## Linear Programming



## Applications

## Agriculture. Diet problem.

Computer science. Compiler register allocation, data mining. Electrical engineering. VLSI design, optimal clocking.
Energy. Blending petroleum products.
Economics. Equilibrium theory, two-person zero-sum games. Environment. Water quality management.
Finance. Portfolio optimization.
Logistics. Supply-chain management, Berlin airlift.
Management. Hotel yield management.
Marketing. Direct mail advertising.
Manufacturing. Production line balancing, cutting stock.
Medicine. Radioactive seed placement in cancer treatment.
Physics. Ground states of 3-D Ising spin glasses.
Telecommunication. Network design, Internet routing.
Transportation. Airline crew assignment, vehicle routing. Sports. Scheduling ACC basketball, handicapping horse races.

## Linear Programming

## What is it?

- Quintessential tool for optimal allocation of scarce resources, among a number of competing activities.
. Powerful and general problem-solving method.
- shortest path, max flow, min cost flow, multicommodity flow, MST, matching, 2-person zero sum games


## Why significant?

. Fast commercial solvers: CPLEX.

- Powerful modeling languages: AMPL, GAMS.
- Ranked among most important scientific advances of $20^{\text {th }}$ century.
- Also a general tool for attacking NP-hard optimization problems.
- Dominates world of industry.
- ex: Delta claims saving \$100 million per year using LP


## Brewery Problem: A Toy LP Example

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

| Beverage | Corn <br> (pounds) | Hops <br> (ounces) | Malt <br> (pounds) | Profit <br> $(\$)$ |
| :---: | :---: | :---: | :---: | :---: |
| Ale | 5 | 4 | 35 | 13 |
| Beer | 15 | 4 | 20 | 23 |
| Quantity | 480 | 160 | 1190 |  |
|  |  |  |  |  |

How can brewer maximize profits?

- Devote all resources to ale: 34 barrels of ale $\quad \Rightarrow \$ 442$.
. Devote all resources to beer: 32 barrels of beer $\Rightarrow \$ 736$.
. 7.5 barrels of ale, 29.5 barrels of beer
$\Rightarrow$ \$776.
- 12 barrels of ale, 28 barrels of beer
$\Rightarrow$ \$800.


Brewery Problem: Feasible Region


Brewery Problem: Objective Function


## Standard Form LP

"Standard form" LP.

- Input data: rational numbers $\mathrm{c}_{\mathrm{j}}, \mathrm{b}_{\mathrm{i}}, \mathrm{a}_{\mathrm{ij}}$.
- Output: rational numbers $\mathrm{x}_{\mathrm{j}}$.
- $\mathrm{n}=$ \# nonnegative variables, $\mathrm{m}=$ \# constraints.
- Maximize linear objective function.
- subject to linear inequalities
(P) $\max \sum_{j=1}^{n} c_{j} x_{j}$
s.t. $\begin{array}{rlr}\sum_{j=1}^{n} a_{i j} x_{j} & =b_{i} & 1 \leq i \leq m \\ x_{j} & \geq 0 & 1 \leq j \leq n\end{array}$
(P) $\max c \bullet x$
s.t. $\quad \boldsymbol{A x}=\boldsymbol{b}$
$x \geq 0$

Linear. No $x^{2}, x y, \arccos (x)$, etc.
Programming. Planning (term predates computer programming).

## Geometry

## 2-D geometry.

- Inequalities : halfplanes.
- Bounded feasible region : convex polygon.

Higher dimensional geometry.

- Inequalities : hyperplanes.
- Bounded feasible region : (convex) polytope.


Convex: if $\mathbf{y}$ and z are feasible solutions, then so is $(\mathbf{y}+\mathrm{z}) / \mathbf{2}$.
Extreme point: feasible solution $x$ that can't be written as $(y+z) / 2$ for any two distinct feasible solutions $y$ and $z$.


Not convex

## Brewery Problem: Converting to Standard Form

Original input.

| $\max \quad 13 A+23 B$ |  |  |
| ---: | ---: | ---: |
| s.t. | $5 A+15 B$ | $\leq 480$ |
|  | $4 A+4 B$ | $\leq 160$ |
| $35 A+20 B$ | $\leq 1190$ |  |
|  | $A \quad B$ | 0 |

Standard form.

