Prototypical divide-and-conquer algorithm


```
#define T Item
merge(T c[], T a[], int N, T b[], int M )
{ int i, j, k;
    for (i = 0, j = 0, k = 0; k < N+M; k++)
        {
            if (i == N) { c[k] = b[j++]; continue; }
            if (j == M) {c[k] = a[i++]; continue; }
            if (less(a[i], b[j]))
                c[k] = a[i++]; else c[k] = b[j++];
    }
}
```


Why study mergesort?

Guaranteed to run in $O(N \log N)$ steps
Method of choice for linked lists

Drawback:

- Linear extra space
- (can only sort half the memory)

An "optimal" sorting method

Leads us to consider

recurrence relationships
computational complexity
deep hacking
fractals

Merging example

```
ARSTGIN
R S T G I N A
\(R S T I N A G\)
\(R S T \quad N A G I\)
\(R S T \quad A G I N\)
S T AGINR
AGINRS
AGINRST
```

Trivial computation?
Try doing it without using linear extra space

Easier for calling routine to assume merge is inplace

- assume files to be merged are both in arg array
- copy files into temp array
- merge back into arg array

Trick: reverse second file when copying

- avoids special tests for ends of arrays

							A	R	S	T	G			
A	R	S	T	N	I	G								
	R	S	T	N	I	G	A							
	R	S	T	N	I		A	G						
	R	S	T	N			A	G	1					
	R	S	T				A	G	1	N				
		S	T				A	G	1	N	R			
			T				A	G	1	N	R	S		
							A	G	1	N	R	S		T

```
Item aux[maxN];
```

Item aux[maxN];
merge(Item a[], int l, int m, int r)
merge(Item a[], int l, int m, int r)
{ int i, j, k;
{ int i, j, k;
for (i = m+1; i > l; i--) aux[i-1] = a[i-1];
for (i = m+1; i > l; i--) aux[i-1] = a[i-1];
for (j = m; j < r; j++) aux[r+m-j] = a[j+1];
for (j = m; j < r; j++) aux[r+m-j] = a[j+1];
for (k = l; k <= r; k++)
for (k = l; k <= r; k++)
if (less(aux[i], aux[j]))
if (less(aux[i], aux[j]))
a[k] = aux[i++]; else a[k] = aux[j--];
a[k] = aux[i++]; else a[k] = aux[j--];
}

```

Tree structures describe merge file sizes

```

Direct relationship to recursive programs
- (most programs are 'recursive")
Easy telescoping recurrences
- T(N)=T(N-1)+1 T(N)=N
- T(2^n) = T(2^(n-1))+1 T(N)=lg}N\mathrm{ if N=2^n
Short list of important recurrences
- T(N)=T(N/2)+1 T(N)=lgN
- T(N)=T(N/2)+N T(N)=N
- T(N) =2T(N/2) + 1 T(N)=N
-T(N)=2T(N/2)+N T(N)=N Ig N
Details in Chapter 2

```

\section*{Mergesort analysis}

THM: Mergesort uses \(N\) ig \(N\) comparisons

Proof:
- From code,
\[
T(N)=2 T(N / 2)+N
\]
- For \(N=2^{\wedge} n(n=\lg N)\),
\[
T\left(2^{\wedge} n\right)=2 T\left(2^{\wedge}(n-1)\right)+2^{\wedge} n
\]
- Divide both sides by \(2^{\wedge} n\)
\[
T\left(2^{\wedge} n\right) / 2^{\wedge} n=T\left(2^{\wedge}(n-1)\right) / 2^{\wedge}(n-1)+1
\]
- Telescope:
\(T\left(2^{\wedge} n\right) / 2^{\wedge} n=n\)
- Therefore,
\[
T(N)=N \lg N
\]

Exact for powers of two, approximate otherwise

Guaranteed worst-case bound

THM: Number of compares used by Mergesort for
- is the same as
number of bits in the binary representations
of all the numbers less than \(N\) (plus \(N-1\) ).
Proof: They satisfy the same recurrence
- \(C(2 N)=C(N)+C(N)+2 N\)
- \(C(2 N+1)=C(N)+C(N+1)+2 N+1\)


Divide-and-conquer algs exhibit erratic periodic behavior
number of bits in numbers less than \(N\)
\(=\) number of 0 bits + number of 1 bits
\(=(N \lg N) / 2+\) periodic term
\(+(N \lg N) / 2+\) periodic term
\(=N \lg N+\) periodic term


\section*{Divide-and-conquer}

Basic algorithm design paradigm
"Master Theorem" for analyzing algorithms
- \(T(N)=a T(N / b)+N \wedge c(\lg N) \wedge d\)

Interested in learning more?
- Stay tuned for a few more in CS 226
- Take CS 341, CS 423
- Read "Introduction to the Analysis of Algs" by sedgewick and Flajolet

\section*{Computational Complexity}

Framework to study efficiency of algorithms
Machine model: count fundamental operations

\section*{Average case:}
- predict performance (need input model)

Worst case:
- guarantec performance (any input)

Upper bound: algorithm to solve the problem
Lower bound: proof that no algorithm can do

Complexity studies provide
- starting point for practical implementations
- indication of approaches to be avoided

\section*{Complexity of sorting}


Comparison tree for sorting


Path from root to leaf describes operation of sorting algorithm on given input

Claim 1: at least \(N\) ! leaves
Claim 2: height at least Ig \(N\) !
Claim 3: (Stirling's formula for ig \(N\) !)
- height at least \(N \lg N-N /(\ln 2)+\lg N\)

Caveat: what if we don't use comparisons??
stay tuned for radix sort

\section*{Alternative to abstract inplace merge}
```

