
Undirected Graphs

Some of these lecture slides are adapted from material in:
• Algorithms in C, Part 5, R. Sedgwick.

3

Undirected Graphs

GRAPH. Set of OBJECTS with pairwise CONNECTIONS.

■ Interesting and broadly useful abstraction.

Why study graph algorithms?

■ Challenging branch of computer science and discrete math.

■ Hundreds of graph algorithms known.

■ Thousands of practical applications.

4

Graphs

communication

Graph

telephone exchanges,
computers, satellites

Vertices Edges

cables, fiber optics,
microwave relays

circuits gates, registers, processors wires

mechanical joints rods, beams, springs

hydraulic reservoirs, pumping stations pipelines

financial stocks, currency transactions

transportation street intersections, airports highways, airway routes

scheduling tasks precedence constraints

software systems functions function calls

internet web pages hyperlinks

games board positions legal moves

social relationship people, actors friendships, movie casts

5

Graph Jargon

Terminology.
■ Vertex: v.

■ Edge: e = v-w.

■ Graph: G.

■ V vertices, E edges.

■ Parallel edge, self loop.

■ Directed, undirected.

■ Sparse, dense.

■ Path.

■ Cycle, tour.

■ Tree, forest.

■ Connected, connected component.

A

G

E

CB

F

D

H M

KJ

LI

6

A Few Graph Problems

PATH. Is there a path from s to t?
SHORTEST PATH. What is the shortest path between two vertices?
LONGEST PATH. What is the longest path between two vertices?

CYCLE. Is there a cycle in the graph?
EULER TOUR. Is there a cycle that uses each edge exactly once?
HAMILTON TOUR. Is there a cycle that uses each vertex exactly once?

CONNECTIVITY. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
BI-CONNECTIVITY. Is there a vertex whose removal disconnects graph?

PLANARITY. Can graph be drawn in plane with no crossing edges?
ISOMORPHISM. Do two adjacency matrices represent the same graph?

7

Standard method to separate clients from implementation.
■ Opaque pointer to Graph ADT.

■ Plus simple typedef for Edge.

typedef struct graph *Graph;
typedef struct { int v, w; } Edge;
Edge EDGEinit(int v, int w);

Graph GRAPHinit(int V);
Graph GRAPHrand(int V, int E);
void GRAPHdestroy(Graph G);
void GRAPHshow(Graph G);
void GRAPHinsertE(Graph G, Edge e);
void GRAPHremoveE(Graph G, Edge e);
int GRAPHcc(Graph G);
int GRAPHisplanar(Graph G);
. . .

GRAPH.h

Graph ADT in C

8

Typical client program.
■ Call GRAPHinit() or GRAPHrand() to create instance.

■ Uses Graph handle as argument to ADT functions.

■ Calls ADT function to do graph processing.

#include <stdio.h>
#include "GRAPH.h"

int main(int argc, char *argv[]) {
int V = atoi(argv[1]);
int E = atoi(argv[2]);
Graph G = GRAPHrand(V, E);
GRAPHshow(G);
printf("%d component(s)\n", GRAPHcc(G));
return 0;

}

client.c

Graph ADT in C

9

Graph Representation

Vertex names. (A B C D E F G H I J K L M)
■ C program uses integers between 0 and V-1.

■ Convert via implicit or explicit symbol table.

Two drawing represent same graph.

Set of edges representation.

■ { A-B, A-G, A-C, L-M, J-M, J-L, J-K, E-D, F-D, H-I, F-E, A-F, G-E }.

A

G

E

CB

F

D

H

M

KJ

L

I
A G

E

CB

F

D

H

M

K

J

L

I

10

Adjacency Matrix Representation

Adjacency matrix representation.

■ Two-dimensional V × V array.

■ Edge v-w in graph: adj[v][w] = adj[w][v] = 1.

A B C D E F G H I J K L M
0 A 0 1 1 0 0 1 1 0 0 0 0 0 0
1 B 1 0 0 0 0 1 1 0 0 0 0 0 0
2 C 1 0 0 0 0 0 0 0 0 0 0 0 0
3 D 0 0 0 0 1 1 0 0 0 0 0 0 0
4 E 0 0 0 1 0 1 1 0 0 0 0 0 0
5 F 1 1 0 1 1 0 0 0 0 0 0 0 0
6 G 1 1 0 0 1 0 0 0 0 0 0 0 0
7 H 0 0 0 0 0 0 0 0 1 0 0 0 0
8 I 0 0 0 0 0 0 0 1 0 0 0 0 0
9 J 0 0 0 0 0 0 0 0 0 0 1 1 1

10 K 0 0 0 0 0 0 0 0 0 1 0 0 0
11 L 0 0 0 0 0 0 0 0 0 1 0 0 1
12 M 0 0 0 0 0 0 0 0 0 1 0 1 0

Adjacency Matrix

A

G

E

CB

F

D

H M

KJ

LI

11

#include <stdlib.h>
#include "GRAPH.h"
struct graph {

int V; // # vertices
int E; // # edges
int **adj; // V × V adjacency matrix

};

Graph GRAPHinit(int V) {
Graph G = malloc(sizeof *G);
G->V = V; G->E = 0;
G->adj = MATRIXinit(V, V, 0);
return G;

}

void GRAPHinsertE(Graph G, Edge e) {
int v = e.v, w = e.w;
if (G->adj[v][w] == 0) G->E++;
G->adj[v][w] = G->adj[w][v] = 1;

}

GRAPH.h

Graph ADT Implementation: Adjacency Matrix

no parallel edges

12

Adjacency List Representation

Vertex indexed array of lists.

