Undirected Graphs

Undirected Graphs

Graphs						
Graph	Vertices	Edges				
communication	telephone exchanges, computers, satellites	cables, fiber optics, microwave relays				
circuits	gates, registers, processors	wires				
mechanical	joints	rods, beams, springs				
hydraulic	reservoirs, pumping stations	pipelines				
financial	stocks, currency	transactions				
transportation	street intersections, airports	highways, airway routes				
scheduling	tasks	precedence constraints				
software systems	functions	function calls				
internet	web pages	hyperlinks				
games	board positions	legal moves				
social relationship	people, actors	friendships, movie casts				

GRAPH. Set of OBJECTS with pairwise CONNECTIONS.

Interesting and broadly useful abstraction.

Why study graph algorithms?

- Challenging branch of computer science and discrete math.
- Hundreds of graph algorithms known.
- . Thousands of practical applications.

Graph Jargon C (в) ■ v vertices, E edges. Parallel edge, self loop. Directed, undirected.

. Cycle, tour. . Tree, forest.

Path.

. Sparse, dense.

Terminology. • Vertex: v.

. Graph: G.

• Edge: e = v-w.

. Connected, connected component.

A Few Graph Problems

PATH. Is there a path from s to t? SHORTEST PATH. What is the shortest path between two vertices? LONGEST PATH. What is the longest path between two vertices?

CYCLE. Is there a cycle in the graph? EULER TOUR. Is there a cycle that uses each edge exactly once? HAMILTON TOUR. Is there a cycle that uses each vertex exactly once?

CONNECTIVITY. Is there a way to connect all of the vertices? MST. What is the best way to connect all of the vertices? BI-CONNECTIVITY. Is there a vertex whose removal disconnects graph?

PLANARITY. Can graph be drawn in plane with no crossing edges? **ISOMORPHISM.** Do two adjacency matrices represent the same graph?

Graph ADT in C

Standard method to separate clients from implementation.

- Opaque pointer to Graph ADT.
- Plus simple typedef for Edge.

GRAPH.h

typedef struct graph *Graph; typedef struct { int v, w; } Edge; Edge EDGEinit(int v, int w);

Graph GRAPHinit(int V); Graph GRAPHrand(int V, int E); void GRAPHdestroy(Graph G); void GRAPHshow(Graph G); void GRAPHinsertE(Graph G, Edge e); void GRAPHremoveE(Graph G, Edge e); int GRAPHcc(Graph G); int GRAPHisplanar(Graph G);

• • •

Graph ADT in C

Typical client program.

- Call GRAPHinit() or GRAPHrand() to create instance.
- Uses Graph handle as argument to ADT functions.
- Calls ADT function to do graph processing.

client.c

```
#include <stdio.h>
#include "GRAPH.h"
int main(int argc, char *argv[]) {
    int V = atoi(argv[1]);
    int E = atoi(argv[2]);
    Graph G = GRAPHrand(V, E);
    GRAPHshow(G);
    printf("%d component(s)\n", GRAPHcc(G));
    return 0;
}
```

Graph Representation

Vertex names. (A B C D E F G H I J K L M)

- . C program uses integers between 0 and v-1.
- . Convert via implicit or explicit symbol table.

Two drawing represent same graph.

Set of edges representation.

• { A-B, A-G, A-C, L-M, J-M, J-L, J-K, E-D, F-D, H-I, F-E, A-F, G-E }.

Adjacency Matrix Representation

Adjacency matrix representation.

- $\label{eq:constraint} \textbf{I} \quad \textbf{Two-dimensional } v \times v \text{ array}.$
- Edge v-w in graph: adj[v][w] = adj[w][v] = 1.

		-	-	С	P	-	-	a		+	-	77	÷.	16
		Α	В	C	D	Е	F	G	H	Ι	J	ĸ	Г	M
0	A	0	1	1	0	0	1	1	0	0	0	0	0	0
1	в	1	0	0	0	0	1	1	0	0	0	0	0	0
2	C	1	0	0	0	0	0	0	0	0	0	0	0	0
3	D	0	0	0	0	1	1	0	0	0	0	0	0	0
4	Е	0	0	0	1	0	1	1	0	0	0	0	0	0
5	F	1	1	0	1	1	0	0	0	0	0	0	0	0
6	G	1	1	0	0	1	0	0	0	0	0	0	0	0
7	H	0	0	0	0	0	0	0	0	1	0	0	0	0
8	I	0	0	0	0	0	0	0	1	0	0	0	0	0
9	J	0	0	0	0	0	0	0	0	0	0	1	1	1
10	ĸ	0	0	0	0	0	0	0	0	0	1	0	0	0
11	L	0	0	0	0	0	0	0	0	0	1	0	0	1
12	м	0	0	0	0	0	0	0	0	0	1	0	1	0

Adjacency Matrix

Graph ADT Implementation: Adjacency Matrix

Adjacency List Representation

Vertex indexed array of lists.

- . Space proportional to number of edges.
- . Two representations of each undirected edge.

