Minimum Spanning Tree

Applications

MST is fundamental problem with diverse applications.

- Designing physical networks.
- telephone, electrical, hydraulic, TV cable, computer, road
- Cluster analysis.
- delete long edges leaves connected components
- finding clusters of quasars and Seyfert galaxies
- analyzing fungal spore spatial patterns
- Approximate solutions to NP-hard problems.
- metric TSP, Steiner tree
- Indirect applications.
- max bottleneck paths
- describing arrangements of nuclei in skin cells for cancer research
- learning salient features for real-time face verification
- modeling locality of particle interactions in turbulent fluid flow
- reducing data storage in sequencing amino acids in a protein

Minimum Spanning Tree

Minimum spanning tree (MST). Given connected graph G with positive edge weights, find a min weight set of edges that connects all of the vertices.

G

T

Cayley's Theorem (1889). There are $\mathrm{V}^{\mathrm{V}-2}$ spanning trees on the complete graph on V vertices.

- Can't solve MST by brute force.

Optimal Message Passing

Optimal message passing.

- Distribute message to N agents.
- Each agent can communicate with some of the other agents, but their communication is (independently) detected with probability p_{ij}.
- Group leader wants to transmit message to all agents so as to minimize the total probability that message is detected.

Objective.

- Find tree \mathbf{T} that minimizes: $1-\prod_{(i, j) \in T}\left(1-p_{i j}\right)$
- Or equivalently, that maximizes: $\prod_{(i, j) \in T}\left(1-p_{i j}\right)$
- Or equivalently, that maximizes: $\sum_{(i, j) \in T} \log \left(1-p_{i j}\right)$
- MST with weights $=-\log \left(1-p_{i j}\right) \quad$ weights $p_{i j}$ also work!

Prim's Algorithm

Prim's algorithm. (Jarník 1930, Dijkstra 1957, Prim 1959)

- Initialize $\mathbf{F}=\phi, \mathbf{S}=\{\mathbf{s}\}$ for some arbitrary vertex \mathbf{s}.
- Repeat until S has V vertices:
- let f be smallest edge with exactly one endpoint in S
- add other endpoint to S
- add edge f to F

Prim's Algorithm: Proof of Correctness

Theorem. Upon termination of Prim's algorithm, F is a MST.
Proof. (by induction on number of iterations)
Invariant: There exists a MST T* containing all of the edges in F.

- Base case: $\mathbf{F}=\phi \Rightarrow$ every MST satisfies invariant.
- Induction step: true at beginning of iteration i.
- at beginning of iteration i, let S be vertex subset and let f be the edge that Prim's algorithm chooses
- if $\mathbf{f} \in \mathrm{T}^{*}, \mathbf{T}^{*}$ still satisfies invariant
$-\mathrm{o} / \mathrm{w}$, consider cycle C formed by adding f to T^{*}
- let $\mathbf{e} \in \mathbf{C}$ be another arc with exactly one endpoint in S
$-c_{f} \leq c_{e}$ since algorithm chooses f instead of e
- $\mathbf{e} \notin \mathrm{F}$ by definition of S
- $\mathbf{T}^{*} \cup\{f\}-\{e$ \} satisfies invariant

Prim's Algorithm

Prim's algorithm. (Jarník 1930, Dijkstra 1957, Prim 1959)

- Initialize $\mathbf{F}=\phi, \mathbf{S}=\{\mathbf{s}\}$ for some arbitrary vertex \mathbf{s}.
- Repeat until S has V vertices:
- let f be smallest edge with exactly one endpoint in S
- add other endpoint to S
- add edge f to F

S	F
1	-
2	$1-2$
6	$1-6$
5	$6-5$
4	$5-4$
3	$4-3$

Prim's Algorithm: Classic Implementation

Use adjacency matrix.

- $S=$ set of vertices in current tree.
. For each vertex not in S, maintain vertex in S to which it is closest.
. Choose next vertex to add to S using min dist [w].
- Just before adding new vertex \mathbf{v} to S
- for each neighbor w of v, if w is closer to v than to a vertex in S, update dist [w]

Prim's Algorithm: Classic Implementation

Use adjacency matrix.

- $S=$ set of vertices in current tree.
- For each vertex not in S, maintain vertex in S to which it is closest.
- Choose next vertex to add to S using min dist [w].
- Just before adding new vertex v to S:
- for each neighbor w of v, if w is closer to v than to a vertex in S, update dist [w]

Prim's Algorithm: Classic Implementation

Running time.

- V-1 iterations since each iteration adds 1 vertex.

Each iteration consists of:
. Choose next vertex to add to S by minimum dist [w] value. - O(V) time.
. For each neighbor w of v, if w is closer to v than to a vertex in S, update dist [w].

- O(V) time.
$\mathrm{O}\left(\mathrm{V}^{2}\right)$ overall.

