To sort an array, first divide it so that

- some clement $a[i]$ is in its final position
- no larger element left of $i$
- no smaller element right of $i$

Then sort the left and right parts recursively

To partition an array

- pick a partitioning element
- scan from right for smaller element
- scan from left for larger element
- exchange
- repeat until pointers cross



## Partitioning example

ASORTINGEXAMPL(E)
A S
A A
A M P L
$S M P L E$

LINGOPM®XTS
$L I G(M) O P N$
(G) 1 L

1 (L)
(N) $\mathrm{P} O$
(O) $P$
(P)
(S) $T \times$ $T$ X (T)
ASORTINGEXAMPLE
AAE(E)TINGOXSMPLR
(I)
A A E
A (A)
(A)
R S TX

```
int partition(Item a[], int l, int r)
{ int i, j; Item v;
    v = a[r]; i = l-1; j = r;
    for (;;)
        {
            while (less(a[++i], v)) ;
            while (less(v, a[--j])) if (j == l) break;
            if (i >= j) break;
            exch(a[i], a[j]);
        }
    exch(a[i], a[r]);
    return i;
}
```


## Issues

- stop pointers on keys equal to $v$ ?
- sentinels or explicit tests for array bounds?
- details of pointer crossing

```
Use explicit stack instead of recursive calls
```

Use explicit stack instead of recursive calls
Sort smaller of two subfiles first
Sort smaller of two subfiles first
\#define push2(A, B) push(A); push(B);
\#define push2(A, B) push(A); push(B);
void quicksort(Item a[], int l, int r)
void quicksort(Item a[], int l, int r)
{ int i;
{ int i;
stackinit(); push2(1, r);
stackinit(); push2(1, r);
while (!stackempty())
while (!stackempty())
{
{
r = pop(); l = pop();
r = pop(); l = pop();
if (r <= l) continue;
if (r <= l) continue;
i = partition(a, l, r);
i = partition(a, l, r);
if (i-l > r-i)
if (i-l > r-i)
{ push2(1, i-1); push2(i+1, r); }
{ push2(1, i-1); push2(i+1, r); }
else
else
{ push2(i+1, r); push2(1, i-1); }
{ push2(i+1, r); push2(1, i-1); }
}

```
        }
```


## Quicksort implementation

```
quicksort(Item a[], int l, int r)
{ int i;
    if (r > l)
        {
            i = partition(a, l, r);
            quicksort(a, l, i-1);
            quicksort(a, i+1, r);
        }
}
```


## Issues

- overhead for recursion?
- running time depends on input
- worst-case time cost (quadratic, a problem)
- worst-case space cost (linear, a serious problem)


## Analysis of Quicksort

Total running time is sum of

## - cost*frequency

for all the basic operations
cost depends on machine
Frequency depends on algorithm, input

For Quicksort

- A -- number of partitioning stages
- B -- number of exchanges
- C -- number of comparisons

Cost on a typical machine: $35 A+11 B+4 C$

## Worst case analysis

## Empirical analysis

Number of comparisons in the worst case

$$
\cdot N+(N-1)+(N-2)+\ldots=N(N-1) / 2
$$

## Worst case files

- already sorted (!)
- reverse order
- all equal? (stay tuned)

Total time proportional to $N \wedge_{2}$

## No better than elementary sorts?

Fix: use a random partitioning element

- "guarantees" fast performance


## Average case analysis

Assume input randomly ordered

- each element equally likely to be partitioning element
- subfiles randomly ordered if partitioning is "blind"

Average number of comparisions satisfies
$C(N)=N+1+(C(1)+C(N-1)) / N$
$+(C(2)+C(N-2)) / N$
...

$$
+(C(N-1)+C(1)) / N
$$

$C(N)=N+1+2(C(1)+C(2)+\ldots+C(N-1)) / N$
$N C(N)=N(N+1)+2(C(1)+C(2)+\ldots+C(N-1))$
$N C(N)-(N-1) C(N-1)=2 N+2 C(N-1)$
$N C(N)=(N+1) C(N-1)+2 N$
$C(N) /(N+1)=C(N-1) / N+2 /(N+1)$
$=2(1+1 / 2+1 / 3+\ldots 1 /(N+1))$
$=2 \ln N+$ (small error term)
THM: Quicksort uses about $2 N$ In $N$ comparisons

```
Use profiler
Inner loop
    - look for highest counts
    - is every line of code there necessary?
Verify analysis
    - are counts in predicted range?
Streamline program by iterating process
```


