will not produce more than k clusters.

Proof. The pairwise distance between any 2 cluster centers is greater then 2R∗. Therefore, in
the optimal solution, each cluster center must appear in distinct clusters. So, if this algorithm
can find k +1 clusters, then the optimal solution must have k +1 points in distinct clusters,
and, therefore, at least k + 1 clusters, which is a contradiction.

Sometimes, R∗ is not provided. Instead, we “find” it by checking all possible R∗s. We
can derive the different possibilities for R∗ from the graph itself, by considering the distances
between all pairs of points.

2 Streaming Algorithms

Notice that the above algorithm requires the entire point set to be known at the outset.
However, there arise situations in which this assumption is not valid. Instead, we need to
consider streaming algorithms, which do not make this assumption.

1

Definition 2.1 (Streaming Model) In the streaming model of clustering, we assume that
the points arrive in a data stream:

p1, p2, . . . pn

Having seen
p1, p2, . . . pi

we maintain a clustering for the whole set.

The question, then, is how to effectively update this clustering upon receipt of pi+1 while
using little space.

Let us assume that we can find the distance of pi+1 from any previously known point.
We want to find an algorithm that represents the clustering by the k centers. Then, when
we receive point pi+1, we want to update the set of k centers in some way.

This representation of clustering is implicit. Given each center, we can find which points
belong to which center by mapping all points to the nearest center.

The performance of the algorithm is measured with the following quantity:

maximum radius of algorithm’s clustering

maximum radius of optimal clustering

(similar to the competitive ratio)
Now, supposing that we know the maximum radius of the optimal clustering, we can find

a new clustering in an incremental fashion, as follows. Maintain clusters of radius 2R∗. For
each new point, check if the point lies in any of the existing clusters. If not, create a new
cluster with the point as the center. If we don’t know the optimal radius, then we can make
a conservative guess: optimal ≥ guess. An incorrect guess can be detected, as the algorithm
will produce too many clusters. Then, we revise our guess and merge clusters based on the
new guess.
Details:
At the end of phase i:

1. Have k + 1 points with pairwise distance ≥ ri.

2. Each cluster has radius ≤ 2ri.

Transition from phase i → i + 1:

ri+1 = 2ri

merge clusters:
Define a graph on the cluster centers by connecting any two centers
whose distance is ≤ ri+1.
Pick a point in this graph and merge all points (i.e. cluster centers)
directly connected to this point.

2

Notice that the maximum cluster radius at the beginning of phase i+1 ≤ 2ri+1. The optimal
radius > ri

2
.

Running phase i + 1:
Start with set of centers, with each cluster’s maximum radius 2ri+1. Given a new point,

check the distance of the point from each cluster center. If the point is close enough to any
center, then it belongs to the associated cluster. Otherwise, start a new cluster with the
point as its center.
Invariants:

1. cluster centers have pointwise distance ≥ ri+1

2. radius of each cluster ≤ 2ri+1.

Performance Ratio:

maximum radius of algorithm in phase i + 1

optimal max. radius
=

2ri+1
ri

2

= 8

Notice that the algorithm above only needs to remember k centers. Also, it only starts new
clusters and merges old ones. It never reassigns points from one cluster to another.

3 Streaming Algorithms and Frequency Moments

Definition 3.1 Given a set of numbers n1, n2, . . . nm,

mi = the number of items of type i

The kth Frequency Moment is defined as:

Fk =
∑

mk
i

Then, for

k = 0, F0 = the number distinct items,
k = 1, F1 = the size of the list (i.e. n),
k = 2, F2 = a measure of skewness of the list.

In general, for j > 1, Fj is a measure of skew of items in the list.

Perhaps surprisingly, we can compute these values using a small amount of space. In the
next lecture, we will examine estimating F0 within a constant factor using a small amount
of space. Now, we will examine F1 and F2.

Example 1 (Estimating F1)

3

Naive approach: keep a counter. Uses O(log m) space, where m is the size of the stream.
Better: counter keeps only powers of 2, i.e.:

1, 2, 4, 8, 16, . . .

When the counter has value 2n it has some probability of incremementing to 2n+1. In this
way, we can use log of counter bits.

represented values: 1 . . . 2log m

counter values: 1 . . . log m

counter size: O(log log m) bits

Note: Xi represents the value 2Xi

X0 = 0

Xi+1 =

{

Xi + 1 with probability 1
2Xi

Xi with probability1 − 1
2Xi

For the random variable XN ,

E[2XN] = N + 1

var[2XN] =
N(N + 1)

2

Now, keep a number of these counters. Then divide them into groups and take the average
of each group. Finally, take the median of the averages as the value of F1. Given c1, c2, the
final estimate of F1 is the median of Y1, Y2, . . . YC1

, with Yi the average of Zi1, Zi2 , . . . Zic2
,

with each Zij one of the above counters.
Goal: Given ε, δ, compute Y such that |Y −N | < εN with probability 1− δ. In english:

with high probability, estimate is within fraction ε of N .)

c1 = 2 lg

(
1

δ

)

c2 =
4

ε2

Analysis of Average:

E[2XN] = N + 1 = µ

var[2XN] =
N(N + 1)

2
≤

µ2

2

4

Taking c2 copies of the estimator (counter) and averaging them, the variance is

var[mean] =
µ2

2c2

Then,

Pr[|mean − µ| > εµ] ≤
µ2

2c2ε2µ2
=

1

2c2ε2

substituting for c2:

=
1

8

The median serves as a good estimate because if the median is not in the range then at
least 1

2
of the estimators are “bad”(i.e. not in range). Each mean is “bad” with probability

≤ 1
8

Chernoff Bound:

X =
∑

xi, where E[X] = µ

Pr[X > (1 + ε)µ] ≤

(
eε

(1 + ε)(1+ε)

)µ

Take xi as an indicator variable for Yi being bad: xi =

{

0 if Yi bad

1 if Yi good

E[X] ≤
1

8
·

c1
︷ ︸︸ ︷

2 lg

(
1

δ

)

resulting in the bound

Pr[X > (1 + ε)µ] ≤ δ

Example 2 (Estimating F2)

To review, F2 =
∑

m2
i . The naive approach would use an estimator for each mi. How-

ever, we can do better than that. Consider a hash function h : i → {+1,−1} with equal
probability of 1

2
. h is random, yet consistent for any given i.

xi = h(i)

X =
∑

ximi

Y = X2

E[Y] = E[X2] = F2

5

E[Y] = E[X2]

= E[(
∑

ximi)
2]

= E[
∑

x2
i m

2
i + 2

∑

i<j

xixjmimj]

Now, x2
i is always 1. Also, the second term is 0 because the expectance of xi is 0, so

=
∑

m2
i

Now we compute var(Y):

E[Y 2] = E[X4]

=
∑

x4
i m

4
i + 6

∑

x2
i x

2
jm

2
i m

2
j (all other terms disappear)

= F4 + 6F2

var(Y) = E[Y 2] − (E[Y])2

= 4
∑

m2
i m

2
j

= 2F 2
2

Now we can use the median of means machinery from the previous example to obtain an
accurate estimate of F2.

6