Prim's Algorithm: Priority Queue Implementation

Prim's Algorithm pseudocode

```
Q}\leftarrow PQinit(
for each vertex v in graph G
    key(v) \leftarrow 
    pred(v) \leftarrow nil
    PQinsert(v, Q)
key(s) \leftarrow0
while (!PQisempty(Q))
    v = PQdelmin (Q)
    for each edge v-w s.t. w is in Q
        if key(w) > c(v,w)
            PQdeckey (w, c(v,w), Q)
            pred(w) \leftarrow v
```


Prim's Algorithm: Priority Queue Implementation

Analysis of Prim's algorithm.
. PQinsert (): V vertices.

- PQisempty (): V vertices.
. PQdelmin(): V vertices.
- PQdeckey (): Eedges.

	Priority Queues		
Operation	Array	Binary heap	Fibonacci heap*
insert	N	$\log \mathbf{N}$	1
delete-min	N	$\log \mathbf{N}$	$\log \mathbf{N}$
decrease-key	$\mathbf{1}$	$\log \mathbf{N}$	1
is-empty	$\mathbf{1}$	$\mathbf{1}$	1
Prim	V^{2}	$\mathrm{E} \log \mathrm{V}$	$\mathrm{E}+\mathrm{V} \log \mathrm{V}$

PFS vs. Classic Prim

Which algorithm is faster?

- Classic Prim: O(V²).
- Prim with binary heap: O(E log V).

Answer depends on whether graph is SPARSE or DENSE.

- 2,000 vertices, 1 million edges
- Heap: 2-3 times SLOWER
- 100,000 vertices, 1 million edges
- Heap: 500 times FASTER
- 1 million vertices, 2 million edges
- Heap: 10,000 times FASTER.

Bottom line.

- Classic Prim is optimal for dense graphs.
- Heap implementation far better for sparse graphs.

Kruskal's Algorithm

Kruskal's algorithm (1956).

- Initialize F = ϕ.
- Consider arcs in ascending order of weight.
- If adding edge to forest F does not create a cycle, then add it. Otherwise, discard it.

Case 1: $\{5,8\}$

Case 2: $\{5,6\}$

Kruskal's Algorithm: Implementation

How to check if adding an edge to F would create a cycle?

- Naïve solution: use depth first search.
- Clever solution: use union-find data structure from Lecture 1.
- each tree in forest corresponds to a set
- to see if adding edge between v and w creates a cycle, check if v and w are already in same component
- when adding v-w to forest F, merge sets containing v and w

Kruskal's Algorithm: C Implementation

```
Kruskal's Algorithm
// Fill up mst[] with list of edges in MST of graph G
void GRAPHmstE (Graph G, Edge mst[]) {
    int i, k, v, w;
    Edge a[MAXE]; // list of all edges in G
    int E = GRAPHedges(a, G); // # edges in G
    sort (a, 0, E-1); // sort edges by weight
    UFinit(G->V);
    for (i = k = 0; i < E && k < G->V-1; i++) {
        v = a[i].v;
        w = a[i].w;
        // if edge a[i] doesn't create a cycle, add to tree
        if (!UFfind(v, w)) {
        UFunion(v, w);
        mst[k++] = a[i];
        }
    }
```

\}

Kruskal's Algorithm: Proof of Correctness

Theorem. Upon termination of Kruskal's algorithm, F is a MST.

Proof. Identical to proof of correctness for Prim's algorithm except that you let \mathbf{S} be the set of nodes in component of F containing \mathbf{v}.

Corollary. "Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit."

- Gordon Gecko
(Michael Douglas)

Advanced MST Algorithms

Deterministic comparison based algorithms.

- O(E log V)

Prim, Kruskal, Boruvka.

- $O(E \log \log V)$.

Cheriton-Tarjan (1976), Yao (1975).

- O(E log*V). Fredman-Tarjan (1987).
- $\mathbf{O}\left(E \log \left(\log ^{*} V\right)\right)$. Gabow-Galil-Spencer-Tarjan (1986).
- $O(E \alpha(E, V))$.
- O(E). Chazelle (2000).
Holy grail.

Worth noting.

- O(E) randomized. Karger-Klein-Tarjan (1995).
- O(E) verification. Dixon-Rauch-Tarjan (1992).

Kruskal's Algorithm: Running Time

Kruskal analysis. $O(E \log V)$ time.

- Sort (): $O(E \log E)=O(E \log V)$.
- UFinit(): V singleton sets.
- UFfind(): at most once per edge.
- UFunion () : exactly V-1 times.

If edges already sorted. $O(E \log * V)$ time.

- Any sequence of M union-find operations on N elements takes $\mathbf{O}\left(\mathbf{M} \log ^{*} \mathrm{~N}\right.$) time.
- In this universe, $\log ^{*} \mathbf{N} \leq 6$.

