(COS 226 Lecture 22: Mincost Flow) (Distribution problem)

MAXFLOW: assign flows to edges that SUPPLY vertices (produce goods) supply channel s
+ equalize inflow and outflow at every vertex DEMAND vertices (consume goods) o3 >s 2
» maximize total flow through the network DISTRIBUTION points (transfer goods) 6 s
distribution 2-4: 3
3 2-9 1
4 3-5 3
MINCOST MAXFLOW: find the BEST maxflow Feasible flow problem 2 ig 421
e Can we make supply to meet demand? demnd 4-60 1
7.7 5-7 6
Mincost maxflow is important for two primary reasons Distribution problem 8 3 5.8 3
9: 4 6-9 4

* Add costs, find the lowest-cost way
it is a GENERAL PROBLEM-50LVING MODEL
» solves (through reduction) numerous practical problems Ex: Walmar+t
Ex: McDonald's
it is TRACTABLE and PRACTICAL
e we know fast algorithms that solve mincost flow problems

e basic data structures play a critical role THM: Feasible flow reduces to maxflow
THM: Distribution reduces to mincost maxflow
One step closer to a single ADT for combinatorial problems Proof: Add source to provide supply, sink to take demand
224 22.3
(Mincost flow) (Transportation problem)
Add COST to ecach edge in a flow network No distribution points ()

FLOW COST: sum of costxflow over all edges e feasibility: is there a way?
e transportation: find best way

WWNWR NN W®WN

Maxflows have different costs

supply channel s
0: 0-6:

25 12-0 6-13

NWo AW

2
1 0-7 1
2: 0-8: 5
: : 0-6 5 5
cap cost flow ij 12 i 1-7 25 12-1 5 7-13 5
. : : 2-8 25 12-2 3 813 3
0-1 8 3 ! demand 283 39 25 12-3 5 9-13 5
0-2 3 1 3 5 6 2-9: 4 4-10 25 12-4 6 10-13 6
1-3 2 1 1 s: 3 23 i 5-11 25 12-5 0 11-13 0
1-4 2 1 0 & 3 9 6 iz
2-3 1 4 1 9 4 4-5. 3 1-8 3 (12)
2-4 2 2 2 1-10 2
2-9 2
3-5 2 2 2 22101 QAEEREE
4-5 2 1 2 37 3 \\“Q.(
3-11 2 I Y
49 3 Q@ ® ()W
4-11 3
5]
MINCOST FLOW: find a minimal-cost maxflow Seems ecasier, but that is not the case (!)

THM: Maxflow reduces to maxflow for acyclic networks

22.4

THM: Transportation reduces to mincost maxflow

(Mincost flow reductions

SHORTEST PATHS
MAXFLOW
DISTRIBUTION and TRANSPORTATION

ASSIGNMENT

Minimal weight matching in weighted bipartite graph

MAIL CARRIER

Find a cyclic path that includes ecach edge AT LEAST once

SCHEDULING (example)

Given a sport's league schedule, which teams are climinated?

POINT MATCHING
Given two sets of N points, find minimal-distance

ALL of these problems reduce to mincost flow

pairing

(Cycle canceling

RESIDUAL NETWORK
for each edge in original network

o flow f in edge u-v with capacity ¢ and cost x

define TWO edges in residual network

* FORWARD edge: capacity c-f and cost x in edge u-v

e BACKWARD edge: capacity f and cost -x in edge v-u

THM: A maxflow is mincost iff

there are NO negative-cost cycles in its residual network

GENERIC method for solving mincost flow problems:

start with ANY maxflow
REPEAT until no negative cycles are left
e increase the flow along ANY negative cycle

Implementation: use Bellman-Ford to find negative cycles™

-6

Cycle canceling example)

LR A QAN
NN RN W@

[P

g cureremy
S rhmmmboo

2 onrrereNwn

NN R R e

g eure emy
S rbmme Loo

(=)
I
9

PO
BRN R

G
S

Cycle canceling implementation)

void addflow(link u, int d)
{ u->flow += d; u->dup->flow -=d; }
int GRAPHm ncost(Graph G int s, int t)
{int d, x, w link u, st[mxV];

GRAPHTexfl ow(G s, t);
while ((x = GRAPHnegcycle(G st)) !'= -1)
{
u=st[x]; d=aQ
for (w=u->dup->v; w!= x; w=u->dup->Vv)
{u=stw; d=(Q>d?d: Q); }
u = st[x]; addflow(u, d);
for (w=u->dup->v; w!= x; w=u->dup->v)
{ u=st[w; addflowu, d); }
}
return GRAPHcost (G ;

(Cycle canceling analysis)

