
CS 226 Lecture 1: Introduction    

R. Sedgewick 
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Intermediate-level survey course 

  prerequisite: COS 126

  programming/problem solving

Algorithm: method for solving a problem  

Data Structure: a way to store information 

Efficient algorithms use good data structures

1.1

Why study algorithms?      

Using a computer?

  want it to go faster

  want it to process more data

  want to do something that would otherwise be impossible

Technology improves things by a constant factor

...but might be costly

Good algorithm design can do much better

...and might be cheap

Supercomputer cannot rescue a bad algorithm

Algorithms as a field of study

  old enough that basics are known

  new enough that new discoveries arise

  burgeoning application areas

  philosophical implications 1.2

Analysis of algorithms      

Compare algorithms by comparing estimated costs 

N: size of the input

Typical running times (within constant factor)

  1

  log N

  N

  N log N

  N^2

  2^N

Worst Case (guarantee)     

Average Case (prediction)     

Other functions sometimes arise

  sqrt N

  loglog N  [log(log N)]

  log* N    number of logs until 1 reached 1.3

Sample problem: Online connectivity     

Input:       

  sequence of pairs of integers (p, q)

  p "is connected to" q

Output:       

  nothing if p and q are already connected

  (p, q) otherwise

Assume "is connected to" is commutative and transitive

  if p is connected to q then q is connected to p

  if (also) q is connected to r then p is connected to r

Output lists previously unknown connections

Example of application

  integers represent computers

  pairs represent network connections

  can p and q communicate through network? 1.4



Online connectivity example      

  in     out    evidence

  3 4    3 4  

  4 9    4 9  

  8 0    8 0  

  2 3    2 3  

  5 6    5 6  

  2 9           (2--3--4--9)

  5 9    5 9  

  7 3    7 3  

  4 8    4 8  

  5 6           (5--6)

  0 2           (2--3--4--8--0)

  6 1    6 1  
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Network connectivity example      

1.6

UNION and FIND      

Disconnected piece may be hard to spot

...particularly for a computer!

Number of nodes and edges can be huge 

  Internet

  computer chip

Need to design data structure and algorithms

Data structure to record connectivity information  

Algorithm to use it to test connectivity (FIND)

Algorithm to update data structure (UNION)  
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Quick-find algorithm       

Maintain array with names for components

  if i and j are connected,

  id[i] and id[j] are the same

To maintain this property for p-q connection

  ignore if id[p] = id[q]

  change all entries with p’s id to q’s id

QUICK-FIND name due to constant-time test

to find out if edge makes a new connection

SLOW-UNION?

1.8



Quick-find implementation       

  main(int argc, char *argv[])

  { int i, p, q, t, N = atoi(argv[1]);

    int *id = malloc(N*sizeof(int));

    for (i = 0; i < N; i++) id[i] = i;

    while (scanf("%d %d\n", &p, &q) != EOF)

      { 

        if (id[p] == id[q]) continue;

        t = id[p];

        for (i = 0; i < N; i++)

          if (id[i] == t) id[i] = id[q];

        printf(" %d %d\n", p, q);

      }

  }
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Quick-find example       

3-4       
   0 1 2 4 4 5 6 7 8 9 

4-9       
   0 1 2 9 9 5 6 7 8 9 

8-0       
   0 1 2 9 9 5 6 7 0 9 

2-3       
   0 1 9 9 9 5 6 7 0 9 

5-6       
   0 1 9 9 9 6 6 7 0 9 

5-9       
   0 1 9 9 9 9 9 7 0 9 

7-3       
   0 1 9 9 9 9 9 9 0 9 

4-8       
   0 1 0 0 0 0 0 0 0 0 

6-1       
   1 1 1 1 1 1 1 1 1 1 
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Problem size and computation time    

Rough standard for 2000 

  10^9 operations per second

  10^9 words of memory

  touch each word in approximately 1 second

    (roughly unchanged since at least 1950)

Ex: huge problem for quick-find    

  10^10 edges connecting 10^9 nodes

    (edges need not fit in memory)

  Quick-find might take 10^20 operations

    (relabel each node (10 ops) for each edge)

  3000 years of computer time (too much)

1.11

Quadratic running time      

Quick estimate of running time

  number of edges and nodes both O(N)

  running time of quick-find O(N^2)

(10N)^2/10 = 10N^2

Gap grows as scale increases

    new computer may be 10 times faster

    ...but has 10 times as much memory

    so (with quadratic algorithm) 

    ...takes 10 times as long to finish!