## Ex: another partitioning method

## (detailed justification omitted)

```
quicksort(int a[], int l, int r)
<133395>{
int v, i, k, t;
if (<133395>r <= l) return;
<66697>v = a[l]; <66697>k = l;
for (<66697>i=l+1; <1976624>i<=r; <1909927>i++)
    if (<1909927>a[i] < v)
    {<934565>t = a[i]; a[i] = a[++k]; a[k] = t; }
    <66697>t = a[k]; a[k] = a[l]; a[l] = t;
    <66697>quicksort(a, l, k-1);
    <66697>quicksort(a, k+1, r);
    }
<133395>}
```

Not much simpler, three times as many exchanges

## Improvements to Quicksort

Median-of-sample

- partitioning element closer to center
- estimate median with median of sample
- number of comparisons close to $N \lg N$
- FEWER LARGE FILES
- slightly more exchanges, more overhead

Insertion sort small subfiles

- even Quicksort has too much overhead
for files of a few elements
- use insertion sort for tiny files
(can wait until the end)
Optimize parameters
- median of 3 elements
- cut to insertion sort for $\leqslant 10$ elements


## Improvements to Quicksort (examples)

## Standard



Cutoff for small subfiles

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Median-of-three


## Selection

Use partitioning to find the $k-t h$ smallest element

```
    - (don't need to sort the whole file)
    select(Item a[], int l, int r, int k)
    { int i;
        if (r <= l) return;
        i = partition(a, l, r);
        if (i > k) select(a, l, i-1, k);
        if (i < k) select(a, i+1, r, k);
    }
Ex: to find median
    select(a, l, r, (1+r)/2);
```

Also puts $k$ smallest elements in first $k$ positions Running time is LINEAR on the average linear time guarantee possible?

- old theorem says yes; not useful in practice - randomized guarantec just about as good


## Equal keys

## Three-way partitioning solution

Equal keys can adversely affect performance

One key value (all keys are the same)

- plain quicksort takes $N$ lg $N$ comparisons (!)
- change partitioning to take $N$ comparisons
- naive method might use $N^{\wedge} 2$ comparisons (!!)

Two distinct key values

- reduces to above case for one subfile
- better to complete sort with one partition
stop right ptr on o; stop left ptr on 1 i exchange

Several distinct key values

- reduces to above cases

Serious performance bug in widely-used implementations

## Three-way partitioning problem

Natural way to deal with equal keys

Partition into three parts

- elements between $i$ and $j$ equal to $v$
- no larger element left of $i$
- no smaller element right of $j$

|  | less than $v$ | equal to $v$ |  |
| :---: | :---: | :---: | :---: |
| $\uparrow$ | $\uparrow$ | $\uparrow$ | greater than $v$ |

## Dutch National Flag problem

- Not easy to implement efficiently (try it!)
- Not done in practical sorts before mid-1990s

Four-part partition

- some elements between $i$ and $j$ equal to $v$
- no larger element left of $i$
- no smaller element right of $j$
- more elements between $i$ and $j$ equal to $v$
swap equal keys into center

| equal | less |  |  | greater | equal |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\uparrow$ | $\uparrow$ |  | $\uparrow$ | $\uparrow$ |  |
|  | p |  | i | j | $\uparrow$ |
|  |  |  |  |  |  |

## All the right properties

- casy to implement
- linear if keys all equal
- no extra cost if no equal keys


## Three-way partitioning implementation

```
void quicksort(Item a[], int l, int r)
{
int i, j, k, p, q; Item v;
if (r <= l) return;
v = a[r]; i = l-1; j = r; p = l-1; q = r;
for (;;)
{
    while (less(a[++i], v)) ;
    while (less(v, a[--j])) if (j == l) break;
    if (i >= j) break;
    exch(a[i], a[j]);
        if (eq(a[i],v)) { p++; exch(a[p],a[i]); }
    if (eq(v,a[j])) { q--; exch(a[q],a[j]); }
}
exch(a[i], a[r]); j = i-1; i = i+1;
for (k = l ; k< p; k++, j--) exch(a[k], a[j]);
for (k = r-1; k > q; k--, i++) exch(a[k], a[i])
qulCksort(a, 1, J);
    quicksort (a, i, r);
```

Equal keys omnipresent in applications

- ex: sort population by age
- ex: sort job applicants by college attended

Purpose of sort: bring records with equal keys together
Typical application

- Huge file
- Small number of key values
randomized 3-way Quicksort is LINEAR time (try it!)

THM: Quicksort with 3-way partitioning is OPTIMAL
Proof: (beyond the scope of 226 ) ties cost to entropy
[this fundamental fact was not known until 2000!]