■ Space proportional to number of edges.

■ Two representations of each undirected edge.

A F C B G

B A

C A

D F E

E G F D

F A E D

G E A

H I

I H

J K L M

K J

L J M

M J L

A

G

E

CB

F

D

H M

KJ

LI

13

#include "GRAPH.h"

typedef struct node *link;
struct node {

int v; // current vertex in adjacency list
link next; // next node in adjacency list

};

struct graph {
int V; // # vertices
int E; // # edges
link *adj; // array of V adjacency lists

};

link NEWnode(int v, link next) {
link x = malloc(sizeof *x);
x->v = v;
x->next = next;
return x;

}

GRAPH.h

Graph ADT Implementation: Adjacency List

14

// initialize a new graph with V vertices
Graph GRAPHinit(int V) {

int v;
Graph G = malloc(sizeof *G);
G->V = V; G->E = 0;
G->adj = malloc(V * sizeof(link));
for (v = 0; v < V; v++) G->adj[v] = NULL;
return G;

}

// insert an edge e = v-w into Graph G
void GRAPHinsertE(Graph G, Edge e) {

int v = e.v, w = e.w;
G->adj[v] = NEWnode(w, G->adj[v]);
G->adj[w] = NEWnode(v, G->adj[w]);
G->E++;

}

GRAPH.h

Adjacency List Graph ADT Implementation

15

Graph Representations

Graphs are abstract mathematical objects.

■ ADT implementation requires specific representation.

■ Efficiency depends on matching algorithms to representations.

Most real-world graphs are sparse ⇒ adjacency list.

Representation Space

Adjacency matrix O(V 2)

Adjacency list O(E + V)

Edge between
v and w?

O(1)

O(E)

Enumerate
all edges

O(V 2)

O(E + V)

Edge from v
to anywhere?

O(V)

O(1)

16

Goal. Visit every node and edge in Graph.
A solution. Depth-first search.

■ To visit a node v:

– mark it as visited
– recursively visit all unmarked nodes w adjacent to v

■ To traverse a Graph G:

– initialize all nodes as unmarked
– visit each unmarked node

Enables direct solution of simple graph problems.

■ Connected components.

■ Cycles.

Basis for solving difficult graph problems.

■ Biconnectivity.

■ Planarity.

Graph Search

17

#define UNMARKED -1
static int mark[MAXV];

// traverse component of graph
int GRAPHcc(Graph G) {

int v, id = 0;
// initialize all nodes as unmarked
for (v = 0; v < G->V; v++) mark[v] = UNMARKED;
// visit each unmarked node
for (v = 0; v < G->V; v++)
if (mark[v] == UNMARKED) dfsR(G, v, id++);

return id;
}

// return 1 if s and t in same connected component
int GRAPHconnect(int s, int t) {

return mark[s] == mark[t];
}

Depth First Search

Depth First Search: Connected Components

18

void dfsR(Graph G, int v, int id) {
int w;
mark[v] = id;
for (w = 0; w < G->V; w++)

if (G->adj[v][w] != 0 && mark[w] == UNMARKED)
dfsR(G, w, id);

}

Depth First Search: Adjacency Matrix

Depth First Search: Connected Components

void dfsR(Graph G, int v, int id) {
link t;
int w;
mark[v] = id;

// iterate over all nodes w adjacent to v
for (t = G->adj[v]; t != NULL; t = t->next) {

w = t->v;
if (mark[w] == UMARKED) dfsR(G, w, id);

}
}

Depth First Search: Adjacency List

19

Connected Components

PATHS. Is there a path from s to t?

UF advantage.

■ Dynamic: can intermix query and edge insertion.

DFS advantage.

■ Can get path itself in same running time.
– maintain parent-link representation of tree
– change DFS argument to pass EDGE taken to visit vertex

■ Extends to other problems.

Method Preprocess

Union Find O(E log* V)

DFS O(E + V)

Query

O(log* V)

O(1)

Space

O(V)

O(V)

20

Graphs and Mazes

Maze graphs.

■ Vertices = intersections

■ Edges = hallways.

DFS.

■ Mark ENTRY and EXIT halls at each vertex.

■ Leave by ENTRY when no unmarked halls.

21

Breadth First Search

Depth-first search.

■ Visit all nodes and edges recursively.

■ Put unvisited nodes on a STACK.

Breadth-first search.

■ Put unvisited nodes on a QUEUE.

SHORTEST PATH. What is fewest number of edges to get from s to t?

Solution. BFS.
■ Initialize mark[s] = 0.

■ When considering edge v-w:
– if w is marked then ignore
– if w not marked, set mark[w] = mark[v] + 1

22

bfs(Graph G, int s) {
link t;
int v, w;
QUEUEput(s);
mark[s] = 0;
while (!QUEUEempty()) {

v = QUEUEget();
for (t = G->adj[v]; t != NULL; t = t->next) {

w = t->v;
if (mark[w] == UNMARKED) {

mark[w] = mark[v] + 1;
QUEUEput(w);

}
}

}
}

Breadth First Search

Breadth First Search

23

Related Graph Search Problems

PATHS. Is there a path from s to t?

■ Solution: DFS, BFS, any graph search.

SHORTEST PATH. Find shortest path (fewest edges) from s to t.

■ Solution: BFS.

CYCLE. Is there a cycle in the graph?

■ Solution: DFS. See textbook.

EULER TOUR. Is there a cycle that uses each edge exactly once?

■ Yes if connected and degrees of all vertices are even.

■ See textbook to find tour.

HAMILTON TOUR. Is there a cycle that uses each vertex exactly once?

■ Solution: ??? (NP-complete)

