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Abstract

We study the problem of compressing massive tables. We devise a
novel compression paradigm—training for lossless compression—
which assumes that the data exhibit dependencies that can be
learned by examining a small amount of training material. We
develop an experimental methodology to test the approach. Our
result is a system, pzip, which outperforms gzip by factors of
two in compression size and both compression and uncompression
time for various tabular data. Pzip is now in production use in an
AT&T network traffic data warehouse.

1 Introduction

We study the problem of compressing massive tables, which
arises naturally in corporate data warehouses. Our goal
is to provide a working system that can be put into pro-
duction use and achieve 100:1 compression, in particular,
one that can compress 10s of TB of data into 100s of GB.
We devise a novel compression strategy—training for loss-
less compression—which can leverage standard compression
methods, and we demonstrate its effectiveness experimen-
tally. In the process, we identify the requirements for our
compression application and design algorithmic solutions to
various technical problems. The system we built, pzip, can
compress 1 TB of data from AT&T’s network traffic data
warehouse into about 28 GB, small enough to fit on one PC
disk and a two-fold improvement over existing solutions (in
time as well as space). Pzip is now in production use in the
warehouse.

Our motivating applications are tables of traffic data
from telecommunication networks. For example, the AT&T
voice communications network generates a record of each
phone call it carries. A typical record consists of several
hundred bytes and depicts network-level information (e.g.,
endpoint exchanges), time-stamp information (e.g., start
and end times), and billing-level information (e.g., applied
tariffs). This application generates about 1 TB of data per
month and is just one example of the many different tables
that AT&T and other corporations generate. Others include
switch- and router-level traffic data, equipment sensor data
(e.g., alarm status), and credit card transaction records.
These data have certain unifying characteristics: they have
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fixed-length records and fields, they are written once but
read many times, and they are truly massive (TBs per year).
Furthermore, they typically contain much redundancy.

On the other hand, they are not text corpora (English,
DNA, etc.), multimedia (images, audio, etc.), or WWW data
(catalogs, bibliographies, XML files, etc.) Developing se-
mantic compression techniques for each of these is an inde-
pendent research area. Such methods can exploit domain-
specific information, which is problematic in our setting for
reasons explained below. Furthermore, our data sets are
larger than most commercial data sets. Most dictionaries,
corpora, etc., also are not this large. (For example, The Ox-
ford English Dictionary consumes less than 10 GB; the As-
sociated Press Newswire generates about one million words
of text per week.)

Traditionally, compression is desirable because it saves
not only storage space but also the I/O bandwidth (to disks,
tapes, etc.) for accessing data. An added benefit is the sav-
ings in network bandwidth for transmitting data. This inter-
ests AT&T, where traffic tables may be shipped repeatedly to
many centers: for fraud detection, billing, report generation,
auditing, marketing, archival, customer care, and data analy-
sis in general. The benefit of compression is thus saving not
only storage space for a single copy of the data, with propor-
tional effects on capital requirements for data warehouses,
but also the cumulative cost of storing and transporting mul-
tiple copies of the data over the system for its entire lifespan,
which may well be several years.

Any solution to the problem of compressing massive ta-
bles must satisfy the following constraints. (1) The com-
pression must be lossless, as the information in the records
must be preserved. (2) The algorithms must work on-line,
processing the data as a stream, because there are applica-
tions, such as fraud detection, that require immediate access
to the data. (3) The system must work fast, in particular
in better than real time: the total time to process one day’s
worth of data cannot exceed one day, and compression ac-
counts for a small fraction of the total processing time. There
are additional requirements that are dictated by the peculiar
circumstances under which the problem arises. Large cor-
porations have legacy data, legacy systems feeding on such
data, and large bodies of personnel managing them. Thus
any system-level solution must work on legacy data formats,
be integrable with legacy systems, and be easily deployed



and maintained. Finally, it is preferable that any solution be
general, applying to the many different tables, or portions of
tables, that are processed. Thus we cannot exploit domain-
specific syntactic or semantic information.

