
COS 226 Lecture 22: Mincost Flow   

MAXFLOW: assign flows to edges that  

  equalize inflow and outflow at every vertex

  maximize total flow through the network

MINCOST MAXFLOW: find the BEST maxflow  

Mincost maxflow is important for two primary reasons

it is a GENERAL PROBLEM-SOLVING MODEL

  solves (through reduction) numerous practical problems

it is TRACTABLE and PRACTICAL

  we know fast algorithms that solve mincost flow problems

  basic data structures play a critical role

One step closer to a single ADT for combinatorial problems
22.1

Mincost flow       

Add COST to each edge in a flow network

FLOW COST: sum of cost*flow over all edges

Maxflows have different costs

      cap cost   flow               flow               flow
0-1    3    3      1                  2                  2
0-2    3    1      3                  2                  2
1-3    2    1      1                  2                  1
1-4    2    1      0                  0                  1
2-3    1    4      1                  0                  1
2-4    2    2      2                  2                  1
3-5    2    2      2                  2                  2
4-5    2    1      2                  2                  2

                       cost: 21           cost: 20           cost: 22
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MINCOST FLOW: find a minimal-cost maxflow  

22.2

Distribution problem       

SUPPLY vertices (produce goods)

DEMAND vertices (consume goods)

DISTRIBUTION points (transfer goods)

Feasible flow problem

  Can we make supply to meet demand?

Distribution problem

  Add costs, find the lowest-cost way

Ex: Walmart       

Ex: McDonald’s       

supply
    0:  3
    1:  4
    2:  6
distribution
    3
    4
    5
    6
demand
    7:  7
    8:  3
    9:  4

channels
    0-3:  2
    0-7:  1
    1-4:  5
    2-4:  3
    2-9:  1
    3-5:  3
    3-6:  4
    4-5:  2
    4-6:  1
    5-7:  6
    5-8:  3
    6-9:  4

0 1 2

3 4

5 6

7 8 9

THM: Feasible flow reduces to maxflow  

THM: Distribution reduces to mincost maxflow  

Proof: Add source to provide supply, sink to take demand 
22.3

Transportation problem       

No distribution points

  feasibility: is there a way?

  transportation: find best way

supply
    0:  3
    1:  4
    2:  6
    3:  3
    4:  2
demand
    5:  6
    6:  6
    7:  7
    8:  3
    9:  4

channels
    0-6:  2
    0-7:  1
    0-8:  5
    1-6:  3
    1-5:  1
    2-8:  3
    2-9:  4
    3-6:  2
    3-7:  1
    4-9:  6
    4-5:  3

0 1 2 3 4
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1
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5

0-1  2
0-2  3
1-2  3
1-4  2
2-3  2
2-4  1
3-1  3
3-5  2
4-3  3
4-5  3

0 1 2 3 4 5

6 7 8 9 10 11

12

13

1 4 5

7 10 11

13

0-6  25   12-0  5   6-13  5
1-7  25   12-1  5   7-13  5
2-8  25   12-2  3   8-13  3
3-9  25   12-3  5   9-13  5
4-10 25   12-4  6  10-13  6
5-11 25   12-5  0  11-13  0
0-7  2
0-8  3
1-8  3
1-10 2
2-9  2
2-10 1
3-7  3
3-11 2
4-9  3
4-11 3

Seems easier, but that is not the case (!)

THM: Maxflow reduces to maxflow for acyclic networks

THM: Transportation reduces to mincost maxflow  22.4



Mincost flow reductions      

SHORTEST PATHS

MAXFLOW

DISTRIBUTION and TRANSPORTATION

ASSIGNMENT

Minimal weight matching in weighted bipartite graph

MAIL CARRIER

Find a cyclic path that includes each edge AT LEAST once

SCHEDULING (example)

Given a sport’s league schedule, which teams are eliminated?

POINT MATCHING

Given two sets of N points, find minimal-distance pairing

ALL of these problems reduce to mincost flow 22.5

Cycle canceling       

RESIDUAL NETWORK      

for each edge in original network

  flow f in edge u-v with capacity c and cost x

define TWO edges in residual network

  FORWARD edge: capacity c-f and cost x in edge u-v

  BACKWARD edge: capacity f and cost -x in edge v-u 

THM: A maxflow is mincost iff 

there are NO negative-cost cycles in its residual network

GENERIC method for solving mincost flow problems:

start with ANY maxflow

REPEAT until no negative cycles are left

  increase the flow along ANY negative cycle

Implementation: use Bellman-Ford to find negative cycles22.6

Cycle canceling example      
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      cap cost flow
0-1    3    3     
0-2    3    1     
1-3    2    1     
1-4    2    1     
2-3    1    4     
2-4    2    2     
3-5    2    2     
4-5    2    1     

                  
                 0
                 0
                 0
                 0
                 0
                 0
                 0
                 0

 
 
0-1  3
0-2  3
1-3  2
1-4  2
2-3  1
2-4  2
3-5  2
4-5  2
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      cap cost flow
0-1    3    3     
0-2    3    1     
1-3    2    1     
1-4    2    1     
2-3    1    4     
2-4    2    2     
3-5    2    2     
4-5    2    1     

initial maxflow
                  
                 2
                 2
                 1
                 1
                 1
                 1
                 2
                 2
total cost: 22 

