Undirected Graphs

Some of these lecture slides are adapted from material in:

- Algorithms in C, Part 5, R. Sedgwick.

Undirected Graphs

GRAPH. Set of OBJECTS with pairwise CONNECTIONS.

- Interesting and broadly useful abstraction.

Why study graph algorithms?

- Challenging branch of computer science and discrete math.
- Hundreds of graph algorithms known.
- Thousands of practical applications.

Graph Jargon

Terminology.

- Vertex: v.
- Edge: e = v-w.
- Graph: G.
- v vertices, E edges.
- Parallel edge, self loop.
- Directed, undirected.
- Sparse, dense.
- Path.
- Cycle, tour.
- Tree, forest.
- Connected, connected component.

A Few Graph Problems

PATH. Is there a path from s to t ?
SHORTEST PATH. What is the shortest path between two vertices?
LONGEST PATH. What is the longest path between two vertices?

CYCLE. Is there a cycle in the graph?
EULER TOUR. Is there a cycle that uses each edge exactly once?
HAMILTON TOUR. Is there a cycle that uses each vertex exactly once?

CONNECTIVITY. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
BI-CONNECTIVITY. Is there a vertex whose removal disconnects graph?
PLANARITY. Can graph be drawn in plane with no crossing edges? ISOMORPHISM. Do two adjacency matrices represent the same graph?

Graph ADT in C

Standard method to separate clients from implementation.

- Opaque pointer to Graph ADT.
- Plus simple typedef for Edge.

GRAPH.h

```
typedef struct graph *Graph;
typedef struct { int v, w; } Edge;
Edge EDGEinit(int v, int w);
Graph GRAPHinit(int V);
Graph GRAPHrand(int V, int E);
void GRAPHdestroy(Graph G);
void GRAPHshow (Graph G);
void GRAPHinsertE (Graph G, Edge e);
void GRAPHremoveE (Graph G, Edge e);
int GRAPHCC (Graph G);
int GRAPHisplanar(Graph G);
```

. . .

Graph Representation

Vertex names. (ABCDEFGHIJKLM)

- C program uses integers between 0 and $\mathrm{v}-1$.
- Convert via implicit or explicit symbol table.

Two drawing represent same graph.

Set of edges representation.

- \{ A-B, A-G, A-C, L-M, J-M, J-L, J-K, E-D, F-D, H-I, F-E, A-F, G-E \}.

Adjacency Matrix Representation

Adjacency matrix representation.

- Two-dimensional $\mathrm{v} \times \mathrm{v}$ array.
- Edge v-w in graph: $\operatorname{adj}[\mathrm{v}][\mathrm{w}]=\operatorname{adj}[\mathrm{w}][\mathrm{v}]=1$.

	A	B	C	D	E	F	G	H	I	J	K	L	M	
0	A	0	1	1	0	0	1	1	0	0	0	0	0	0
1	B	1	0	0	0	0	1	1	0	0	0	0	0	0
2	C	1	0	0	0	0	0	0	0	0	0	0	0	0
3	D	0	0	0	0	1	1	0	0	0	0	0	0	0
4	E	0	0	0	1	0	1	1	0	0	0	0	0	0
5	F	1	1	0	1	1	0	0	0	0	0	0	0	0
6	G	1	1	0	0	1	0	0	0	0	0	0	0	0
7	H	0	0	0	0	0	0	0	0	1	0	0	0	0
8	I	0	0	0	0	0	0	0	1	0	0	0	0	0
9	J	0	0	0	0	0	0	0	0	0	0	1	1	1
10	K	0	0	0	0	0	0	0	0	0	1	0	0	0
11	L	0	0	0	0	0	0	0	0	0	1	0	0	1
12	M	0	0	0	0	0	0	0	0	0	1	0	1	0

Adjacency Matrix

Adjacency List Representation

Vertex indexed array of lists.

- Space proportional to number of edges.
- Two representations of each undirected edge.

Graph ADT Implementation: Adjacency Matrix

GRAPH.h

```
#include <stdlib.h>
#include "GRAPH.h"
```

struct graph \{

int $\mathrm{V} ;$	// \# vertices
int $\mathrm{E} ;$	// \# edges
int **adj;	// V $\times \mathrm{V}$ adjacency matrix

\};
Graph GRAPHinit (int V) \{
Graph G = malloc (sizeof *G)
G->V = V; G->E = 0;
G->adj $=$ MATRIXinit (V, $\mathrm{V}, \mathrm{O})$;
return G;
\}
void GRAPHinsertE (Graph G, Edge e) \{
int $v=e . v, w=e . w ;$

G->adj[v][w] = G->adj[w][v] = 1;
\}

Graph ADT Implementation: Adjacency List

```
            GRAPH.h
#include "GRAPH.h"
typedef struct node *link;
struct node {
    int v; // current vertex in adjacency list
    link next; // next node in adjacency list
};
struct graph {
    int V; // # vertices
    int E; // # edges
    link *adj; // array of v adjacency lists
};
link NEWnode(int v, link next) {
    link x = malloc(sizeof *x);
    x->v = v;
    x->next = next;
    return x;
}
```


Adjacency List Graph ADT Implementation

```
GRAPH.h
// initialize a new graph with V vertices
Graph GRAPHinit(int V) {
    int v;
    Graph G = malloc(sizeof *G);
    G->V = V; G->E = 0;
    G->adj = malloc(V * sizeof(link));
    for (v = O; v < V; v++) G->adj[v] = NULL;
    return G;
}
// insert an edge e = v-w into Graph G
void GRAPHinsertE (Graph G, Edge e) {
    int v = e.v, w = e.w;
    G->adj[v] = NEWnode(w, G->adj[v]);
    G->adj[w] = NEWnode(v, G->adj[w]);
    G->E++;
}
```


Graph Search

Goal. Visit every node and edge in Graph.
A solution. Depth-first search.
. To visit a node v:

- mark it as visited
- recursively visit all unmarked nodes wadjacent to v
- To traverse a Graph G:
- initialize all nodes as unmarked
- visit each unmarked node

Enables direct solution of simple graph problems.