- Add SLACK variable for each inequality.
. Now a 5-dimensional problem.



## Geometry

Extreme Point Property. If there exists an optimal solution to (P), then there exists one that is an extreme point.

- Only need to consider finitely many possible solutions.

Challenge. Number of extreme points can be exponential!

- Consider n-dimensional hypercube.

Greed. Local optima are global optima.


## Simplex Algorithm

Simplex algorithm. (George Dantzig, 1947)

- Developed shortly after WWII in response to logistical problems.
. Used for 1948 Berlin airlift.

Generic algorithm.

- Start at some extreme point.
- Pivot from one extreme point to a neighboring one.
- never decrease objective function
. Repeat until optimal.

How to implement?

- Use linear algebra.



## Simplex Algorithm: Pivot 1



| Basis $=\left\{\mathrm{S}_{\mathrm{H}}, \mathrm{S}_{\mathrm{M}}, \mathrm{S}_{\mathrm{C}}\right\}$ |
| :--- |
| $\mathrm{A}=\mathrm{B}=0$ |
| $\mathrm{Z}=0$ |
| $\mathrm{~S}_{\mathrm{H}}=480$ |
| $\mathrm{~S}_{\mathrm{M}}=160$ |
| $\mathrm{~S}_{\mathrm{C}}=1190$ |

Substitute: $B=1 / 15\left(480-5 A-S_{H}\right)$


## Simplex Algorithm: Basis

Basis. Subset of $m$ of the $n$ variables.

Basic feasible solution (BFS). Set $\mathbf{n}$ - $\mathbf{m}$ nonbasic variables to $\mathbf{0}$, solve for remaining $m$ variables.

- Solve $m$ equations in $m$ unknowns.
. If unique and feasible solution $\Rightarrow$ BFS.
. BFS corresponds to extreme point!



## Simplex Algorithm: Pivot 1


Basis $=\left\{\mathrm{S}_{\mathrm{H}}, \mathrm{S}_{\mathrm{M}}, \mathrm{S}_{\mathrm{C}}\right\}$
$\mathrm{A}=\mathrm{B}=0$
$\mathrm{Z}=0$
$\mathrm{~S}_{\mathrm{H}}=480$
$\mathrm{~S}_{\mathrm{M}}=160$
$\mathrm{~S}_{\mathrm{C}}=1190$

Why pivot on column 2?

- Each unit increase in B increases objective value by \$23.
- Pivoting on column 1 also OK.

Why pivot on row 2?

- Ensures that RHS $\geq 0$ (and basic solution remains feasible).
. Minimum ratio rule: $\min \{480 / 15,160 / 4,1190 / 20\}$.

Simplex Algorithm: Pivot 2


## Simplex Algorithm

Remarkable property. Simplex algorithm typically requires less than 2(m+n) pivots to attain optimality.
. No polynomial pivot rule known.

- Most pivot rules known to be exponential in worst-case.

Issues.
. Which neighboring extreme point?

- Cycling.
- get stuck by cycling through different bases that all correspond to same extreme point
- doesn't occur in the wild
- Bland's least index rule $\Rightarrow$ finite \# of pivots


## Simplex Algorithm: Optimality

When to stop pivoting?

- If all coefficients in top row are non-positive.

Why is resulting solution optimal?

- Any feasible solution satisfies system of equations in tableaux.
- in particular: $\mathrm{Z}=800-\mathrm{S}_{\mathrm{H}}-2 \mathrm{~S}_{\mathrm{M}}$
- Thus, optimal objective value $Z^{*} \leq 800$ since $S_{H}, S_{M} \geq 0$.
- Current BFS has value $800 \Rightarrow$ optimal.


## $\max Z$ subject to

|  |  |  | - | $S_{H}$ | - | 2 | $S_{M}$ |  | - | Z | $=$ | -800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | B | + | $\frac{1}{10} S_{H}$ | + |  | $S_{M}$ |  |  |  | $=$ | 28 |
| A |  |  | - | $\frac{1}{10} S_{H}$ | + | $\frac{3}{8}$ | $S_{M}$ |  |  |  | $=$ | 12 |
|  |  |  |  | ${ }_{6}^{25} S_{H}$ | - |  | $S_{M}$ | + | $S_{C}$ |  | $=$ | 110 |
| A | , | B | , | $S_{H}$ | , |  | $S_{M}$ |  | $S_{C}$ |  | $\geq$ | 0 |


| Basis $=\left\{A, B, S_{C}\right\}$ |
| :--- |
| $S_{H}=S_{M}=0$ |
| $Z=800$ |
| $B=28$ |
| $A=12$ |
| $S_{C}=110$ |

## LP Duality: Economic Interpretation

Brewer's problem: find optimal mix of beer and ale to maximize profits.