1.12



Quick-union algorithm       

Maintain array with names for components

  if i and j are connected,

  (id[i])* and (id[j])* are the same

  where (id[i])* = id[id[id[...id[i]]]] 

    (go until it doesn’t change)

To maintain this property for p-q connection

  ignore if (id[p])* = (id[q])*

  set id[i] to j

QUICK-UNION: constant-time for new connection

SLOW-FIND?
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Quick-union implementation       

  main(int argc, char *argv[])

  { int i, j, p, q, t, N = atoi(argv[1]);

    int *id = malloc(N*sizeof(int));

    for (i = 0; i < N; i++) id[i] = i;

    while (scanf("%d %d\n", &p, &q) != EOF)

      { 

        i = p; j = q;

        while (i != id[i]) i = id[i];

        while (j != id[j]) j = id[j];

        if (i == j) continue;

        id[i] = j;

      }

  }
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Quick-union example       

3-4       
   0 1 2 4 4 5 6 7 8 9 

4-9       
   0 1 2 4 9 5 6 7 8 9 

8-0       
   0 1 2 4 9 5 6 7 0 9 

2-3       
   0 1 9 4 9 5 6 7 0 9 

5-6       
   0 1 9 4 9 6 6 7 0 9 

5-9       
   0 1 9 4 9 6 9 7 0 9 

7-3       
   0 1 9 4 9 6 9 9 0 9 

4-8       
   0 1 9 4 9 6 9 9 0 0 

6-1       
   1 1 9 4 9 6 9 9 0 0 
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Weighted quick-union algorithm      

Quick-find defect: 

  UNION could be too expensive

  trees are flat, but too hard to keep them flat

Quick-union defect: 

  FIND could be too expensive

  trees could get tall

Modify quick-union to avoid tall trees

  keep track of size of each component

  balance by linking small one below large one

1.16



Weighted quick-union implementation      

    for (i = 0; i < N; i++) id[i] = i;

    for (i = 0; i < N; i++) sz[i] = 1;

    while (scanf("%d %d\n", &p, &q) != EOF)

      { 

      for (i = p; i != id[i]; i = id[i]) ;

      for (j = q; j != id[j]; j = id[j]) ;

      if (i == j) continue;

      if (sz[i] < sz[j])

        { id[i] = j; sz[j] += sz[i]; }

      else 

        { id[j] = i; sz[i] += sz[j]; }

      printf(" %d %d\n", p, q);

      }
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Weighted quick-union example      

3-4       
   0 1 2 3 3 5 6 7 8 9 

4-9       
   0 1 2 3 3 5 6 7 8 3 

8-0       
   8 1 2 3 3 5 6 7 8 3 

2-3       
   8 1 3 3 3 5 6 7 8 3 

5-6       
   8 1 3 3 3 5 5 7 8 3 

5-9       
   8 1 3 3 3 3 5 7 8 3 

7-3       
   8 1 3 3 3 3 5 3 8 3 

4-8       
   8 1 3 3 3 3 5 3 3 3 

6-1       
   8 3 3 3 3 3 5 3 3 3 
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Weighted quick-union worst case     

0-1       
   0 0 2 3 4 5 6 7 8 9 

2-3       
   0 0 2 2 4 5 6 7 8 9 

4-5       
   0 0 2 2 4 4 6 7 8 9 

6-7       
   0 0 2 2 4 4 6 6 8 9 

8-9       
   0 0 2 2 4 4 6 6 8 8 

0-2       
   0 0 0 2 4 4 6 6 8 8 

4-6       
   0 0 0 2 4 4 4 6 8 8

0-4       
   0 0 0 2 0 4 4 6 8 8 

6-8       
   0 0 0 2 0 4 4 6 0 8 0
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Weighted quick union analysis     

Is performance improved?

To answer this question, need to:

  run empirical studies

  analyze the algorithm

Good news:

  Worst case is O(lg N) steps per edge

Better news:

  Average case is O(1) steps per edge

Ex: huge practical problem     

  10^10 edges connecting 10^9 nodes

  reduces time from 3000 years to 1 minute

Supercomputer wouldn’t help much

Good algorithm makes solution possible
1.20



Path compression for weighted quick-union    

Stop at guaranteed acceptable performance?