- Connected components.
- Cycles.

Basis for solving difficult graph problems.

- Biconnectivity.
- Planarity.

Graph Representations

Graphs are abstract mathematical objects.

- ADT implementation requires specific representation.
- Efficiency depends on matching algorithms to representations.

Representation	Space	Edge between \mathbf{V} and w?	Edge from \mathbf{v} to anywhere?	Enumerate all edges
Adjacency matrix	$\mathbf{O}\left(\mathbf{V}^{2}\right)$	$\mathbf{O}(1)$	$\mathbf{O}(\mathbf{V})$	$\mathbf{O}\left(\mathbf{V}^{2}\right)$
Adjacency list	$\mathbf{O (E + V)}$	$\mathbf{O}(E)$	$\mathbf{O}(1)$	$\mathbf{O}(E+V)$

Most real-world graphs are sparse \Rightarrow adjacency list.

Depth First Search: Connected Components

Depth First Search

\#define UNMARKED -1
static int mark[MAXV];
// traverse component of graph
int GRAPHcc (Graph G) \{
int v, id $=0$;
// initialize all nodes as unmarked
for ($\mathrm{v}=0$; v < G->v; v++) mark[v] = UNMARKED;
// visit each unmarked node
for ($\mathrm{v}=0$; v < G->V; v++)
if (mark[v] == UNMARKED) dfsR(G, $v, i d++)$;
return id;
\}
// return 1 if s and t in same connected component
int GRAPHconnect (int s, int t) \{
return mark[s] == mark[t];
\}

Depth First Search: Connected Components

Depth First Search: Adjacency Matrix

```
void dfsR(Graph G, int v, int id) {
    int w;
    mark[v] = id
    for (w = 0; w < G->V; w++)
        if (G->adj[v][w] != 0 && mark[w] == UNMARKED)
                dfsR(G, w, id)
}
```


Depth First Search: Adjacency List

```
void dfsR(Graph G, int v, int id) {
    link t;
    int w;
    mark[v] = id;
    // iterate over all nodes w adjacent to v
    for (t = G->adj[v]; t != NULL; t = t->next) {
        w = t->v;
        if (mark[w] == UMARKED) dfsR(G, w, id);
    }
}
```


Graphs and Mazes

Maze graphs.

- Vertices = intersections
- Edges = hallways.

DFS.

- Mark ENTRY and EXIT halls at each vertex.
. Leave by ENTRY when no unmarked halls.

Connected Components

PATHS. Is there a path from sto t?

Method	Preprocess	Query	Space
Union Find	$\mathbf{O (E ~ \operatorname { l o g } ^ { \star } V)}$	$\mathbf{O}\left(\right.$ log $\left.^{\star} V\right)$	$\mathbf{O}(V)$
DFS	$O(E+V)$	$\mathbf{O}(1)$	$\mathbf{O}(V)$

UF advantage.
. Dynamic: can intermix query and edge insertion.

DFS advantage.

- Can get path itself in same running time.
- maintain parent-link representation of tree
- change DFS argument to pass EDGE taken to visit vertex
- Extends to other problems.

Breadth First Search

Depth-first search.

- Visit all nodes and edges recursively.
. Put unvisited nodes on a STACK.

Breadth-first search.

- Put unvisited nodes on a QUEUE.

SHORTEST PATH. What is fewest number of edges to get from sto

Solution. BFS.

- Initialize mark[s] = 0 .
- When considering edge v -w:
- if w is marked then ignore
- if w not marked, set mark [w] = mark[v] + 1

Breadth First Search

Breadth First Search

```
bfs(Graph G, int s) {
    link t;
    int v, w;
    QUEUEput (s);
    mark[s] = 0;
    while (!QUEUEempty()) {
        v = QUEUEget();
        for (t = G->adj[v]; t != NULL; t = t->next) {
        w = t->v;
        if (mark[w] == UNMARKED) {
            mark[w] = mark[v] + 1;
                QUEUEput (w);
            }
        }
    }
```

\}

Related Graph Search Problems

\Rightarrow PATHS. Is there a path from s to t ?

- Solution: DFS, BFS, any graph search.
\Rightarrow SHORTEST PATH. Find shortest path (fewest edges) from s to t.
. Solution: BFS.

CYCLE. Is there a cycle in the graph?
. Solution: DFS. See textbook.

EULER TOUR. Is there a cycle that uses each edge exactly once?

- Yes if connected and degrees of all vertices are even.
. See textbook to find tour.

HAMILTON TOUR. Is there a cycle that uses each vertex exactly once?
. Solution: ??? (NP-complete)

