(C5 226 Lecture i Introduction) (Analysis of algorithms)

R. Sedgewick Compare algorithms by comparing estimated costs
rs@cs.princeton.edu

N: size of the input

Intermediate-level survey course Typical running times (within constant factor)
e prerequisite: COS 126 el
e programming/problem solving elog N
N
Algorithm: method for solving a problem *Nlog N
Data Structure: a way to store information e N~2
e 24N
Efficient algorithms use good data structures Worst Case (guarantee)

Average Case (prediction)

Other functions sometimes arise

e sqrt N
 loglog N [log(log N)]
" elog* N number of logs until 1 reached "

(Why study algorithms?) (Sample problem: Online connectivity)
Using a computer? Input:

* want it to 9o faster » sequence of pairs of integers (p, q)

e want it to process more data *p "is connected to" q

e want to do something that would otherwise be impossible Qutput:

e nothing if p and q are already connected
Technology improves things by a constant factor * (p, q) otherwise
...but might be costly
Good algorithm design can do much better Assume "is connected to' is commutative and transitive
...and might be cheap *if p is connected to q then q is connected to p
* if (also) q is connected to r then p is connected to r
Supercomputer cannot rescue a bad algorithm

Qutput lists previously unknown connections
Algorithms as a field of study

e old enough that basics are known Example of application
e new enough that new discoveries arise e integers represent computers
e burgeoning application areas * pairs represent network connections

 philosophical implications e can p and q communicate through network? -

Online connectivity example

= '.'-'-.:.:l H
SR
1d
T
o
l..| I
A5n|
[TH

fi
S'r'_'—l
flfF'Jf.J

in out evi dence
3 4 3 4
4 9 4 9
8 0 8 0
23 23
56 56
29 (2--3--4--9)
59 59
7 3 7 3
4 8 8
56 (5--6)
02 (2--3--4--8--0)
6 1 6 1
Network connectivity example
JrepE R v e FRE A
":'I:': “'_jﬂ-l':ﬁl-r_i:_ i H:J:’I- ;'J__t_
-_"I-F'-_ iy = 5 "'HE_-_J--T

Lo H
H'E

|
P
J "::.E‘:C
b
HA4H,
ik
Eljyi=S

(UNION and FIND

Disconnected picce may be hard to spot
...particularly for a computer!

Number of nodes and edges can be huge
e Internet
e computer chip

Need to design data structure and algorithms
Data structure to record connectivity information

Algorithm to use it to test connectivity (FIND)
Algorithm to update data structure (UNION)

(Quick-find algorithm

Maintain array with names for components
«if i and j are connected,
¢ id[i] and id[j] are the same

To maintain this property for p-q connection
* ignore if id[p] = idlq]
e change all entries with p's id to q's id

QUICK-FIND name due to constant-time test
to find out if edge makes a new connection
SLOW-UNION?

Quick-find implementation

mai n(i nt argc,

char *argv[])

{int i, p, g, t, N= atoi(argv[1]);
int *id = nall oc(N+sizeof (int));
for (i =0; i <N i++) id[i] =i;
while (scanf("%l %\n", &, &q) !'= EOF)
{
if (id[p] == id[q]) continue;
t =idp];
for (i =0; i <N i++)
if (id[i] ==1t) id[i] =id[q];
printf(" % %\n", p, Qq);
}
}
(Quick-find example
374
01244567809 @@@©©®@
4-9
0129956789 ©®®©©®
8-0 ©®
0129956709 00 @@ 60O
0199956709 @ QO 6600
5-6
01999667009 ® @O ®0
01999997009 @ ©) @06
-3
0199999909
@ (9) ©
4-8
0100000000
6-1 OTO G O VOO
1111111111

(Problem size and computation time

Rough standard for 2000
* 1079 operations per second
* 1079 words of memory
e touch ecach word in approximately 1 second
(roughly unchanged since at least i9g0)

Ex: huge problem for quick-find
* 10”10 edges connecting 10”9 nodes
(edges need not fit in memory)
* Quick-find might take 10720 operations
(relabel ecach node (1o ops) for ecach edge)
» 3000 years of computer time (too much)

(Quadratic running time

Quick estimate of running time
e number of edges and nodes both O(N)
e running time of quick-find O(N~2)

(1oN)~2/10 = 10N~2

Gap grows as scale increases
new computer may be 10 times faster
...but has 10 times as much memory
so (with quadratic algorithm)
..takes 10 times as long to finish!