 
 
0-1  1   1-0  2
0-2  1   2-0  2
1-3  1   3-1  1
1-4  1   4-1  1
         3-2  1
2-4  1   4-2  1
         5-3  2
         5-4  2

negative cycles: 4-1-0-2-4
                 3-2-0-1-3
                 3-2-4-1-3
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      cap cost flow
0-1    3    3     
0-2    3    1     
1-3    2    1     
1-4    2    1     
2-3    1    4     
2-4    2    2     
3-5    2    2     
4-5    2    1     

augment +1 on 4-1-0-2-4 (cost -1)
                  
                 1
                 3
                 1
                 0
                 1
                 2
                 2
                 2
total cost: 21 

 
 
0-1  2   1-0  1
         2-0  3
1-3  1   3-1  1
1-4  2
         3-2  1
         4-2  2
         5-3  2
         5-4  2

negative cycle: 3-2-0-1-3
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      cap cost flow
0-1    3    3     
0-2    3    1     
1-3    2    1     
1-4    2    1     
2-3    1    4     
2-4    2    2     
3-5    2    2     
4-5    2    1     

augment +1 on 3-2-0-1-3 (cost -1)
                  
                 2
                 2
                 2
                 0
                 0
                 2
                 2
                 2
total cost: 20 

 
 
0-1  1   1-0  2
0-2  1   2-0  2
         3-1  2
1-4  2
2-3  1         
2-4  1   4-2  2
         5-3  2
         5-4  2
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Cycle canceling implementation      

  void addflow(link u, int d)

    { u->flow += d; u->dup->flow -=d; }

  int GRAPHmincost(Graph G, int s, int t)

    { int d, x, w; link u, st[maxV]; 

      GRAPHmaxflow(G, s, t);

      while ((x = GRAPHnegcycle(G, st)) != -1)

        {

          u = st[x]; d = Q;

          for (w=u->dup->v; w != x; w=u->dup->v)

          { u = st[w]; d = ( Q > d ? d : Q ); }

          u = st[x]; addflow(u, d);

          for (w=u->dup->v; w != x; w=u->dup->v)

          { u = st[w]; addflow(u, d); }

        }

      return GRAPHcost(G);

    }
22.8



Cycle canceling analysis      

No need to compute initial maxflow

  use dummy edge from sink to source that carries maxflow

THM: Generic cycle canceling alg takes O(VE^2CM) time

Proof:

  each edge has at most capacity C and cost M

  total cost could be ECM

  each augment reduces cost by at least 1

  Bellman-Ford takes O(VE) time

There exist O(VE^2log^2 V) cycle-canceling implementations 

  mincost maxflow is therefore TRACTABLE

EXTREMELY pessimistic UPPER bounds

  not useful for predicting performance in practice

  algs that achieve such bounds would be useless

  algs are typically fast on practical problems
22.9

Network simplex algorithm      

An implementation of the cycle-canceling algorithm

Identify negative cycles quickly by

  maintaining a tree data structure

  reweighting costs at vertices

Edge classification

  EMPTY

  FULL

  PARTIAL

FEASIBLE SPANNING TREE     

  Any spanning tree that contains all the partial edges

VERTEX POTENTIALS      

  a set of vertex weights (vertex-indexed array phi)
22.10

Network simplex concepts (continued)     

REDUCED COST (reweighted edge cost)   

  c*(u, v) = c(u, v) - (phi(u) - phi(v))

VALID vertex potentials for a spanning tree 

  all tree edges have reduced cost 0

ELIGIBLE EDGE      

  nontree edge that creates negative cycle with tree edges

THM: A nontree edge is eligible iff it is either

  a full edge with positive reduced cost, or

  an empty edge with negative reduced cost

Proof:

  cycle cost equals cycle reduced cost

  edge cost is negative of cycle reduced cost 

    (since reduced costs of tree edges are all zero)

THEREFORE, it is easy to identify eligible edges
22.11

Network simplex algorithm      

still a generic algorithm for the mincost flow problem

start with ANY feasible spanning tree

REPEAT until no eligible edges are left

  ensure that vertex potentials are valid

  add to the tree an eligible edge 

  increase the flow along the negative cycle formed

  remove from the tree an edge that is filled or emptied

Problem: could have zero flow on cycle

THM: IF the algorithm terminates, it computes a maxflow

Implementation challenges

  cope with zero-flow cycles

  strategy to choose eligible edges

  data structure to represent tree 22.12



Network simplex example      
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     cap cost flow
0-1   3    3     
0-2   3    1     
1-3   2    1     
1-4   2    1     
2-3   1    4     
2-4   2    2     
3-5   2    2     
4-5   2    1     
0-5   6    9     

 
   