void mergesort(T a[], T b[], int l, int r)
{ int m = (l+r)/2;
if (r-l <= 10)
{ insertion(a, l, r); return; }
mergesort (b, a, l, m);
mergesort (b, a, m+1, r);
merge (a+1, b+1, m-l+1, b+m+1, r-m);
}
void sort(Item a[], int l, int r)
{ int i;
for (i = l; i <= r; i++) aux[i] = a[i];
mergesort(a, aux, l, r);
}

```

\section*{Deep hacking on Mergesort inner loop}

CODE OPTIMIZATION: Improve performance by tuning code
- concentrate on inner loop

\section*{For mergesort,}
- Avoid move with recursive argument switch
- Avoid sentinels with "up-down" trick

\section*{Combine the two? Doable, but mindbending}

\section*{Can make mergesort almost as fast as quicksort}
- mergesort inner loop: compare, store, two incs
- quicksort inner loop: compare, inc

\section*{Pass through the file}
- merge adjacent subfiles
- size doubles each time through


\section*{Bottom-up mergesort implementation}
```

void mergesort(Item a[], int l, int r)
{ int i, m;
for (m = 1; m < r-1; m = m+m)
for (i = l; i <= r-m; i += m+m)
merge(a, i, i+m-1, min(i+m+m-1, r));

```
\(\}\)

\section*{Different set of merges than for top-down} - unless \(N\) is a power of two


\section*{Bottom-up list mergesort}

\section*{Problem: sort data on a linked list}

\section*{(rearrange list so items are in order)}
```

typedef struct node *link;
struct node { Item item; link next; };

```

\section*{First step: merge implementation}
```

link merge(link a, link b)
{ struct node head; link c = \&head;
while ((a != NULL) \&\& (b != NULL))
if (less(a->item, b->item))
{ c->next = a; c = a; a = a->next; }
else
{ c->next = b; c= b; b = b->next; }
c->next = (a == NULL) ? b : a;
return head.next;
}

```

\section*{Top-down list mergesort}

\section*{Split, sort, and merge}
```

link mergesort(link c)
{ link a, b;
if (c->next == NULL) return c;
a = c; b = c->next;
while ((b != NULL) \&\& (b->next != NULL))
{ c = c->next; b = b->next->next; }
b = c->next; c->next = NULL;
return merge(mergesort(a), mergesort (b));
}

```

\section*{Cycle through a circular list}
```

link mergesort(link t)
{ link u;
for (initQ(); t != NULL; t = u)
{u = t->next; t->next = NULL; putQ(t); }
t = getQ();
while (!emptyQ())
{ putQ(t); t = merge(getQ(), getQ()); }
return t;
}

```
```