Graph ADT Implementation: Adjacency List

GRAPH.h

#include "GRAPH.h" typedef struct node *link; struct node { int v; // current vertex in adjacency list link next; // next node in adjacency list }; struct graph { int V; // # vertices // # edges int E; link *adj; // array of V adjacency lists }; link NEWnode(int v, link next) { link x = malloc(sizeof *x); $x \rightarrow v = v;$ x->next = next; return x;

Adjacency List Graph ADT Implementation

GRAPH.h

```
// initialize a new graph with V vertices
Graph GRAPHinit(int V) {
    int v;
    Graph G = malloc(sizeof *G);
    G->V = V; G->E = 0;
    G->adj = malloc(V * sizeof(link));
    for (v = 0; v < V; v++) G->adj[v] = NULL;
    return G;
}
// insert an edge e = v-w into Graph G
void GRAPHinsertE(Graph G, Edge e) {
    int v = e.v, w = e.w;
    G->adj[v] = NEWnode(w, G->adj[v]);
    G->adj[w] = NEWnode(v, G->adj[w]);
    G->E++;
}
```

Graph Representations

Graphs are abstract mathematical objects.

- . ADT implementation requires specific representation.
- Efficiency depends on matching algorithms to representations.

Representation	Space	Edge between v and w?	Edge from v to anywhere?	Enumerate all edges	
Adjacency matrix	O(V ²)	O(1)	O(V)	O(V ²)	
Adjacency list	O(E + V)	O(E)	O(1)	O(E + V)	

Most real-world graphs are sparse \Rightarrow adjacency list.

Graph Search

Goal. Visit every node and edge in Graph. A solution. Depth-first search.

- . To visit a node v:
 - mark it as visited

– recursively visit all unmarked nodes ${\bf w}$ adjacent to ${\bf v}$

- To traverse a Graph G:
 - initialize all nodes as unmarked
 - visit each unmarked node

Enables direct solution of simple graph problems.

- Connected components.
 - . Cycles.

Basis for solving difficult graph problems.

- Biconnectivity.
- Planarity.

Depth First Search: Connected Components

Depth First Search

```
#define UNMARKED -1
static int mark[MAXV];

// traverse component of graph
int GRAPHcc(Graph G) {
    int v, id = 0;
    // initialize all nodes as unmarked
    for (v = 0; v < G->V; v++) mark[v] = UNMARKED;
    // visit each unmarked node
    for (v = 0; v < G->V; v++)
        if (mark[v] == UNMARKED) dfsR(G, v, id++);
        return id;
}
// return 1 if s and t in same connected component
int GRAPHconnect(int s, int t) {
    return mark[s] == mark[t];
```

}

Depth First Search: Connected Components

Depth First Search: Adjacency Matrix

Depth First Search: Adjacency List

```
void dfsR(Graph G, int v, int id) {
    link t;
    int w;
    mark[v] = id;
    // iterate over all nodes w adjacent to v
```

```
for (t = G->adj[v]; t != NULL; t = t->next) {
    w = t->v;
    if (mark[w] == UMARKED) dfsR(G, w, id);
```

Connected Components

PATHS. Is there a path from s to t?

Method	Preprocess	Query	Space
Union Find	O(E log* V)	O(log* V)	O(V)
DFS	O(E + V)	O(1)	O(V)

UF advantage.

Dynamic: can intermix query and edge insertion.

DFS advantage.

- . Can get path itself in same running time.
 - maintain parent-link representation of tree
 - change DFS argument to pass EDGE taken to visit vertex
- . Extends to other problems.

Graphs and Mazes

Maze graphs.

}

- Vertices = intersections
- Edges = hallways.

DFS.

- Mark ENTRY and EXIT halls at each vertex.
- . Leave by ENTRY when no unmarked halls.

Breadth First Search

Depth-first search.

- . Visit all nodes and edges recursively.
- Put unvisited nodes on a STACK.

Breadth-first search.

Put unvisited nodes on a QUEUE.

SHORTEST PATH. What is fewest number of edges to get from s to t?

Solution. BFS.

- . Initialize mark[s] = 0.
- . When considering edge v-w:
 - if w is marked then ignore
 - if w not marked, set mark[w] = mark[v] + 1

Breadth First Search

Breadth First Search

```
bfs(Graph G, int s) {
    link t;
    int v, w;
    QUEUEput(s);
    mark[s] = 0;
    while (!QUEUEempty()) {
        v = QUEUEget();
        for (t = G->adj[v]; t != NULL; t = t->next) {
            w = t->v;
            if (mark[w] == UNMARKED) {
                mark[w] = mark[v] + 1;
                QUEUEput(w);
            }
        }
    }
}
```

Related Graph Search Problems

PATHS. Is there a path from s to t?

- . Solution: DFS, BFS, any graph search.
- SHORTEST PATH. Find shortest path (fewest edges) from s to t.
 - . Solution: BFS.

22

CYCLE. Is there a cycle in the graph?

. Solution: DFS. See textbook.

EULER TOUR. Is there a cycle that uses each edge exactly once?

- . Yes if connected and degrees of all vertices are even.
- . See textbook to find tour.

HAMILTON TOUR. Is there a cycle that uses each vertex exactly once?

Solution: ??? (NP-complete)