(CO5 226 Lecture g5: Priority Queues)

Abstract data types
o client
e interface
o implementation

Priority queue ADT
e insert
e remove the largest

HEAPS and Heapsort

L

BINOMIAL QUEUVES s

(Abstract data types)

Separate INTERFACE and IMPLEMENTATION
e casier maintainence of large programs
e build lagyers of abstraction
* reuse software
e elementary example: pushdown stack

INTERFACE: description of data type, basic operations
CLIENT: program using operations defined in interface
IMPLEMENTATION: actual code implementing operations

Client can't know details of implementation
(many implementations to choose from)
Implementation can’'t know details of client needs
(many clients use the same implementation)

Modern programming languages support ADTs
o C++, Modula-3, Oberon, Java (C) 5

(ADTs and algorithms)

PERFORMANCE MATTERS
ADT allows us to substitute better algorithms
without changing any client code

Running time depends on
e implementation
e client usage
Might need different implementations for different clients

GOALS
e general-purpose ADT useful for many clients
o efficient implementation of all ADT functions

ADTs provide levels of abstraction allowing us to build
algorithms for increasingly complicated problems

Ex: linked list -) stack -) quicksort
53

(Priority queue ADT)

Records with keys (priorities)

Two basic operations

INSERT

DELETE LARGEST

generic operations common to many ADTs
e create
e test if empty
e destroy (often ignored if not harmful)

Example applications
o simulation
° numerical computation
e compression algorithms
e graph-searching algorithms

54

(Priority queuc interface)

INTERFACE for basic operations
void PQnit();
void PQ nsert(ltem;
Item PQdel max();
int PQenpty();

Should also specify
constraints and error conditions

Other useful operations
e delete a specified item
e change an item's priority
* merge together two PQs
e (stay tuned)

55

(Sample PQ client)

Find the M SMALLEST of N items (typical vals: M=100, N=1000000)

PQnit();
for (k = 0; k <M k++) PQ nsert(nextlten());
for (k M k < N k++)

{

PQ nsert (nextltem));
t = PQdel max();
}
for (k = 0; k <M k++) a[k] = PQdel max(());

Time bounds for standard implementations:
* space proportional to M
e brute-force: N M
ebest: NIg M

° best offline: N (with seclect, see lecture 3)
5.6

(Unordered-array PQ implementation

static Item *pq;
static int N
PQ nsert(ltem v)

{ palN++] = v; }
I'tem PQdel max()

{
int j, max = 0;
for (j =1;] <N j+4)
if (less(pg[max], palj])) max = j;
exch(pg[mex], pa[N);
return pgq[--N;
}

void PQ nit(int nmaxN)
{ pq = mal |l oc(maxN+si zeof (I1tem)); N = 0;

int PQenpty()
{ return N == 0; }

}

(Other PQ implementations

Elementary
e ordered array
e unordered linked list
e ordered linked list

Advanced
* heap
* binomial queue

5.8

(Client/Interface/Implementation)

INTERFACE

e define data types

* declare functions

ein C, use ".h" file (no executable code)
CLIENT:

e include ".h" file

e call functions
IMPLEMENTATION:

e include ".h" file

* give code for functions

Client and implementation can be compiled
e at different times, then function calls
¢ LINKED to their implementations

Details: Sedgewick, Chapter 4; COS 217

Modular programming "

(Priority queue ADT (continued))

Other useful operations
e construct a PQ from N items
e return the value of the largest
e delete a specified item
e change an item’'s priority
* merge together two PQs

Interface more complicated
e need HANDLES for records
e need HANDLES for priority queues
* where's the data?
(client, implementation, or both?)

(First-class PQ ADT)

typedef struct pg* PQ
t ypedef struct PQnode* PQ i nk;
PQ PQ nit();
int PQenpty(PQ;
PQink PQnsert(PQ Item;
I'tem PQdel max(PQ ;
voi d PQchange(PQ PQink, Item;
voi d PQdel ete(PQ PA i nk);
PQ PQ oi n(PQ PQ;

PQ and PQlink are pointers to structures
* to be specified in the implementation

More info: section 4.8 in Sedgewick; lecture 7

(PQ implementations cost summary)

Worst-case per-operation time as a function of PQ size

del ete find change
insert nmax delete max key join

or der ed

array N 1 N 1 N N

list N 1 1 1 N N
unor der ed

array 1 N 1 N

l'i st 1 N 1 N 1 1
heap Ilg N IgN IgN 1 lg N N
bi nom al

queue Ig N IgN IgN IgN IgN IgN

best in
t heory 1 lg N IgN 1 1 1

(PQ data structures)

HEAP
elg N for all operations

BINOMIAL QUEVE
elg N for all operations
e constant (amortized) for most
e basis for near-optimal slgs

Algorithm design success story:
e nearly optimal worst-case cost
e simple (but ingenious!) algorithms
° costs even lower in practice

513

(Heap-ordered complete binary trees)

COMPLETE BINARY TREE:

e leaves on two levels, on left at bottom level
HEAP-ORDERED:

e parent larger than both children

e therefore, largest at root

* can define for any tree, not just complete

(Heap)

Array representation of heap-ordered binary tree

e root in all
children of 1 in al2] and a[3]
e children of i in a[2i] and al2i+1]

o parent of i in a[i/2]

No explicit links needed for tree

0 1 2 3 4 5 6 7 8 91011 12
X T OGS MNAER A I

515

(Promotion (bubbling up in a heap))

Change key in node at the bottom of the heap

To restore heap condition:
e exchange with parent if necessary

(Promotion implementation)

