
COS 226 Lecture 22: Mincost Flow

MAXFLOW: assign flows to edges that

 equalize inflow and outflow at every vertex

 maximize total flow through the network

MINCOST MAXFLOW: find the BEST maxflow

Mincost maxflow is important for two primary reasons

it is a GENERAL PROBLEM-SOLVING MODEL

 solves (through reduction) numerous practical problems

it is TRACTABLE and PRACTICAL

 we know fast algorithms that solve mincost flow problems

 basic data structures play a critical role

One step closer to a single ADT for combinatorial problems
22.1

Mincost flow

Add COST to each edge in a flow network

FLOW COST: sum of cost*flow over all edges

Maxflows have different costs

 cap cost flow flow flow
0-1 3 3 1 2 2
0-2 3 1 3 2 2
1-3 2 1 1 2 1
1-4 2 1 0 0 1
2-3 1 4 1 0 1
2-4 2 2 2 2 1
3-5 2 2 2 2 2
4-5 2 1 2 2 2

 cost: 21 cost: 20 cost: 22

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

MINCOST FLOW: find a minimal-cost maxflow

22.2

Distribution problem

SUPPLY vertices (produce goods)

DEMAND vertices (consume goods)

DISTRIBUTION points (transfer goods)

Feasible flow problem

 Can we make supply to meet demand?

Distribution problem

 Add costs, find the lowest-cost way

Ex: Walmart

Ex: McDonald’s

supply
 0: 3
 1: 4
 2: 6
distribution
 3
 4
 5
 6
demand
 7: 7
 8: 3
 9: 4

channels
 0-3: 2
 0-7: 1
 1-4: 5
 2-4: 3
 2-9: 1
 3-5: 3
 3-6: 4
 4-5: 2
 4-6: 1
 5-7: 6
 5-8: 3
 6-9: 4

0 1 2

3 4

5 6

7 8 9

THM: Feasible flow reduces to maxflow

THM: Distribution reduces to mincost maxflow

Proof: Add source to provide supply, sink to take demand
22.3

Transportation problem

No distribution points

 feasibility: is there a way?

 transportation: find best way

supply
 0: 3
 1: 4
 2: 6
 3: 3
 4: 2
demand
 5: 6
 6: 6
 7: 7
 8: 3
 9: 4

channels
 0-6: 2
 0-7: 1
 0-8: 5
 1-6: 3
 1-5: 1
 2-8: 3
 2-9: 4
 3-6: 2
 3-7: 1
 4-9: 6
 4-5: 3

0 1 2 3 4

5 6 7 8 9

0

1 2

3 4

5

1

4

5

0-1 2
0-2 3
1-2 3
1-4 2
2-3 2
2-4 1
3-1 3
3-5 2
4-3 3
4-5 3

0 1 2 3 4 5

6 7 8 9 10 11

12

13

1 4 5

7 10 11

13

0-6 25 12-0 5 6-13 5
1-7 25 12-1 5 7-13 5
2-8 25 12-2 3 8-13 3
3-9 25 12-3 5 9-13 5
4-10 25 12-4 6 10-13 6
5-11 25 12-5 0 11-13 0
0-7 2
0-8 3
1-8 3
1-10 2
2-9 2
2-10 1
3-7 3
3-11 2
4-9 3
4-11 3

Seems easier, but that is not the case (!)

THM: Maxflow reduces to maxflow for acyclic networks

THM: Transportation reduces to mincost maxflow 22.4

Mincost flow reductions

SHORTEST PATHS

MAXFLOW

DISTRIBUTION and TRANSPORTATION

ASSIGNMENT

Minimal weight matching in weighted bipartite graph

MAIL CARRIER

Find a cyclic path that includes each edge AT LEAST once

SCHEDULING (example)

Given a sport’s league schedule, which teams are eliminated?

