COS 226 Lecture 22: Mincost Flow

MAXFLOW: assign flows to edges that

- equalize inflow and outflow at every vertex
- maximize total flow through the network

MINCOST MAXFLOW: find the BEST maxflow

Mincost maxflow is important for two primary reasons

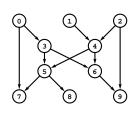
- it is a GENERAL PROBLEM-SOLVING MODEL
 - solves (through reduction) numerous practical problems
- it is TRACTABLE and PRACTICAL
 - we know fast algorithms that solve mincost flow problems
 - basic data structures play a critical role

One step closer to a single ADT for combinatorial problems

Distribution problem

SUPPLY vertices (produce goods)	supply	channels
DEMAND vertices (consume goods)	0: 3	0-3: 2
PERMIP VERMEES (CONSume goods)	1: 4	0-7: 1
DISTRIBUTION points (transfer goods)	2: 6	1-4: 5
	distribution	2-4: 3
	3	2-9: 1
	4	3-5: 3
Feasible flow problem	5	3-6: 4
•	6	4-5: 2
 Can we make supply to meet demand? 	demand	4-6: 1
	7: 7	5-7: 6
Distribution problem	8: 3	5-8: 3
 Add costs, find the lowest-cost way 	9: 4	6-9: 4

- Ex: Walmart
- Ex: McDonald's



22.4

THM: Feasible flow reduces to maxflow

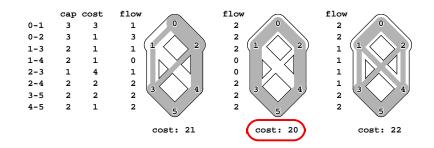
THM: Distribution reduces to mincost maxflow

Proof: Add source to provide supply, sink to take demand

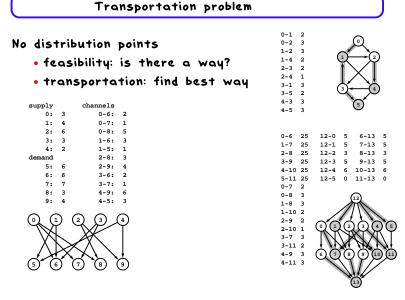
Mincost flow

Add COST to each edge in a flow network FLOW COST: sum of cost*flow over all edges

Maxflows have different costs



MINCOST FLOW: find a minimal-cost maxflow



Seems easier, but that is not the case (!) THM: Maxflow reduces to maxflow for acyclic networks THM: Transportation reduces to mincost maxflow

ST TIOW

Mincost flow reductions

SHORTEST PATHS MAXFLOW DISTRIBUTION and TRANSPORTATION

ASSIGNMENT Minimal weight matching in weighted bipartite graph

MAIL CARRIER Find a cyclic path that includes each edge AT LEAST once

SCHEDULING (example) Given a sport's league schedule, which teams are eliminated?

POINT MATCHING Given two sets of N points, find minimal-distance pairing

ALL of these problems reduce to mincost flow 22.5

Cycle canceling

RESIDUAL NETWORK

for each edge in original network

flow f in edge u-v with capacity c and cost x

define TWO edges in residual network

- FORWARD edge: capacity c-f and cost x in edge u-v
- BACKWARD edge: capacity f and cost -x in edge v-u

THM: A maxflow is mincost iff

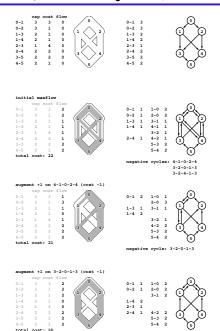
there are NO negative-cost cycles in its residual network

GENERIC method for solving mincost flow problems:

start with ANY maxflow REPEAT until no negative cycles are left • increase the flow along ANY negative cycle

Implementation: use Bellman-Ford to find negative cycles^{22.6}

Cycle canceling example



22.7

Cycle canceling implementation

```
void addflow(link u, int d)
{ u->flow += d; u->dup->flow -=d; }
int GRAPHmincost(Graph G, int s, int t)
{ int d, x, w; link u, st[maxV];
    GRAPHmaxflow(G, s, t);
    while ((x = GRAPHnegcycle(G, st)) != -1)
        {
            u = st[x]; d = Q;
            for (w=u->dup->v; w != x; w=u->dup->v)
            { u = st[w]; d = ( Q > d ? d : Q ); }
            u = st[x]; addflow(u, d);
            for (w=u->dup->v; w != x; w=u->dup->v)
            { u = st[x]; addflow(u, d);
            for (w=u->dup->v; w != x; w=u->dup->v)
            { u = st[w]; addflow(u, d); }
            for (w=u->dup->v; w != x; w=u->dup->v)
            { u = st[w]; addflow(u, d); }
            for (w=u->dup->v; w != x; w=u->dup->v)
            { u = st[w]; addflow(u, d); }
            }
        return GRAPHcost(G);
        }
    }
}
```

Cycle canceling analysis

No need to compute initial maxflow

use dummy edge from sink to source that carries maxflow

THM: Generic cycle canceling alg takes O(VE^2CM) time Proof:

- each edge has at most capacity C and cost M
- total cost could be ECM
- each augment reduces cost by at least i
- Bellman-Ford takes O(VE) time

There exist O(VE^2log^2 V) cycle-canceling implementations

mincost maxflow is therefore TRACTABLE

EXTREMELY pessimistic UPPER bounds

- not useful for predicting performance in practice
- algs that achieve such bounds would be useless
- algs are typically fast on practical problems

22.9

Network simplex concepts (continued)

REDUCED COST (reweighted edge cost)

• c*(u, v) = c(u, v) - (phi(u) - phi(v))

- VALID vertex potentials for a spanning tree
 - all tree edges have reduced cost o

ELIGIBLE EDGE

nontree edge that creates negative cycle with tree edges

THM: A nontree edge is eligible iff it is either

- a full edge with positive reduced cost, or
- an empty edge with negative reduced cost Proof:
 - cycle cost equals cycle reduced cost
 - edge cost is negative of cycle reduced cost (since reduced costs of tree edges are all zero)

THEREFORE, it is easy to identify eligible edges

22.11

Network simplex algorithm

An implementation of the cycle-canceling algorithm

Identify negative cycles quickly by

- maintaining a tree data structure
- reweighting costs at vertices

Edge classification

- EMPTY
- FULL
- PARTIAL

FEASIBLE SPANNING TREE

Any spanning tree that contains all the partial edges

VERTEX POTENTIALS

- a set of vertex weights (vertex-indexed array phi)
 - 22.10

Network simplex algorithm

still a generic algorithm for the mincost flow problem

start with ANY feasible spanning tree REPEAT until no eligible edges are left

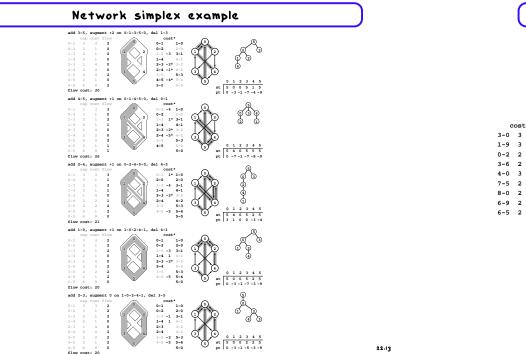
- ensure that vertex potentials are valid
- add to the tree an eligible edge
- increase the flow along the negative cycle formed
- remove from the tree an edge that is filled or emptied

Problem: could have zero flow on cycle

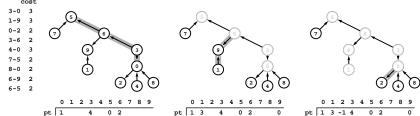
THM: IF the algorithm terminates, it computes a maxflow

Implementation challenges

- cope with zero-flow cycles
- strategy to choose eligible edges
- data structure to represent tree



Computing vertex potentials (example)



Feasible spanning tree data structure

Operations to support

- compute valid vertex potentials
- find cycle created by nontree edge
- replace tree edge by nontree edge

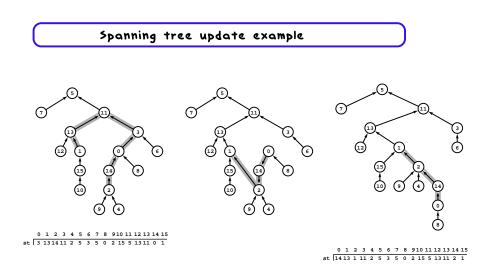
use PARENT-LINK representation!

to compute vertex potentials

- start with root at potential o
- for each vertex

follow parent links to vertex with known potential (recursively) set each vertex potential on path to make reduced edge costs o

- to follow cycle created by nontree edge u-v
 - follow parent links from each to their LCA
- to delete nontree edge that fills or empties
 - REVERSE the parent links from u or v



22.15

Network simplex basic implementation

```
#define R(u) u->cost - phi[u->v]+phi[u->dup->v]
int GRAPHmincost(Graph G, int s, int t)
{ int v; link u, x, st[maxV];
  GRAPHinsertE(G, EDGE(t, s, M, 0, C));
  initialize(G, s, t, st);
  for (valid = 1; valid++; )
  {
     for (v = 0; v < G ->V; v++)
       phi[v] = phiR(st, v);
     for (v = 0, x = G->adj[v]; v < G->V; v++)
       for (u = G->adj[v]; u!=NULL; u = u->next)
            if (R(u) < R(x)) x = u;
     if (R(x) == 0) break;
     update(st, augment(st, x), x);
  }
  return GRAPHcost(G);
}
```

22.17

Network simplex variations

OBJECTIVES

- guarantee terminimation
- reduce number of iterations
- reduce cost per iteration

Eligible edge selection strategies

- random
- find next
- queue of eligible edges
- Lazy vertex potential calculation

Tree representations

triply-linked, threaded

Guided by practical performance, not worst-case bounds

• DATA STRUCTURES are the key to good performance

Different implementations for different reductions??

BOTTOM LINE

• accessible code for powerful problem-solving model ^{22.18}