Studying massive tables is a new focus in compression
research. To distinguish our context from extant ones, con-
sider the related field of database compression, where rela-
tional data may be viewed as tables. This differs from our
table compression problem in many ways. First, the goals
are different. Database compression stresses the preserva-
tion of indexing—the ability to retrieve an arbitrary record—
under compression [7]. Table compression does not re-
quire indexing to be preserved. Next, the data are different.
Database records are often dynamic, unlike table data, which
have a write-once discipline. Databases consist of hetero-
geneous data, possibly with several string fields of variable
length; table data are more homogeneous, with fixed field
lengths. Also, non-tabular databases are not routinely TBs
in size. (An exception is NASA’s EOSDIS database [13],
which anticipates processing 1 TB of satellite images every
two weeks.) Finally, the approaches to database compression
include lightweight techniques such as compressing each tu-
ple by simple encodings [7, 8] and tiling the entire table [8].
These approaches are not appropriate for table compression:
the former is too wasteful, and the latter too expensive and
cumbersome.

Our contribution is a novel approach for the table com-
pression problem: lossless compression via training. The
idea is to construct a compression plan for the table by study-
ing a very small training set off line. To do so, we assume
that the data can be modeled by an underlying source that
can be learned from a small sample. We further assume and
exploit dependencies in the columns of the data in one of two
ways: (1) implicitly, by grouping the columns that compress
well together; and (2) explicitly, by determining a depen-
dency tree among the columns. We then employ the com-
pression plan on the entire dataset. To test our assumptions,
we implement algorithms to construct compression plans on
some training sets, and we compress test sets with respect
to the plans. We compare the resulting compression to the
straightforward approach of treating the tables as text and
applying Lempel-Ziv compression [20, 21]. It will be clear
that comparable performance would falsify our assumptions
about the data dependencies. In all cases, however, our
algorithms provide substantial compression improvements.
While training has been applied to lossy compression, e.g.,
in speech coding [12, 15], ours is the first known instance of
applying training to lossless compression.

For our primary application, compression exploiting
implicit dependencies outperformed that using explicit de-
pendencies. We have implemented the corresponding
algorithm—optimum partitioning—in pzip, a fully work-
ing software system for compressing table data, which has

been deployed in the AT&T network traffic data warehouse.
Pzip achieves factors of about 2 improvement in compres-
sion size and both compression and uncompression time over
gzip, the method previously used in this application.

In Section 2, we discuss the table compression problem
further and define our assumptions regarding data dependen-
cies. In Section 3, we present technical problems that ex-
ploit our assumptions, and we give algorithmic solutions to
these problems. In Section 4, we present our experimental
results, and in Section 5, we discuss the pzip system and
some additional applications. In Section 6, we summarize
our contributions and present directions for future work.

2 Problem Discussion

Our input consists of a table,
�

, of a large number of
rows, each of length � bytes. We define column � to
be the projection of the � th byte of each row, for ���
����� . (A byte is the smallest unit of data that can
be easily and rapidly accessed; moreover, this level of
granularity captures patterns among larger lexical units.) The
table compression problem is to compress

�
, such that the

requirements discussed in Section 1 are satisfied.
From an information-theoretic point of view,

�
can be

treated as a string, e.g., of bytes in row-major order. It would
thus suffice to perform Lempel-Ziv [20, 21] or Huffman [9]
compression, yielding provably optimal asymptotic perfor-
mance in terms of certain ergodic properties of the source
that generates the table. This does not, however, adequately
solve the table compression problem. For specific classes of
inputs, e.g., tables of network traffic data, the optimality re-
sults may not necessarily hold. In particular, the optimality
results hold only with respect to compression methods that
likewise treat

�
as a (byte) string; i.e., methods that do not

account for complex dependencies in
�

. Some compression
does result, however, and we use this method as our bench-
mark in Section 4.

We need a few technical definitions. Denote by
�	� ��
 the

� th column of
�

. Denote by
��� ��
���
 the interval of columns

� through � of
�

. Finally, denote by ������� the size of the
result of compressing some interval � of columns, in row-
major order, using an arbitrary but fixed compressor.

2.1 Assumptions. Our approach to the table compression
problem assumes that there are dependencies among the
columns of

�
. In particular, we will consider dependencies

of two types: combinational and differential.

DEFINITION 2.1. Two contiguous intervals of columns��� ��
���
 and
��� ������
�� 
 are combinationally dependent if

��� ��� ��
���
!�"�#��� ��� ���$��
�� 
%�'&(��� ��� ��
)� 
!�+*
Combinational dependency is an implicit dependency

between intervals. It merely expresses that intervals of



columns are dependent, without determining which columns
are dependent on the others.