...not hard to improve alg further

Modify weighted quick-union to compress tree

  make every node hit point to the new root

No reason not to!

In practice, keeps trees almost completely flat

Same effect as quick-find, without the work

1.21

Path compression implementation      

  for (i = 0; i < N; i++) id[i] = i;

  for (i = 0; i < N; i++) sz[i] = 1;

  while (scanf("%d %d\n", &p, &q) != EOF)

  { 

    for (i = p; i != id[i]; i = id[i]) ;

    for (j = q; j != id[j]; j = id[j]) ;

    if (i == j) continue;

    if (sz[i] < sz[j])

      { id[i] = j; sz[j] += sz[i]; t = j; }

    else

      { id[j] = i; sz[i] += sz[j]; t = i; }

    for (i = p; i != id[i]; i = id[i]) 

      id[i] = t;

    for (j = q; j != id[j]; j = id[j]) 

      id[j] = t;

    printf(" %d %d\n", p, q);

  }
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Path compression example      

3-4       
   0 1 2 3 3 5 6 7 8 9 

4-9       
   0 1 2 3 3 5 6 7 8 3 

8-0       
   8 1 2 3 3 5 6 7 8 3 

2-3       
   8 1 3 3 3 5 6 7 8 3 

5-6       
   8 1 3 3 3 5 5 7 8 3 

5-9       
   8 1 3 3 3 3 5 7 8 3 

7-3       
   8 1 3 3 3 3 5 3 8 3 

4-8       
   8 1 3 3 3 3 5 3 3 3 

6-1       
   8 3 3 3 3 3 3 3 3 3 
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Path compression analysis      

THM: Worst-case tree height is O(lg* N) 

Proof: Extremely difficult 

...but the *algorithm* is still simple!

Note: lg* N is constant in this world

  .                    N   lg* N

  .                    2     1

  .                    4     2

  .                   16     3

  .                65536     4

  .  any practical value     5

OPTIMAL algorithm

  cost within a constant factor of cost of gathering data

theory: QFWPC is not optimal

practice: it is (in the real world)
1.24



Union-find summary       

Worst-case cost per edge is proportional to

  quick-find         N

  quick-union        N

  weighted          lg N

  path compression   5

Online algorithm: can solve problem while

collecting the data, for "free"

Set-merging abstraction 

  FIND: is A in the same set as B?

  UNION: merge A’s set and B’s set

1.25

Lessons        

A "trivial" algorithm can be useful 

...and nontrivial to study

  start with simple algorithm

  don’t use simple algorithm for large problems

  can’t use simple algorithm for huge problems

  higher level of abstraction (tree) is helpful

  fast performance on real data OK, but

  strive for worst-case performance guarantees

  identify fundamental abstraction

1.26

SORTING        

  Elementary algorithms, Shellsort

  Quicksort

  Mergesort

  Priority queues

  Radix sorts

Sort an array that fills memory

Make the union of M spelling dictionaries

Priority queue ADT

1.27

SEARCHING        

  Tree searching

  Hashing

  Trie searching

Oxford English Dictionary

Internet search engines

DNA subsequence library

Dictionary ADT for other algorithms
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STRINGS        

  String searching

  Pattern matching

  File compression

file systems, audio and video
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GEOMETRIC ALGORITHMS       

  Elementary algorithms

  Convex hull

  Multidimensional searching

N-body simulation

World models for games and movies

CAD
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GRAPH ALGORITHMS       

  Properties of graphs

  Searching in graphs

  Advanced graph algorithms

Connectivity

matching (e. g. students to jobs)

networks
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OTHER TOPICS       

  Mathematical algorithms

  Dynamic programming

  Parallel algorithms

  Randomized algorithms

  Intractable problems
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COURSE MATERIALS       

Text

  Algorithms, 3rd edition, in C

    Parts 1-4 (126 text)

    Part 5 (graph algorithms)

  Strings and Geometry sections of old book 

    copies available after midterm

Lecture notes

  online

Online course information on homepage

READ HANDOUT ONE

READ ONLINE INFORMATION
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COURSEWORK        

Programming Assignments

  weekly, eleven in all

  electronic submission 

    programs due Thursdays 11:59PM

    writeups due Fridays 4:59PM

  first one due NEXT Thursday 

Problem Sets

  weekly, nine in all

  due in precept 

  first one due NEXT Monday

Exams

  closed book w/ cheat sheet

  midterm in class Wednesday before break

  final at scheduled time  
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