(Quick-union algorithm) (Quick-union example

. . . 374 (CXORGRORONOXONONO)
Maintain array with names for components 0124456789
o if | and j QY.G. connected, 4-9 @@@@@@
o (id[il)* and (id[j1)=* qr.c. -t\r.m .some 0124956789 S
o where (id[il)x = id[id[id[...id[i]1]] 8-o
(9o until it doesn't change) 01249567009 ®®®©®
- ®
2-3
To maintain this property for p-q connection 0194956709 @@@@
< ignore if (id[pl)* = (id[qD)* 5-6

e set id[i] to j 01949667009

®
O ® @@0®
®
QUICK-UNION: constant-time for new connection

7-3 ® @ 00
- ?

SLOW-FIND? 01949699009
®®

® @ ©
® 06

® Q

113 ®) ®

@@® ®®

(Quick-union implementation) (Weighted quick-union algorithm

Quick-find defect:

mai n(int argc, char *argv[]) e UNION could be too expensive
{int i, j, p, g, t, N= atoi(argv[1]); ° trees are flat, but too hard to keep them flat
int *id = mal |l oc(N*si zeof (int)); Quick-union defect:
for (i =0; i <N i++) id[i] =i; e FIND could be too expensive
while (scanf ("%l %\ n", &p, &q) != EOF) e trees could get +tall
{
i =p; j =q; Modify quick-union to avoid tall trees
while (i !'=id[i]) i =id[i]; * keep track of size of ecach component
while (j '=id[j]) j =id[j]; e balance by linking small one below large one
if (i ==j) continue;
idli] =j;
}

114

Weighted quick-union implementation)

for (i 0; i <N i++) id[i] i;
for (i =0; i <N i++) sz[i] 1,
while (scanf("%l %\n", &, &q) !'= EOF)

{
for (i =p; i !=id[i]; i =id[i]) ;
for (j =q; j !'=idljl; j =id[j])
if (i ==j) continue;
if (sz[i] < sz[j])
{ idli] =j; sz[j] +=sz[i]; }
el se
{ idlj] =1i; sz[i] += sz[j]; }
printf(" % %\n", p, Q);
}
17
(Weighted quick-union example)
3-4 @@@@@@@
0123356789 000 56006
©, ®
a9
01233567283
@O @ GO
8-0
8123356783 ®0 @ 60060
- 3° 680
8133356783 ®0 & 00
6 30808
5-
® @ (3) @
8133355783 ; 0B e
579 ®
8133335783
@ B
7-3 © WO
8133335383 ©
4-8 B 9
8133335333 g“agbg
6= a
8333335333

©0)]
©)
&)\
:

@S
d
©

118

(Weighted quick-union worst case)

o1 g@@@@@@@@
0023456789 ©

2-3 gg@@@@e@
0022456 9

s g3gooco

. 3888°°
00224466189 %

@ ®O
0022446688 ;%;;;
®
0002446688 - 9?
4-6 QOO
® @)

- ©) ®
°-4 o &
000204462838 @O ®
6-8 ®
0002044608 (0)
@0 W@ g
@C®®
@
(Weighted quick union analysis)

Is performance improved?