DEFINITION 2.2. Column
��� ��
 is differentially dependent

on column
��� ��
 if

��� �	� ��
!� & ��� ��� ��
 � ��� ��
%� 

where

��� ��
 � ��� ��
 is the column formed by taking the row-
wise difference between columns

��� ��
 and
��� ��
 .

Differential dependency is an explicit dependency be-
tween columns, in that it determines which column is de-
pendent on the other. In general, we might compress

��� ��

and

�	� ��
 � �	� ��
 by different methods, and we might consider
other transformations

��� ��
 � ��� ��
 . This does not affect the
ensuing discussion.

Our approach also makes the important assumption that
the data is generated by some source that is well behaved,
in particular, that dependencies (such as those above) among
columns, if they exist, can be captured by examining a small
amount of data, independent of the size of

�
.

3 Algorithmic Issues

We design compression schemes based on the assumptions
embodied in Definitions 2.1 and 2.2.

3.1 Combinational Approach. We can exploit combina-
tional dependencies as follows. Consider a partition, � , of

�
into intervals

�	� ��� � ��
 ��� 
�
 ��� ��� � ��
 ��	 
�
 * * *"
 �	� ��
��
� � ��
 ��
 
 ,
such that

�������
and

��
�� � . We refer to an interval��� ������� � ��
 ��� 
 in � as a class. We define the cost of �
to be

����� � �

�
����� ��� ��� ������� � ��
 ��� 
%� *

The goal is find an optimum partition, i.e., �� such that
��� �� � �������� ����� � .

We can find an optimum partition as follows. Define! � ��� to be the cost of an optimum partition of
��� ��
���
 for

�#" � , and define
! � � � �$� . Then for �%" � ,

! � � � � ������'&)(*&��+�
� ! � � � �#� � ��� ������
���
!�+*

Assuming that the cost ��� �	� ��
���
!� has been computed for
all � � � � � � � , we can compute

! �!� � (and the
corresponding partition) in , � �

	
� time by simple dynamic

programming.
We call this optimum partitioning. This gives the

following compression plan for compressing
�

: compress
each class in the optimum partition independently in row-
major order.

We can further speed up the dynamic programming,
under the assumption that there are many optimum or near

optimum partitions for compressing
�

, and that among these
are some in which the classes are not too wide. To do
so, we develop a “chunking” approach, in which, for some
� �.-0/ � , we divide the � columns into 1!��23-54 pairwise-
disjoint intervals of size at most - each, and solve our general
problem on each such interval. The running time becomes, �!�6- � . We call this chunk partitioning, and it likewise
returns a compression plan.

3.2 Differential Approach. We can exploit differential
dependencies as follows. Consider a partition of the �
columns of

�
into two sets, � and 7� � � ��
�� 
�89� . We

treat the columns in � as source columns and those in 7� as
derived columns. Given a mapping :<;=7�?>@� , we define
the cost, ����� 
A:"� to be

�
BDC  ��� ��� � 
%� � �

EBDC E ��� ��� : � 7� ��
 � ��� 7� 
%� *

The goal is to find a pair �F� 
G:"� of minimum cost.
This is precisely the facility location problem [17]. We

will assume that the differential cost is a metric. In general,
this depends on the base compressor. We apply the simple,
greedy algorithm for this problem [14].

At any time, we have a candidate pair � �� 
 �:"� . We
determine the smallest cost solution, � ��IH 
 �:�H%� , obtained by

1. removing a column from �� ,

2. adding a column to �� , or

3. substituting one of the columns in �� for one not in �� .

(Ties are broken arbitrarily.) If ��� ��IH 
 �:�H%��/ ��� �� 
 �: � , then
we set ��KJ �� H and �:�J �: H and iterate. Otherwise we are
done. We call this greedy differential compression. The final
solution is roughly L -optimal under the metric assumption
[14]. Better approximations [3, 4, 5, 11] are known, but
the greedy algorithm suffices for our purpose of testing the
presence of differential dependencies.