POINT MATCHING

Given two sets of N points, find minimal-distance pairing

ALL of these problems reduce to mincost flow 22.5

Cycle canceling

RESIDUAL NETWORK

for each edge in original network

 flow f in edge u-v with capacity c and cost x

define TWO edges in residual network

 FORWARD edge: capacity c-f and cost x in edge u-v

 BACKWARD edge: capacity f and cost -x in edge v-u

THM: A maxflow is mincost iff

there are NO negative-cost cycles in its residual network

GENERIC method for solving mincost flow problems:

start with ANY maxflow

REPEAT until no negative cycles are left

 increase the flow along ANY negative cycle

Implementation: use Bellman-Ford to find negative cycles22.6

Cycle canceling example

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap cost flow
0-1 3 3
0-2 3 1
1-3 2 1
1-4 2 1
2-3 1 4
2-4 2 2
3-5 2 2
4-5 2 1

 0
 0
 0
 0
 0
 0
 0
 0

0-1 3
0-2 3
1-3 2
1-4 2
2-3 1
2-4 2
3-5 2
4-5 2

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap cost flow
0-1 3 3
0-2 3 1
1-3 2 1
1-4 2 1
2-3 1 4
2-4 2 2
3-5 2 2
4-5 2 1

initial maxflow

 2
 2
 1
 1
 1
 1
 2
 2
total cost: 22

0-1 1 1-0 2
0-2 1 2-0 2
1-3 1 3-1 1
1-4 1 4-1 1
 3-2 1
2-4 1 4-2 1
 5-3 2
 5-4 2

negative cycles: 4-1-0-2-4
 3-2-0-1-3
 3-2-4-1-3

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap cost flow
0-1 3 3
0-2 3 1
1-3 2 1
1-4 2 1
2-3 1 4
2-4 2 2
3-5 2 2
4-5 2 1

augment +1 on 4-1-0-2-4 (cost -1)

 1
 3
 1
 0
 1
 2
 2
 2
total cost: 21

0-1 2 1-0 1
 2-0 3
1-3 1 3-1 1
1-4 2
 3-2 1
 4-2 2
 5-3 2
 5-4 2

negative cycle: 3-2-0-1-3

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap cost flow
0-1 3 3
0-2 3 1
1-3 2 1
1-4 2 1
2-3 1 4
2-4 2 2
3-5 2 2
4-5 2 1

augment +1 on 3-2-0-1-3 (cost -1)

 2
 2
 2
 0
 0
 2
 2
 2
total cost: 20

0-1 1 1-0 2
0-2 1 2-0 2
 3-1 2
1-4 2
2-3 1
2-4 1 4-2 2
 5-3 2
 5-4 2

0

1 2

3 4

5

0

1 2

3 4

5

0

1 2

3 4

5

0

1 2

3 4

5 22.7

Cycle canceling implementation

 void addflow(link u, int d)

 { u->flow += d; u->dup->flow -=d; }

 int GRAPHmincost(Graph G, int s, int t)

 { int d, x, w; link u, st[maxV];

 GRAPHmaxflow(G, s, t);

 while ((x = GRAPHnegcycle(G, st)) != -1)

 {

 u = st[x]; d = Q;

 for (w=u->dup->v; w != x; w=u->dup->v)

 { u = st[w]; d = (Q > d ? d : Q); }

 u = st[x]; addflow(u, d);

 for (w=u->dup->v; w != x; w=u->dup->v)

 { u = st[w]; addflow(u, d); }

 }

 return GRAPHcost(G);

 }
22.8

Cycle canceling analysis

No need to compute initial maxflow

 use dummy edge from sink to source that carries maxflow

THM: Generic cycle canceling alg takes O(VE^2CM) time

Proof:

 each edge has at most capacity C and cost M

 total cost could be ECM

 each augment reduces cost by at least 1

 Bellman-Ford takes O(VE) time

There exist O(VE^2log^2 V) cycle-canceling implementations

 mincost maxflow is therefore TRACTABLE

EXTREMELY pessimistic UPPER bounds

 not useful for predicting performance in practice

 algs that achieve such bounds would be useless

 algs are typically fast on practical problems
22.9

Network simplex algorithm

An implementation of the cycle-canceling algorithm

Identify negative cycles quickly by

 maintaining a tree data structure

 reweighting costs at vertices

Edge classification

 EMPTY

 FULL

 PARTIAL

FEASIBLE SPANNING TREE

 Any spanning tree that contains all the partial edges

VERTEX POTENTIALS

 a set of vertex weights (vertex-indexed array phi)
22.10

Network simplex concepts (continued)