(P) | $\max \quad 13 A+23 B$ |  |  |
| ---: | :--- | ---: | :--- |
| s. t. $5 A+15 B$ | $\leq 480$ |  |
|  | $4 A+4 B$ | $\leq 160$ |
| $35 A+20 B$ | $\leq 1190$ |  |
|  | $A+B$ | 0 |

$$
\begin{array}{|l}
A^{*}=12 \\
B^{*}=28 \\
\text { OPT }=81
\end{array}
$$

Entrepreneur's problem: Buy individual resources from brewer at minimum cost.

- C, $\mathrm{H}, \mathrm{M}=$ unit price for corn, hops, malt.
- Brewer won't agree to sell resources if 5C + 4H + 35M $<13$.

(D) \begin{tabular}{rrrrr}
$\min$ \& $480 C+160 H+1190 M$ \& <br>
s.t. \& $5 C+4 H+35 M$ \& $\geq 13$ <br>
\& $15 C+4 H+20 M$ \& $\geq 23$ <br>
\& $C$ \& $H$ \& $M$ \& $\geq 0$

$\quad$

C

$\quad$

$C^{*}=1$ <br>
$H^{*}=2$ <br>
$M^{*}=0$ <br>
OPT $=800$ <br>
\end{tabular}

## LP Duality

Primal and dual LPs. Given rational numbers $\mathrm{a}_{\mathrm{ij}}, \mathbf{b}_{\mathrm{i}}, \mathrm{c}_{\mathrm{j}}$, find rational numbers $x_{i}, y_{j}$ that optimize ( $P$ ) and (D).

```
(P) \(\max \sum_{j=1}^{n} c_{j} x_{j}\)
    s. t. \(\sum_{j=1}^{n} a_{i j} x_{j}\)
        \(x_{j} \geq 0 \quad 1 \leq j \leq n\)
```

(D) $\min \sum_{i=1}^{m} b_{i} y_{i}$
s. t. $\sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j} \quad 1 \leq j \leq n$ $y_{i} \geq 0 \quad 1 \leq i \leq m$

## LP Duality: Economic Interpretation

## Sensitivity analysis.

- How much should brewer be willing to pay (marginal price) for additional supplies of scarce resources?
corn \$1, hops \$2, malt \$0.
- Suppose a new product "light beer" is proposed. It requires 2 corn, 5 hops, 24 malt. How much profit must be obtained from light beer to justify diverting resources from production of beer and ale?

Breakeven: $2(\$ 1)+5(\$ 2)+24(0 \$)=\$ 12 /$ barrel.

How do I compute marginal prices (dual variables)?

- Simplex solves primal and dual simultaneously.
. Top row of final simplex tableaux provides optimal dual solution!


## History

1939. Production, planning. (Kantorovich)
1940. Simplex algorithm. (Dantzig)
1941. Applications in many fields.
1942. Ellipsoid algorithm. (Khachian)
1943. Projective scaling algorithm. (Karmarkar)
1944. Interior point methods.

Current research.

- Approximation algorithms.
. Software for large scale optimization.
- Interior point variants.


## Ultimate Problem Solving Model

Ultimate problem-solving model?

- Shortest path.
. Min cost flow.
- Linear programming.
. Semidefinite programming.
- TSP??? (or any NP-complete problem)

Does $\mathrm{P}=\mathrm{NP}$ ?

- No universal problem-solving model exists unless $P=N P$.


## Perspective

LP is near the deep waters of NP-completeness.

- Solvable in polynomial time.
- Known for less than 25 years.


## Integer linear programming.

- LP with integrality requirement.
- NP-hard.


An unsuspecting MBA student transitions from tractable LP to intractable ILP in a single mouse click.