Greedy differential compression produces the follow-
ing compression plan: compress each column in �� indepen-
dently, and for each column 7�NMO �� , compress

��� �: � 7� ��
 � �	� 7� 
 .
3.3 Lossless Compression via Training. Our overall ap-
proach is thus the following.

1. Select a small subset
� H�P �

as training material.

2. Using
� H , compute a compression plan, � , for

�
by

either the combinational or differential approach.

3. Compress
�

with the compression plan � .

Our assumption that the amount of training data needed
is independent of the size of

�
implies that, once we have



generated a compression plan, we can use it to compress
future tables generated by the same source as

�
. Training

is thus an off-line procedure.
So far, we have abstracted the base problem of comput-

ing ��� �	� ��
!� and ��� �	� ��
���
!� . Rather than develop our own
base compression method, we decided to use one of the stan-
dard programs, which have already been well optimized:
e.g., compress [18, 21], gzip [20], and vdelta [10].
Each is fast, on-line, and well-suited to our application. Of
other available compressors, we note that PPM [6, 19], which
exploits context sensitivity and thus seems applicable to ta-
ble data, and bzip [1] are too slow for our environment,
although attempts have been made to tune PPM for speed at
the expense of compression size [16]. We therefore do not
use bzip and PPM in our compression scheme, but we do
compare our scheme against bzip and PPM by themselves.
We note but do not consider in this paper hybrid approaches,
in which we pick the best compressor for a given interval.
We can even nest the differential approach within the combi-
national approach.

4 Experiments

4.1 Methodology. We summarize our assumptions as fol-
lows.

1. Our data sets present combinational dependencies.

2. The combinational approach is likely to induce some
(near) optimum partition in which no class is wide.

3. Our data sets present differential dependencies.

4. The above dependencies can be detected with a small
amount of training data, independent of the size of

�
.

We fix gzip as our underlying compression method.
While this does not explore the range of possible base com-
pressor options, it suffices to test our approach. As bench-
mark R, we apply gzip to

�
in row-major order, corre-

sponding to the usage of gzip without off-line training; as
benchmark C, we apply gzip to

�
in column-major order,

corresponding to the other extremal partition in which no
combinational or differential dependencies exist. We thus
designed experiments to compare the performance of

1. optimum partitioning to the benchmarks,

2. chunk partitioning to optimum partitioning, and

3. the greedy differential compression to both optimum
partitioning and benchmark C.

Each experiment has the potential to falsify one of our
assumptions. If either benchmark outperforms optimum par-
titioning (with respect to output size), then our data sets do
not present combinational dependencies. If optimum parti-
tioning significantly outperforms chunk partitioning, then all

(near) optimum partitions must have at least one wide class.
If benchmark C outperforms the greedy differential compres-
sion, then our data sets do not present differential dependen-
cies. We discuss testing assumption (4) below.

For each experiment, we produced a compression plan
by running the corresponding algorithm on a training data
set. Using the resulting plan, we compressed a disjoint test
data set, and we compared the compression performance
(time and size) to that of the benchmark(s) for that goal.
Although size of compressed output is the metric by which
our assumptions can be falsified, we also measured running
times, to assess the practicality of our methods. This method-
ology extends to assess other, similar compression systems.

We also varied the amount of training data available,
to gauge the effect of training size on compression perfor-
mance. This is only the first step in testing assumption (4).
If we do not see compression performance stabilize at some
point as we increase the amount of training data, then as-
sumption (4) is likely falsified. After observing this stabi-
lization, however, a second test will be required: namely,
to fix the training set size above the point at which we ob-
served stability and increase the test set size arbitrarily. If
the relative performance of the compression systems being
compared does not remain stable, again assumption (4) is
likely falsified. Otherwise, we will have evidence supporting
assumption (4). Although this second experiment remains to
be conducted, based on our results we do not expect assump-
tion (4) to be falsified.

Finally, we compared the best results from the above
experiments with isolated usages of compressors based on
the Burrows-Wheeler transform [1] and prediction by par-
tial match (PPM) [6, 19]. The goal was to assess empir-
ically the benefit of our training scheme, which leverages
standard compression technology, versus other methods that
claim improved compression via sophisticated analyses of
the source data.