0-1     1-0
0-2     2-0
1-3     3-1
1-4     4-1
2-3     3-2
2-4     4-2
3-5     5-3
4-5     5-4
        5-0

add 3-5, augment +2 on 0-1-3-5-0, del 1-3
                  
                2
                0
                2
                0
                0
                0
                2
                0
                2
flow cost: 30   

 
   cost*
0-1     1-0
0-2        
    -3  3-1
1-4        
2-3 -2*    
2-4 -1*    
        5-3
4-5 -4*    
5-0        
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     cap cost flow
0-1   3    3     
0-2   3    1     
1-3   2    1     
1-4   2    1     
2-3   1    4     
2-4   2    2     
3-5   2    2     
4-5   2    1     
0-5   6    9     

 
   
0-1     1-0
0-2     2-0
1-3     3-1
1-4     4-1
2-3     3-2
2-4     4-2
3-5     5-3
4-5     5-4
        5-0

add 4-5, augment +1 on 0-1-4-5-0, del 0-1
                
                3
                0
                2
                1
                0
                0
                2
                1
                1
flow cost: 26 

 
   cost* 
    -4  1-0
0-2        
     1* 3-1
1-4     4-1
2-3 -2*    
2-4 -5*    
        5-3
4-5        
        5-0
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     cap cost flow
0-1   3    3     
0-2   3    1     
1-3   2    1     
1-4   2    1     
2-3   1    4     
2-4   2    2     
3-5   2    2     
4-5   2    1     
0-5   6    9     

 
   
0-1     1-0
0-2     2-0
1-3     3-1
1-4     4-1
2-3     3-2
2-4     4-2
3-5     5-3
4-5     5-4
        5-0

add 2-4, augment +1 on 0-2-4-5-0, del 4-5
                 
                3
                1
                2
                1
                0
                1
                2
                2
                0
flow cost: 21 

 
   cost* 
     1* 1-0
2-0     2-0
    -4  3-1
1-4     4-1
2-3 -2*    
2-4     4-2
        5-3
    -5  5-4
        5-0
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     cap cost flow
0-1   3    3     
0-2   3    1     
1-3   2    1     
1-4   2    1     
2-3   1    4     
2-4   2    2     
3-5   2    2     
4-5   2    1     
0-5   6    9     

 
   
0-1     1-0
0-2     2-0
1-3     3-1
1-4     4-1
2-3     3-2
2-4     4-2
3-5     5-3
4-5     5-4
        5-0

add 1-0, augment +1 on 1-0-2-4-1, del 4-1
                 
                2
                2
                2
                0
                0
                2
                2
                2
                0
flow cost: 20 

 
   cost* 
0-1     1-0
0-2     2-0
    -3  3-1
1-4  1     
2-3 -2*    
2-4        
        5-3
    -5  5-4
        5-0
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     cap cost flow
0-1   3    3     
0-2   3    1     
1-3   2    1     
1-4   2    1     
2-3   1    4     
2-4   2    2     
3-5   2    2     
4-5   2    1     
0-5   6    9     

 
   
0-1     1-0
0-2     2-0
1-3     3-1
1-4     4-1
2-3     3-2
2-4     4-2
3-5     5-3
4-5     5-4
        5-0

add 2-3, augment 0 on 1-0-2-4-1, del 3-5
                 
                2
                2
                2
                0
                0
                2
                2
                2
                0
flow cost: 20 

 
   cost* 
0-1     1-0
0-2     2-0
    -1  3-1
1-4  1     
2-3        
2-4        
    -2  5-3
    -5  5-4
        5-0
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Feasible spanning tree data structure    

Operations to support

  compute valid vertex potentials

  find cycle created by nontree edge

  replace tree edge by nontree edge

use PARENT-LINK representation!

to compute vertex potentials

  start with root at potential 0

  for each vertex

    follow parent links to vertex with known potential

    (recursively) set each vertex potential on path

      to make reduced edge costs 0

to follow cycle created by nontree edge u-v

  follow parent links from each to their LCA

to delete nontree edge that fills or empties

  REVERSE the parent links from u or v  22.14

Computing vertex potentials (example)     
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Spanning tree update example     
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Network simplex basic implementation     

  #define R(u)  u->cost - phi[u->v]+phi[u->dup->v]

  int GRAPHmincost(Graph G, int s, int t)

  { int v; link u, x, st[maxV]; 

    GRAPHinsertE(G, EDGE(t, s, M, 0, C));

    initialize(G, s, t, st); 

    for (valid = 1; valid++; )

    {

      for (v = 0; v < G->V; v++) 

        phi[v] = phiR(st, v);

      for (v = 0, x = G->adj[v]; v < G->V; v++)

        for (u = G->adj[v]; u!=NULL; u = u->next)

            if (R(u) < R(x)) x = u;

      if (R(x) == 0) break;

      update(st, augment(st, x), x);

    }

    return GRAPHcost(G);

  }
22.17

Network simplex variations      

OBJECTIVES
  guarantee terminimation
  reduce number of iterations
  reduce cost per iteration

Eligible edge selection strategies
  random
  find next
  queue of eligible edges

Lazy vertex potential calculation
Tree representations

  triply-linked, threaded

Guided by practical performance, not worst-case bounds
  DATA STRUCTURES are the key to good performance

Different implementations for different reductions??

BOTTOM LINE      
  accessible code for powerful problem-solving model 22.18