No need to compute initial maxflow

e use dummy edge from sink to source that carries maxflow

THM: Generic cycle canceling alg takes O(VE~2CM) time
Proof:
e each edge has at most capacity C and cost M
e total cost could be ECM
e ecach augment reduces cost by at least |
» Bellman-Ford takes O(VE) time
There exist O(VE~2log*2 V) cycle-canceling implementations
e mincost maxflow is therefore TRACTABLE

EXTREMELY pessimistic UPPER bounds
e not useful for predicting performance in practice
* algs that achieve such bounds would be uscless
e algs are typically fast on practical problems

(Network simplex algorithm)

An implementation of the cycle-canceling algorithm

ldentify negative cycles quickly by
e maintaining a tree data structure
* reweighting costs at vertices

Edge classification
* EMPTY
e FULL
e PARTIAL

FEASIBLE SPANNING TREE
e Any spanning tree that contains all the partial edges

VERTEX POTENTIALS

°a set of vertex weights (vertex-indexed array phi)

22.10

(Network simplex concepts (continued))

REDUCED COST (reweighted edge cost)
e c*¥(u, v) = c(u, v) = (phi(u) - phi(v))
VALID vertex potentials for a spanning tree
e all tree edges have reduced cost o
ELIGIBLE EDGE

* nontree edge that creates negative cycle with tree edges

THM: A nontree edge is eligible iff it is either
e a full edge with positive reduced cost, or
e an empty edge with negative reduced cost
Proof:
e cycle cost equals cycle reduced cost
e edge cost is negative of cycle reduced cost
(since reduced costs of tree edges are all zero)

(_ THEREFORE, it is ecasy to identify eligible edges)

22.10

(Network simplex algorithm)

still a generic algorithm for the mincost flow problem

start with ANY feasible spanning tree
REPEAT until no eligible edges are left

° ensure that vertex potentials are valid

e add to the tree an cligible edge

e increase the flow along the negative cycle formed
_ __°remove from the tree an edge that is filled or emptied

Problem: could have zero flow on cycle
THM: IF the algorithm terminates, it computes a maxflow

Implementation challenges
e cope with zero-flow cycles
e strategy to choose cligible edges
» data structure to represent tree e

(Network simplex example)

add 3-5, augment +2 on 0-1-3-5-0, del 1-3

flow cost: 30

add 4-5, augment

flow cost: 26

add 2-4, augment

flow cost: 21

add 1-0, augment

flow cost: 20

add 23, augment

22.,
flow cost: 20 3

(Feasible spanning tree data structure)

Operations to support
e compute valid vertex potentials
o find cycle created by nontree edge
e replace tree edge by nontree edge

use PARENT-LINK representation!

to compute vertex potentials
e start with root at potential o
e for ecach vertex
follow parent links to vertex with known potential
(recursively) set each vertex potential on path
to make reduced edge costs o
to follow cycle created by nontree edge u-v
o follow parent links from ecach to their LCA
to delete nontree edge that fills or empties
* REVERSE the parent links from u or v

22.14

PRI RPER Y
moouwnoaN ©O

45
st [318314112 5

(Computing vertex potentials (example))

cost

®
oo g g
TN g\. ol
2 @ (o)
: o o
0123456789 0123456789 0123456789
pt [1 4 0 2 pt [13 4 0 2 0 pt[13-14 0 2 0
n.|5
(Spanning tree update example)
®
@/
®, (2
é (9 O,
©» ¢ ©®
© ()
® ©®

0123

6 7 8 9101112131415
350215513110 1
0123456 7 8 9101112131415
st [14131112 5 3 5 0 215513112 1

22,16

(Network simplex basic implementation)

#define R(u) u->cost - phi[u->v]+phi[u->dup->v]
int GRAPHm ncost(Graph G int s, int t)
{int v; link u, x, st[mxV];
GRAPHI nsert E(G EDCGE(t, s, M 0, Q);
initialize(G s, t, st);
for (valid = 1; valid++;)

{
for (v =0; v < G>V, v++)
phi[v] = phiR(st, v);
for (v =0, x = G>adj[v]; Vv < G>V, v++)
for (u=G>adj[v]; u!=NULL; u = u->next)
if (Rlu) < R(x)) x = u;
if (R(x) == 0) break;
updat e(st, augnment(st, Xx), X);
}
return GRAPHcost (G ;
} 227
(Network simplex variations)
OBJECTIVES

e guarantee terminimation
° reduce number of iterations
e reduce cost per iteration

Eligible edge selection strategies
e random
o find next
e queue of cligible edges
Lazy vertex potential calculation
Tree representations
e triply-linked, threaded

Guided by practical performance, not worst-case bounds
e DATA STRUCTURES are the key to good performance

Different implementations for different reductions??

BOTTOM LINE
e accessible code for powerful problem-solving model

22,8