Data. We used 100,000 records from a network traffic
data warehouse. Each record is 781 bytes and pertains
to an individual network event. The warehouse receives
approximately one billion records per month, so effective
compression is critical to this application. From the 781
columns of bytes, we extracted the 90 with the highest
frequency: i.e., the number of times the value of the byte
changed as the column was scanned top-down. We explain
this in Section 5; basically, in our real application, the
other 691 columns were compressed more effectively using
incomparable methods.

We divided the 100,000 (now 90-byte) records into
training and test sets. The training set was 1/11th of the
data; the test set was the rest. We chose the training set in
two ways: (1) the first 9091 records, which we will call the
ordered training set, and (2) a randomly chosen set of 9091
records, which we will call the random training set. Each



way left the corresponding rest of the data as the test set.
In all our experiments, we used the training sets to generate
the corresponding compression plans, and we conducted the
compression experiments using those plans and the test sets.

Software. To run the experiments, we implemented the
following tools.

pin. Given a training set, pin computes a compression
plan based on optimum partitioning.

pzip. Given a compression plan computed by pin, pzip
compresses a test set with respect to the plan. It encodes
enough of the plan into the output (which is included in
the output size results reported) so that, given a com-
pressed file, pzip will uncompress it without needing
the original plan. (Pin and pzip actually form our
working system, and we discuss them in greater detail
in Section 5.)

colsel. Given a training set, colsel computes a com-
pression plan based on the greedy differential algo-
rithm.

cszip. Given a compression plan computed by colsel,
cszip compresses a test set with respect to the plan.
It encodes enough of the plan into the output (which
is included in the output size results reported) so that,
given a compressed file, cszip will uncompress it
without needing the original plan.

Pzip and cszip use the zlib library, version 1.1.3,1

to compress the intervals and columns, respectively.
System. All the training and experiments were run on

one 250 MHz MIPS R10000 processor on a 16-processor
SGI Origin 2000 running IRIX 6.5, with 10 GB of main
memory. Each time reported is the median of five runs,
summing user and system time for each run.

4.2 Experiments and Results.
Optimum Partitioning. To test assumption (1) and as-

sess how optimum partitioning affects compression perfor-
mance, we used pin to compute optimum partitions on
pieces of the training data of increasing size. We ran pzip
with each resulting compression plan on the test set and com-
pared the compression time and resulting size to those of the
benchmarks; we also compared uncompression times. We
performed this experiment using both the ordered and ran-
dom training sets.

Figures 1 and 2 displays the results, as a function of
the amount of training material used. Training on the 2%-
size (w.r.t. the test set size) data set, at which we see the
results stabilize, took about 2.27 CPU minutes. Because
we anticipate using the same compression plan with multi-
ple tables from a fixed source, though, training should be

1ftp://ftp.cdrom.com/pub/infozip/zlib

viewed as an off-line procedure. The results suggest that op-
timum partitioning offers significant improvement over both
benchmarks and thus fail to falsify assumption (1). We saw
30–35% improvement in compression for this application.
We suspect that most of the 15–25% degradation in com-
pression and uncompression time vs. benchmark R can be
attributed to the work required for pzip to organize the
columns. Analogous effort is required to compress bench-
mark C, but not benchmark R. We argue in Section 5 that the
resulting size improvement is worth this time overhead.

Chunk Partitioning. To test assumption (2) and assess
the degradation in partition quality from using chunk parti-
tioning, we computed chunk partitions on the training sets
that were 2% of the test set size. (The optimum partition-
ing experiment suggests that larger training sets offer no in-
creased benefits in compression performance.) Using pin
on the individual chunks, we computed an optimum chunk
partition for each possible chunk size. We used pzip with
each resulting compression plan to compress the test set. We
compared each result to that given by pzip using an opti-
mum partition (from the 2% training size), measuring rel-
ative output size, compression and uncompression speeds,
and training time. We performed this experiment using both
the ordered and random training sets, comparing chunk par-
titioning to the corresponding optimum partition.

Figure 3 displays the results, as a function of chunk size.
The results fail to falsify assumption (2) and furthermore
suggest that chunk partitioning is worthwhile, as small chunk
sizes (10–20 in this experiment) yielded almost identical
performance as optimum partitioning, but required only
about 2–6% of the training time.