REDUCED COST (reweighted edge cost)

 c*(u, v) = c(u, v) - (phi(u) - phi(v))

VALID vertex potentials for a spanning tree

 all tree edges have reduced cost 0

ELIGIBLE EDGE

 nontree edge that creates negative cycle with tree edges

THM: A nontree edge is eligible iff it is either

 a full edge with positive reduced cost, or

 an empty edge with negative reduced cost

Proof:

 cycle cost equals cycle reduced cost

 edge cost is negative of cycle reduced cost

 (since reduced costs of tree edges are all zero)

THEREFORE, it is easy to identify eligible edges
22.11

Network simplex algorithm

still a generic algorithm for the mincost flow problem

start with ANY feasible spanning tree

REPEAT until no eligible edges are left

 ensure that vertex potentials are valid

 add to the tree an eligible edge

 increase the flow along the negative cycle formed

 remove from the tree an edge that is filled or emptied

Problem: could have zero flow on cycle

THM: IF the algorithm terminates, it computes a maxflow

Implementation challenges

 cope with zero-flow cycles

 strategy to choose eligible edges

 data structure to represent tree 22.12

Network simplex example

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap cost flow
0-1 3 3
0-2 3 1
1-3 2 1
1-4 2 1
2-3 1 4
2-4 2 2
3-5 2 2
4-5 2 1
0-5 6 9

0-1 1-0
0-2 2-0
1-3 3-1
1-4 4-1
2-3 3-2
2-4 4-2
3-5 5-3
4-5 5-4
 5-0

add 3-5, augment +2 on 0-1-3-5-0, del 1-3

 2
 0
 2
 0
 0
 0
 2
 0
 2
flow cost: 30

 cost*
0-1 1-0
0-2
 -3 3-1
1-4
2-3 -2*
2-4 -1*
 5-3
4-5 -4*
5-0

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap cost flow
0-1 3 3
0-2 3 1
1-3 2 1
1-4 2 1
2-3 1 4
2-4 2 2
3-5 2 2
4-5 2 1
0-5 6 9

0-1 1-0
0-2 2-0
1-3 3-1
1-4 4-1
2-3 3-2
2-4 4-2
3-5 5-3
4-5 5-4
 5-0

add 4-5, augment +1 on 0-1-4-5-0, del 0-1

 3
 0
 2
 1
 0
 0
 2
 1
 1
flow cost: 26

 cost*
 -4 1-0
0-2
 1* 3-1
1-4 4-1
2-3 -2*
2-4 -5*
 5-3
4-5
 5-0

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap cost flow
0-1 3 3
0-2 3 1
1-3 2 1
1-4 2 1
2-3 1 4
2-4 2 2
3-5 2 2
4-5 2 1
0-5 6 9

0-1 1-0
0-2 2-0
1-3 3-1
1-4 4-1
2-3 3-2
2-4 4-2
3-5 5-3
4-5 5-4
 5-0

add 2-4, augment +1 on 0-2-4-5-0, del 4-5

 3
 1
 2
 1
 0
 1
 2
 2
 0
flow cost: 21

 cost*
 1* 1-0
2-0 2-0
 -4 3-1
1-4 4-1
2-3 -2*
2-4 4-2
 5-3
 -5 5-4
 5-0

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap cost flow
0-1 3 3
0-2 3 1
1-3 2 1
1-4 2 1
2-3 1 4
2-4 2 2
3-5 2 2
4-5 2 1
0-5 6 9

0-1 1-0
0-2 2-0
1-3 3-1
1-4 4-1
2-3 3-2
2-4 4-2
3-5 5-3
4-5 5-4
 5-0

add 1-0, augment +1 on 1-0-2-4-1, del 4-1

 2
 2
 2
 0
 0
 2
 2
 2
 0
flow cost: 20

 cost*
0-1 1-0
0-2 2-0
 -3 3-1
1-4 1
2-3 -2*
2-4
 5-3
 -5 5-4
 5-0

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap cost flow
0-1 3 3
0-2 3 1
1-3 2 1
1-4 2 1
2-3 1 4
2-4 2 2
3-5 2 2
4-5 2 1
0-5 6 9