To answer this question, need to:
° run empirical studies
e analyze the algorithm

Good news:

* Worst case is O(lg N) steps per edge
Better news:

e Average case is O() steps per edge

Ex: huge practical problem
e 10”10 edges connecting 10”9 nodes
e reduces time from 3000 years to | minute

Supercomputer wouldn’'t help much
Good algorithm makes solution possible

(Path compression for weighted quick-union) (Path compression example)

2 374 00O EOO®
Stop at guaranteed acceptable performance? 0123356789
...not hard to improve alg further _
4-9 (OJON©) ﬁ ®6 0
0123356783 @O
Modify weighted quick-union to compress tree 8-o DO @ 6O
* make every node hit point to the new root 8123356783
2-3 @ @ ©®60
No reason not to! 8133356783 © @0V

8° o808

In practice, keeps trees almost completely flat

. . . - @0 Q. o
Same effect as quick-find, without the work 579
9 8133335783 5 e 4
7-3
8133335383 g®ed%§e
4-8 ®
8133335333
6-1 OT® OO
® ®

(Path compression implementation) (Path compression analysis)

0; I <N i++) id[i]

for (i i; THM: Worst-case tree height is O(lg* N)

for (i =0; i <N i++) sz[i] = 1, Proof: Extremely difficult
while (scanf("% %\ n", &p, &q) !'= EOF) ...but the *algorithmx is still simple!
{
for (i =p; i !'=id[i]; i =id[i]) ; Note: Ig¥ N is constant in this world
for (j =q; j t=1id[j]; j =id[j]) ; : N Ig* N
if (i ==j) continue; . 2 1
if (sz[i] < sz[j]) . 4 2
{ idli]l =j; sz[j] +=sz[i]; t =j; } 16 3
el se . 65536 4
{ id[j] =i; sz[i] +=sz[j]; t =i; } any practical value 5
for (i =p; i '=id[i]; i =id[i])
idli] =t; OPTIMAL algorithm
for (j =q; j '=id[j]; j =id[j]) e cost within a constant factor of cost of gathering data
id[j] =t; theory: QFWPC is not optimal
printf(" % %\n", p, q); practice: it is (in the real world)

(Union-find summary)

Worst-case cost per edge is proportional to
qui ck-find N
qui ck- uni on N
wei ght ed lg N
pat h conpressi on 5

Online algorithm: can solve problem while
collecting the data, for "free”

Set-merging abstraction

¢ FIND: is A in the same set as B?
e UNION: merge A's set and B's set

125

(Lessons)

A “trivial” algorithm can be usecful

...and nontrivial to study

e start with simple algorithm

e don't use simple algorithm for large problems

e can't use simple algorithm for huge problems

¢ higher level of abstraction (tree) is helpful

* fast performance on real data OK, but

e strive for worst-case performance gquarantees
e identify fundamental abstraction

1.26

(SORTING)

e Elementary algorithms, Shellsort
* Quicksort

e Mergesort

e Priority queues

* Radix sorts

Sort an array that fills memory
Make the union of M spelling dictionaries
Priority queue ADT

(SEARCHING)

e Tree searching

* Hashing

e Trie searching
Oxford English Dictionary
Internet search engines

DNA subsequence library
Dictionary ADT for other algorithms

(STRINGS) (GRAPH ALGORITHMS)

e 3tring searching e Properties of graphs
e Pattern matching e Searching in graphs
« File compression e Advanced graph algorithms
file systems, audio and video Connectivity
matching (e. g. students to jobs)
networks
129 13
(GEOMETRIC ALGORITHMS) (OTHER TOPICS)
 Elementary algorithms * Mathematical algorithms
e Convex hull » Dynamic programming
e Multidimensional searching e Parallel algorithms
N-body simulation * Randomized algorithms

World models for games and movies

CAD * Intractable problems

(COURSE MATERIALS)

Text
 Algorithms, 3rd edition, in C
Parts 1-4 (126 text)
Part 5 (graph algorithms)
e Strings and Geometry sections of old book
copies available after midterm

Lecture notes
e online

Online course information on homepage

READ HANDOUT ONE
READ ONLINE INFORMATION

1.33

(COURSEWORK)

Programming Assignments
* weekly, eleven in all
e electronic submission
programs due Thursdays n:g9PM
writeups due Fridays 4:59PM
e first one due NEXT Thursday
Problem Sets
* weekly, nine in all
e due in precept
e first one due NEXT Monday
Exams
e closed book w/ cheat sheet
e midterm in class Wednesday before break
o final at scheduled time

134