Greedy Differential Compression. To test assumption
(3) and assess how greedy differential compression affects
performance, we computed greedy differential compression
plans using colsel on pieces of the training data of in-
creasing size. We compressed the test set using cszip with
the resulting plans and compared the resulting size, compres-
sion and uncompression time to that of pzip using an opti-
mum partition (from the 2% training size) and also to bench-
mark C. For the comparison to optimum partitioning, we also
compared the time to compute the greedy assignment (using
colsel) to that to compute the optimum partition (using
pin). We performed this experiment using both the ordered
and random training sets.

Figure 4 displays the results, as a function of the amount
of training material used. (For brevity, we display only the
results for the ordered training set. As in the previous experi-
ments, using the random training set yielded similar results.)
The results show that greedy differential compression offers
slight improvement over benchmark C, in particular a 2.5%
improvement in compression, and thus fail to falsify assump-
tion (3). On the other hand, greedy differential compression
does not compare favorably to optimum partitioning, except



0.01 0.1 1 10

Training set size / test set size (%)

0.0

0.5

1.0

1.5

R
el

at
iv

e 
pe

rf
or

m
an

ce

(a)

Compressed size (opt. part/bmrk R)
Compression time (opt. part/bmrk R)
Uncompression time (opt. part/bmrk R)

0.01 0.1 1 10

Training set size / test set size (%)

0.0

0.5

1.0

1.5

R
el

at
iv

e 
pe

rf
or

m
an

ce
(b)

Compressed size (opt. part/bmrk R)
Compression time (opt. part/bmrk R)
Uncompression time (opt. part/bmrk R)

Figure 1: Results of optimum partition compression, as a function of amount of training material. Shown is the relative
performance of optimum partitioning over benchmark R in terms of compressed size, compression time, and uncompression
time. (a) Ordered training set; (b) random training set.

in training time.
We offer a caveat: pzip has undergone significantly

more code optimization than cszip, which partially ex-
plains the relative difference in running times. We believe
that we can improve the running time of cszip by combin-
ing the column differencing and compression of the derived
columns into a single pass.

4.3 General Discussion. In all the experiments above, the
difference between using ordered and random training sets
was negligible, although the ordered sets did provide slightly
better results, suggesting the need for future experiments to
assess the effects of contiguity in the training data.

We did observe stabilization of compression perfor-
mance in all the experiments. Perhaps most remarkable is
that this stabilization occurred at training set sizes of 1–2%
of the test set size. Again, further experiments with increas-
ingly larger test sets and a fixed training set size are required
before assumption (4) can be assumed with confidence.

4.4 Comparison to Other Methods. We compared the
result of optimum partitioning (using the 2% training size)
to Burrows-Wheeler [1] and PPM [6, 19] compression in
isolation. For Burrows-Wheeler, we used Seward’s bzip2,
version 0.9.5d.2 For PPM, we used Bloom’s ppmz, version

2http://sourceware.cygnus.com/bzip2/index.html

Table 1: Comparison to other methods. Size and times are
ratios of optimum partitioning values to the corresponding
other-method values.

Compress. Uncompress.
Method Size time time
gzip

row-major 6.340e-1 1.202e-0 1.129e-0
col-major 6.977e-1 6.457e-1 3.168e-1

bzip 7.768e-1 4.344e-1 2.165e-1
PPM 8.786e-1 2.950e-3 4.010e-4

9.1;3 we used coder 9, which offers the best (albeit the
slowest) compression, with the rationale that if best PPM
compression turned out to be less than that of optimum
partitioning, faster PPM variants would not offer interesting
comparisons.

Table 1 details the results. For completeness, we include
comparisons to gzip used in row-major order (i.e., bench-
mark R), corresponding to off-the-shelf use of gzip, and to
gzip in column-major order (i.e., benchmark C). Optimum
partitioning achieved greater compression than all the other
methods used in isolation. Furthermore, it was faster than all
the other methods, except for row-major gzip; compared to

3http://www.cco.caltech.edu/
�

bloom/src/ppmz.html
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Figure 2: Results of optimum partition compression, as a function of amount of training material. Shown is the relative
performance of optimum partitioning over benchmark C in terms of compressed size, compression time, and uncompression
time. (a) Ordered training set; (b) random training set.