Peter principle
* nodes rise to level of incompentence

Node k's parent in heap is k/2

fixUp(ltemal[], int k)
{
while (k > 1 & less(a[k/2], a[k]))
{ exch(a[k], a[k/2]); k = k/2; }

}
597
(Demotion (sifting down in a heap))
Change key in node at the top of the heap
To restore heap condition:
e exchange with larger child if necessary
518

(Demotion implementation

“Power struggle” principle
e better subordinate is promoted

Node k's children in heap are 2k and a2k+i

fixDown(ltema[], int k, int N

{ int j;
while (2*k <= N)
{1 = 2*%k;
if (J <N&&less(a[j], a[j+1])) |++
if (!'less(a[k], a[j])) break;
exch(a[k], a[jl); k =]j;
}
}
(PQ implementation with heaps

PQinsert: add node at bottom, bubble up
PQdelmax: exch root with node at bottom, sift down

static Item pg[mexPQsi ze+1] ;
static int N
void PQ nit(int nmaxN)
{ pq = mal | oc(maxN+si zeof (Item); N = 0; }
int PQenpty()
{ return N==0; }
void PQ nsert(ltemv)
{ pa[++N] = v; fixUp(pg, N; }
I'tem PQdel max()
{

exch(pg[1], pd[N);
fixDown(pg, 1, N-1);
return pg[N--];

519

520

(Constructing a heap (top-down))

) %
D D ®
©
9 =) &
D %)
& & &
o) S
Q Q Q
9 ©
S & &

® ©
® ®®
@ X
(SY ©
g ®» T W
®® ®e®
(Sorting down a heap)

X © ©
@ ® @ Q ® ®
F w @ W & O O ®
BORAO®O® ®®E® & ®
@ ®
S) ® 4 ®
® & ® & O & v
BOOAO®O ®® ®
® Q
® ® E
g MW & O & ® & W ® ®
EO®O®OO @
® ©
®
OGO ® ® €@ ©® ®
® ®
o @& ® © ® ®

(Heapsort

Abandon ADT concept to save space
Faster to construct heap backwards

#define pg(A) a[l-1+A]
voi d heapsort(ltemal[], int I, int r)
{int k, N=r-I+1;
for (k = N2; k >=1; k--)
fi xDown(&pq(0), Kk, ;
while (N > 1)
{
exch(pa(1), pa(N));
fi xDown(&pqg(0), 1, --N);

Widely used sorting method
e inplace, guaranteed NigN time

(Bottom-up heap construction

(Binomial queues)

Support ALL PQ operations in IgN steps
* Heaps have slow merge

Def: In a LEFT HEAP-ORDERED tree, ecach node
is larger than all nodes in left subtree

Def: A POWER-OF-2 TREE is a binary tree
o left subtree of root complete
e right subtree empty
e (therefore, 24n nodes)

Def: A BINOMIAL QUEVE of size N is
of left heap-ordered power-of-2 trees
one for ecach 1 bit in binary rep. of N

(Binomial queue example)

Corresponds to heap-ordered forest:

@) o ®
S mo
® ® © o
©

(Joining power-of-2 heaps

Constant-time operation
e larger of two roots at top
e left subtree to right subtree of other root
e result is left-heap-ordered if inputs are

(Joining power-of-2 heaps (code)

Representation
* two pointers per node
e need HANDLE (pointer to node)

struct PQnode
{ Itemkey; PQink I, r; };
struct pg { PQink *bqg; };

PQink pair(PQink p, PQink q)
{ PQink t;
if (less(p->key, q->key))
{ p-> =9->I; g-> =p; return q; }
el se
{ g->r =p->; p->l =q; return p; }

(Joining binomial queues)

Corresponds to adding binary numbers
e 1 bits correspond to power-of-2 heaps
e 1+1S10 corresponds to carry

ghet

&t &

W W R
G b@ b
m LE
o @, ul
@®h
1010
5-29
(Joining binomial queues (carry table))
c b a a G
0 0 0 a 0
0 0 1 a 0
0 1 0 b 0
0 1 1 0 a+b
1 0 0 c 0
1 0 1 0 a+c
1 1 0 0 b+c
1 1 1 a b+c

530

(Joining binomial queues (code))

#define test(C, B, A 4*(C + 2*(B) + 1*(A)
void PQ oin(PQink *a, PQink *b)
{int i; PAink c = z;

for (i = 0; i < maxBQsize; i++)
switch(test(c != 2z, b[i] !'= 2z, a[i] !'= 2))
{
case 2: a[i] = b[i]; break;
case 3: ¢ = pair(af[i], b[i]);

a[i] = z; break;
case 4: a[i] =c¢; ¢ = z; break;
case 5: ¢ = pair(c, af[i]);

a[i] = z; break;

case 6:
case 7: ¢ = pair(c, b[i]); break;
}
}
53
(Binomial queues summary)

BQ of size N is array of power-of-two heaps
* one for ecach bit in binary rep. of N
Joining two BQ@s is like adding binary numbers
e insert is like incrementing
e delete, delmax are like decrementing
e heap-like promotion, demotion for ‘change priority”
Guaranteed performance: IgN per operation
Amortized performance: constant per operation

Ex: PQinsert N items, then one more
* N even, just insert item
eN = ..ol just two steps
eN = .on, just three steps
o total cost LINEAR: N/2 + 2(N/4) + 3(N/8) + 4(N/i6) + ...

Basis for advanced data structures

Good candidate for library PQ implementation 3