0-1 1-0
0-2 2-0
1-3 3-1
1-4 4-1
2-3 3-2
2-4 4-2
3-5 5-3
4-5 5-4
 5-0

add 2-3, augment 0 on 1-0-2-4-1, del 3-5

 2
 2
 2
 0
 0
 2
 2
 2
 0
flow cost: 20

 cost*
0-1 1-0
0-2 2-0
 -1 3-1
1-4 1
2-3
2-4
 -2 5-3
 -5 5-4
 5-0

0

1 2

3 4

5

0

1 2

3 4

5

0

1 2

3 4

5

0

1 2

3 4

5

0

1 2

3 4

5

5

0 3

1 2

4

0
5

-3
0

-1
0

-7
5

-4
1

-9
5st

pt

0 1 2 3 4 5

5

0 3 4

2 1

0
5

-7
4

-1
0

-7
5

-8
5

-9
5st

pt

0 1 2 3 4 5

5

0 3

2

4

1

3
5

1
4

0
0

0
5

-3
2

-4
5st

pt

0 1 2 3 4 5

5

0 3

1 2

4

0
5

-3
0

-1
0

-7
5

-3
2

-9
5st

pt

0 1 2 3 4 5

5

0

1 2

4 3

0
5

-3
0

-1
0

-5
2

-3
2

-9
5st

pt

0 1 2 3 4 5

22.13

Feasible spanning tree data structure

Operations to support

 compute valid vertex potentials

 find cycle created by nontree edge

 replace tree edge by nontree edge

use PARENT-LINK representation!

to compute vertex potentials

 start with root at potential 0

 for each vertex

 follow parent links to vertex with known potential

 (recursively) set each vertex potential on path

 to make reduced edge costs 0

to follow cycle created by nontree edge u-v

 follow parent links from each to their LCA

to delete nontree edge that fills or empties

 REVERSE the parent links from u or v 22.14

Computing vertex potentials (example)

0
1

2

3

4

5

67

8

9

0
1

2

3

4

5

67

8

9

0

3

6

5

0
1

2

3

4

5

67

8

9

1

9

0

3

6

5

1 4 0 2pt

0 1 2 3 4 5 6 7 8 9

1 3 4 0 2 0pt

0 1 2 3 4 5 6 7 8 9

1 3 -1 4 0 2 0pt

0 1 2 3 4 5 6 7 8 9

 cost

 3-0 3

 1-9 3

 0-2 2

 3-6 2

 4-0 3

 7-5 2

 8-0 2

 6-9 2

 6-5 2

22.15

Spanning tree update example

01

2

3

4

5

6

7

8

9

10

11

12

13

1415

3 13 14 11 2 5 3 5 0 2 15 5 13 11 0 1st

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15

01

2

3

4

5

6

7

8

9

10

11

12

13

1415

0

1

2

3

4

5

6

7

8

910

11

12

13

14

15

14 13 1 11 2 5 3 5 0 2 15 5 13 11 2 1st

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15

22.16

Network simplex basic implementation

 #define R(u) u->cost - phi[u->v]+phi[u->dup->v]

 int GRAPHmincost(Graph G, int s, int t)

 { int v; link u, x, st[maxV];

 GRAPHinsertE(G, EDGE(t, s, M, 0, C));

 initialize(G, s, t, st);

 for (valid = 1; valid++;)

 {

 for (v = 0; v < G->V; v++)

 phi[v] = phiR(st, v);

 for (v = 0, x = G->adj[v]; v < G->V; v++)

 for (u = G->adj[v]; u!=NULL; u = u->next)

 if (R(u) < R(x)) x = u;

 if (R(x) == 0) break;

 update(st, augment(st, x), x);

 }

 return GRAPHcost(G);

 }
22.17

Network simplex variations

OBJECTIVES
 guarantee terminimation
 reduce number of iterations
 reduce cost per iteration

Eligible edge selection strategies
 random
 find next
 queue of eligible edges

Lazy vertex potential calculation
Tree representations

 triply-linked, threaded

Guided by practical performance, not worst-case bounds
 DATA STRUCTURES are the key to good performance

Different implementations for different reductions??

BOTTOM LINE
 accessible code for powerful problem-solving model 22.18