PPM, the relative speed difference was orders of magnitude.
The results suggest that, for our table application, opti-

mum partitioning using gzip as the underlying compression
method outperforms isolated usage of bzip and PPM, which
by themselves purport to outperform gzip. Since bzip
did out-compress gzip with only a slight time penalty, it
is worth future experimentation to assess the performance
of optimum partitioning using bzip as the underlying com-
pression method.

5 Partition Compression System and Applications

Pin and pzip actually form our production compression
system. Recall that the experiments in Section 4 used only
the 90 highest frequency columns from the original data set.
Prior to determining an optimum partition, pin calculates
column frequencies. It actually computes the optimum par-
tition only on the projection of the high frequency columns.
(How it determines low from high is a heuristic outside the
scope of this paper.) Furthermore, before computing the par-
tition, it employs another heuristic to reorder the high fre-
quency columns to improve compression size further. Again,
this heuristic is outside the scope of this paper and was turned
off for the experiments in Section 4.

Pzip then compresses the low frequency columns by
differential encoding, additionally gzipping the output of
of that phase, and the high frequency columns with respect
to the (reordered) partition. On the low frequency columns of
the full network traffic data set, this method outperformed the

gzip benchmark (R) by two orders of magnitude in com-
pression size and almost an order of magnitude in compres-
sion time. To measure how the full system works on the
original data set, we repeated the structure of the optimum
partitioning experiment, allowing pin to detect the low fre-
quency columns and pzip to use differential encoding on
them. The system setup was as in Section 4, and again we
fixed gzip as the underlying compression method. We com-
pared to benchmark R, corresponding to off-the-shelf use of
gzip, which was the method of choice in the AT&T net-
work traffic data warehouse prior to our work. The results
are shown in Figure 5. For this experiment, we used only the
ordered training set, as the random training set destroys the
frequency information.

The results indicate overall improvements relative to
straight gzip of 55% in compression size and 40–50% in
both compression and uncompression time, supporting the
argument that the space improvement by optimum partition-
ing is worth the extra time. The time savings for the low
frequency columns more than paid for the extra time needed
to compress the high frequency columns via optimum parti-
tioning. Again, training sets of 1–2% of the test set size suf-
ficed to achieve these results. Applied to the network traf-
fic warehouse, pin/pzip compresses the raw data for an
entire month from the original 1 TB to about 28 GB, small
enough to fit on a large PC disk. By comparison, gzip com-
pressed the data only to about 65 GB.
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Figure 3: Results of chunk partition compression, as a function of chunk size. Shown is the relative performance of chunk
partitioning over optimum partitioning in terms of compressed size, compression time, uncompression time, and training
time. (a) Ordered training set; (b) random training set.

5.1 Additional Test Sets.
The AT&T network switch statistics project. In this

project, statistics are collected at 15-minute intervals from
ATM switches in a network. A record corresponds to a re-
placeable circuit component in one of the switches and con-
sists of a 16-byte hardware identifier, a 4-byte statistic iden-
tifier, a 4-byte time stamp, and a 4-byte count value. Each
15-minute interval produces a file with about 80,000 records
for a 6-switch network. The items are sorted by the 16-byte
hardware identifier; sorted identifiers usually differ by one
byte from one item to the next. The file format is determined
by the switch manufacturer and has an irregular structure:
variable length headers and interspersed sequencing records
make the records variable length in general. The average file
size is about 2.2 MB and gzips to about 192 kB, making
the daily space requirement 18.4 MB.

To use pzip, each record was padded to a fixed 32
bytes. This expanded the average file size to about 2.6
MB. Training data produced 10 high frequency columns,
for which an optimum (reordered) partition was generated.
The resulting average pzipped file size was 10.3 kB, for
a daily space requirement of 1 MB, a 95% improvement
over straight gzip. Compression and uncompression time
improvement was only about 20%.

U.S. census data. We took a portion of the United States
1990 Census of Population and Housing Summary Tape File
3A (a.k.a. STF3A) [2]. The data format is fixed length ASCII
records. We used field group 301, level 090, for all states.

Table 2: Summary of results. Size and times are ratios of
pzip values to the corresponding gzip values.

Compression Uncompression
Data Size time time
Ntwk. traffic .45 .62 .54
Ntwk. switch .05 .80 .80
U.S. census .56 .50 .33

This generated a 342 MB file with 932-byte records. Gzip
compressed the file to 31.5 MB.

