Classic algorithms for natural network problems

```
SHORTEST PATH
- shortest way to get from \(u\) to \(v\)
```

SINGLE-SOURCE SHORTEST PATHS (SPT)

- PFS implementation
- Dijkstra's algorithm

ALL SHORTEST PATHS

- Floyd's algorithm

Negative weights?

REDUCTION

Problem-solving models
19.1
v on TREE $w+[v]$ is shortest distance from s to v
v on FRINGE: $w+[v]$ is shortest KNOWN distance from s to v

- won't find a shorter path to node with smallest value

Another generalized graph-search implementation

RELAXATION

- if $w+[w]<w+[v]+w+(v-w)$ then set $w+[w]$ to that value ($v-w$ gives a shorter path to w than the best known)

SPT ALGORITHM

```
put s on fringe
while fringe nonempty
```

choose node from fringe that is closest to s
relax along all its edges

larger SPT example

Single-source shortest paths

Defines SHORTEST PATHS TREE (SPT) rooted at source

$$
\begin{array}{ll}
0-1 & .41 \\
1-2 & .51 \\
2-3 & .50 \\
4-3 & .36 \\
3-5 & .38 \\
3-0 & .45 \\
0-5 & .29 \\
5-4 & .21 \\
1-4 & .32 \\
4-2 & .32 \\
5-1 & .29
\end{array}
$$

Dijkstra's algorithm

All shortest paths

Classical implementation of generic SPT algorithm

```
SAME CODE as Prim's MST algorithm with
    #define P wt[v] + t->wt
DENSE graphs
    - classical Dijkstra's algorithm
    - time cost: O(V^3)
SPARSE graphs
    - use PQ (heap) implementation
    - time cost: O(E Ig V)
Better PQs give faster algorithms for sparse graphs
    -d-way heap: O(E log_d V)
    - F-heap: O(E + V log V)
```


Shortest paths in Euclidean graphs

Problem: find shortest path from s to d

Algorithm:

- start shortest-path PFS at s
- stop when reaching d

SUBLINEAR algorithm

- need not touch all nodes
better yet: use geometry to limit search $w+[v]$:
- TREE: shortest distance from s to v
- FRINGE: shortest POSSIBLE distance from s to d through v tree path from s to v PLUS distance from v to d
\#define P wt [v] + t->wt + dist (t->v, d) - dist (k, d)

Table of shortest paths for each vertex pair
Ex: map of New England

.	P	W	L	N
. Providence	0	53	54	48
. Westerley	53	0	18	101
. newLondon	54	18	0	12
. Norwich	48	101	12	0

Norwich-Westerly: 101 miles??

- 12 miles Norwich-New London
- 18 miles New London-Westerly
- 30 miles total

Need correct algorithm to get correct table

Floyd's algorithm

Another ancient algorithm (1962)
[same as Warshall, in a different context]

Want shorter path from s to d ?

- take s to i, then i to d, if shorter (vertex relaxation)

```
    for (i = 0; i < G->V; i++)
        for (s = 0; s < G->V; s++)
            if (G->adj[s][i] != maxWT)
                for (t = 0; t < G->V; t++)
                if (G->adj[i][t] != maxWT)
                    if (d[s][t] > d[s][i]+d[i][t])
                        d[s][t] = d[s][i]+d[i][t];
```


Correctness proof:

- induction on i (same as Warshall)

Same issues as reachability in digraphs

Classical Floyd-Warshall algorithm gives

- query: $O(1)$
- preprocessing: $O\left(V^{\wedge}\right)$
- space: $\left.O\left(V^{\prime}\right)_{2}\right)$

Easy to reduce preprocessing to O (VE)

- use Dijkstra for each vertex

End of story?

NOT QUITE

- ADT is useful for a variety of disparate problems
- negative weights complicate matters

Reduction

DEF: Problem A REDUCES TO Problem B
if we can use an algorithm that solves B
to develop an algorithm that solves A

Typical reduction:

- given an instance of A
- transform it to an instance of B
- solve that instance of B
-transform the solution to be a solution of A

Uses of reduction

- algorithm for A (programmer using ADT)
- lower bound on B

PROBLEM-SOLVING MODELS

- problems that many other problems reduce to NP-HARD PROBLEMS
- problems that ANY NP-hard problem reduces to

THM: Longest-paths reduces to shortest-paths

Proof:

- given an instance of longest-paths
- transform it to shortest-paths by negating weights
- solve shortest-paths
- negate weights on path to get longest path

CATCH

- SP algs don't work in the presence of negative weights!

Lessons:

- reductions have to be constructed with care
- they may not always give useful information

Reduction example: arbitrage

Currency conversion

```
            dollars pounds 1K yen
```

dollars $1.000 \quad 1.631 \quad 0.669$

```
pounds 0.613 1.000 0.411
\begin{tabular}{llll}
\(1 K\) & 1.495 & 2.436 & 1.000
\end{tabular}
```

- \$1000 dollars-pounds-dollars $\$ 1000 *(1.631) *(0.613)=\$ 999$
- \$1000 dollars-pounds-yen-dollars
$\$ 1000 *(1.631) *(0.411) *(1.495)=\$ 1002$
SHORTEST PATH is best arbitrage opportunity
- replace table entry x by $-\log x$
- BUT, weights may be negative!

Need SP algs that work with negative weights

Shortest paths with negative weights

Negative weights in SP problems

Negative weights

- completely change SPT
- can introduce negative cycles

shortest path from 4 to 2: 4-3-5-1-2

Reduction example: SP with negative weights

THM: SP with negative weights is NP-hard

A: Hamilton path
B: SP with negative weights

Hamilton path reduces to SP with negative weights

- given an undirected graph
- transform to network with -1 wt on each edge
- find shortest simple path
- YES to Hamilton path if SP length is $-V$

NP-complete: don't try to solve general problem

- restrict problem to solve it

Versions that we can solve

- no negative weights
- no cycles
- negative-cycle detection
- no negative cycles

Dijkstra's algorithm: doesn't work at all with negative weights Floyd's algorithm

- detects negative cycles
- solves all-pairs shortest paths if no neg eycles present Ex: use Floyd's to find SOME arbitrage opportunity
- (much harder to find the BEST one)

Bellman-Ford shortest-paths algorithm

Generic algorithm for single-source problem

- initialize $w+[s]$ to 0 , other wts to max
- repeat V times: relax on each edge

Order of processing edges not specified

Running time $O(V E)$
If no negative eycles present

- can use as preprocessing step for Dijkstra
- VE g V for all-pairs problem
- improves on V^3 for Floyd

Not much harder to solve all-pairs than single-source (?!)
OPEN: Better alg for single-source?

