
COS 226 Lecture 20: Shortest Paths

Classic algorithms for natural network problems

SHORTEST PATH

 shortest way to get from u to v

SINGLE-SOURCE SHORTEST PATHS (SPT)

 PFS implementation

 Dijkstra’s algorithm

ALL SHORTEST PATHS

 Floyd’s algorithm

Negative weights?

REDUCTION

Problem-solving models

19.1

Single-source shortest paths

Defines SHORTEST PATHS TREE (SPT) rooted at source

0-1 .41
1-2 .51
2-3 .50
4-3 .36
3-5 .38
3-0 .45
0-5 .29
5-4 .21
1-4 .32
4-2 .32
5-1 .29

0

0

.41

0

.32

4

.36

4

.21

5

.29

0st

wt

0 1 2 3 4 5

0

1

23

4

5

0

1

2 3

4

5

19.2

SPT algorithm

Another generalized graph-search implementation

RELAXATION

 if wt[w] < wt[v] + wt(v-w) then set wt[w] to that value

 (v-w gives a shorter path to w than the best known)

SPT ALGORITHM

 put s on fringe

 while fringe nonempty

 choose node from fringe that is closest to s

 relax along all its edges

v on TREE wt[v] is shortest distance from s to v

v on FRINGE: wt[v] is shortest KNOWN distance from s to v

 won’t find a shorter path to node with smallest value

19.3

larger SPT example

19.4

Dijkstra’s algorithm

Classical implementation of generic SPT algorithm

SAME CODE as Prim’s MST algorithm with

 #define P wt[v] + t->wt

DENSE graphs

 classical Dijkstra’s algorithm

 time cost: O(V^3)

SPARSE graphs

 use PQ (heap) implementation

 time cost: O(E lg V)

Better PQs give faster algorithms for sparse graphs

 d-way heap: O(E log_d V)

 F-heap: O(E + V log V)
19.5

Shortest paths in Euclidean graphs

Problem: find shortest path from s to d

Algorithm:

 start shortest-path PFS at s

 stop when reaching d

SUBLINEAR algorithm

 need not touch all nodes

better yet: use geometry to limit search

wt[v]:

 TREE: shortest distance from s to v

 FRINGE: shortest POSSIBLE distance from s to d through v

 tree path from s to v PLUS distance from v to d

#define P wt[v] + t->wt + dist(t->v, d) - dist(k, d)

19.6

All shortest paths

Table of shortest paths for each vertex pair

Ex: map of New England

. P W L N

. Providence 0 53 54 48

. Westerley 53 0 18 101

. newLondon 54 18 0 12

. Norwich 48 101 12 0

Norwich-Westerly: 101 miles??

 12 miles Norwich-New London

 18 miles New London-Westerly

 30 miles total

Need correct algorithm to get correct table
19.7

Floyd’s algorithm

Another ancient algorithm (1962)

[same as Warshall, in a different context]

Want shorter path from s to d?

 take s to i, then i to d, if shorter (vertex relaxation)

 for (i = 0; i < G->V; i++)

 for (s = 0; s < G->V; s++)

 if (G->adj[s][i] != maxWT)

 for (t = 0; t < G->V; t++)

 if (G->adj[i][t] != maxWT)

 if (d[s][t] > d[s][i]+d[i][t])

 d[s][t] = d[s][i]+d[i][t];

Correctness proof:

 induction on i (same as Warshall)
19.8

Shortest paths ADT

Same issues as reachability in digraphs

Classical Floyd-Warshall algorithm gives

 query: O(1)

 preprocessing: O(V^3)

 space: O(V^2)

Easy to reduce preprocessing to O(VE)

 use Dijkstra for each vertex

End of story?

NOT QUITE

 ADT is useful for a variety of disparate problems

 negative weights complicate matters

19.9

Reduction

DEF: Problem A REDUCES TO Problem B

 if we can use an algorithm that solves B

 to develop an algorithm that solves A

Typical reduction:

 given an instance of A

 transform it to an instance of B

 solve that instance of B

 transform the solution to be a solution of A

Uses of reduction

 algorithm for A (programmer using ADT)

 lower bound on B

PROBLEM-SOLVING MODELS

 problems that many other problems reduce to

NP-HARD PROBLEMS

 problems that ANY NP-hard problem reduces to 19.10

Reduction example: longest paths

THM: Longest-paths reduces to shortest-paths

Proof:

 given an instance of longest-paths

 transform it to shortest-paths by negating weights

 solve shortest-paths

 negate weights on path to get longest path

CATCH

 SP algs don’t work in the presence of negative weights!

Lessons:

 reductions have to be constructed with care

 they may not always give useful information

19.11

Reduction example: arbitrage

Currency conversion

 dollars pounds 1K yen

 dollars 1.000 1.631 0.669

 pounds 0.613 1.000 0.411

 1K yen 1.495 2.436 1.000

 $1000 dollars-pounds-dollars

 $1000*(1.631)*(0.613) = $999

 $1000 dollars-pounds-yen-dollars

 $1000*(1.631)*(0.411)*(1.495) = $1002

SHORTEST PATH is best arbitrage opportunity

 replace table entry x by -log x

 BUT, weights may be negative!

Need SP algs that work with negative weights 19.12

Shortest paths with negative weights

Negative weights

 completely change SPT

 can introduce negative cycles

0-1 .41
1-2 .51
2-3 .50
4-3 .36
3-5 -.38
3-0 .45
0-5 .29
5-4 .21
1-4 .32
4-2 .32
5-1 -.29

0

1

23

4

5

1

5

3

shortest path from 4 to 2: 4-3-5-1-2
19.13

Reduction example: SP with negative weights

THM: SP with negative weights is NP-hard

A: Hamilton path

B: SP with negative weights

Hamilton path reduces to SP with negative weights

 given an undirected graph

 transform to network with -1 wt on each edge

 find shortest simple path

 YES to Hamilton path if SP length is -V

19.14

Negative weights in SP problems

NP-complete: don’t try to solve general problem

 restrict problem to solve it

Versions that we can solve

 no negative weights

 no cycles

 negative-cycle detection

 no negative cycles

Dijkstra’s algorithm: doesn’t work at all with negative weights

Floyd’s algorithm

 detects negative cycles

 solves all-pairs shortest paths if no neg cycles present

Ex: use Floyd’s to find SOME arbitrage opportunity

 (much harder to find the BEST one)

19.15

Bellman-Ford shortest-paths algorithm

Generic algorithm for single-source problem

 initialize wt[s] to 0, other wts to max

 repeat V times: relax on each edge

Order of processing edges not specified

Running time O(VE)

If no negative cycles present

 can use as preprocessing step for Dijkstra

 VE lg V for all-pairs problem

 improves on V^3 for Floyd

Not much harder to solve all-pairs than single-source (?!)

OPEN: Better alg for single-source?
19.16