Pin determined that 186 columns were high frequency.
In the optimum partition generated, the largest class was
56 bytes wide, indicating high combinational dependence.
Pzip compressed the file to 17.5 MB, a 44.4% improvement
over gzip. The compression time improvement was 50%,
and uncompression time improvement was 67%.

5.2 Discussion. Table 2 summarizes the results in this
section.

Based on its performance on the network traffic data,
pzip has been put into production use in the AT&T network
traffic warehouse, using a compression plan generated by
pin on about 100,000 records. Although not in a controlled
setting, this will provide an “in-production” experiment that
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Figure 4: Results of greedy differential compression, as a function of amount of ordered training material. (a) Shows the
relative performance of greedy differential compression over optimum partitioning in terms of compressed size, compression
time, uncompression time, and training time. (b) Shows the relative performance of greedy differential compression over
benchmark C in terms of compressed size, compression time, and uncompression time.

can help assess assumption (4), because going forward,
pzipwill be compressing an arbitrary amount of data based
on the fixed-size training set.

6 Concluding Remarks

We have presented massive tables as a new focus in data
compression research. We have given a systematic approach
for solving the problem, based on the experimental vali-
dation of data dependency assumptions. The result is a
new compression paradigm: training for lossless compres-
sion. By exploiting data dependencies, our scheme outper-
forms standard methods based on information theoretic re-
sults, e.g., Lempel-Ziv [20, 21]. We tested two such depen-
dencies. For our application, optimum partitioning is better,
and it is in production use within AT&T, in the pzip sys-
tem. We anticipate instances for which the differential ap-
proach will outperform the combinational approach and also
instances that favor a hybrid approach. We leave as an open
problem to find other data dependencies.

Our results demonstrate the utility of training for loss-
less compression. Given multiple tables from a common
source, training becomes an off-line operation, suitable for
computationally expensive optimizations. The bottleneck in
our dynamic programming algorithm for optimum partition-
ing is the computation of ��� ��� ��
���
!� for all � � � � � � � ,
which requires running the base compressor (gzip, in our
case) on

� �!�
	
� intervals of columns. A quick way to esti-

mate the compressed size of an interval of columns, such as
providing a suitable lower bound on their joint entropy—a
fundamental problem of independent interest—would there-
fore be valuable in speeding the overall algorithm.

Two aspects of our work that are now only heuristic are
as follows. Permuting the columns before partitioning them
effects greater compression. The problem of optimally per-
muting the columns can be abstracted in combinatorial op-
timization terms as versions of the Hamiltonian path prob-
lem or clustering. We suspect that these formulations will
prove to be hard, but proving their hardness is non-trivial.
Any reduction must capture required costs by constructing
columns whose compressed size using a particular program
(such as gzip) will match required costs in the reduction.
From a practical point of view, an efficient heuristic with
good performance is desirable. Our second heuristic involves
the choice of low frequency columns that are removed prior
to training. In our data sets, simple rules of thumb sufficed
to identify such columns, but a formal approach would be
desirable.

In the differential approach, we focused on the case
in which derived columns can be assigned only to source
columns. In general, however, we can build a tree of
derivations, which implies an interesting variation of the
facility location problem that can be solved exactly by a
reduction to minimum spanning trees. We also leave as
open problems to explore the effect on compression plans
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Figure 5: Results of using pin/pzipwith all heuristics and
optimum partition compression, as a function of amount of
ordered training material. Shown is the relative performance
of pzip over benchmark R in terms of compressed size,
compression time, and uncompression time.

of using other approximations to the metric facility location
problem [3, 11], and to explore hybrid approaches in which
we apply optimum partitioning and differential compression
to disjoint intervals of

�
.

Our experimental methodology—assuming dependen-
cies, deriving algorithms based on them, and testing to sup-
port or falsify them—may be applied to other compression-
based scenarios. It remains to conduct the second test of as-
sumption (4)—that the amount of training material needed is
independent of the size of the test set—by fixing a compres-
sion plan for an arbitrarily large amount of test material. The
production use of pzip is providing an uncontrolled version
of this experiment that supports the assumption. Finally, as-
sessing the impact of data contiguity on training remains to
be studied rigorously.
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