
CS 226 Lecture 1: Introduction

R. Sedgewick

rs@cs.princeton.edu

Intermediate-level survey course

 prerequisite: COS 126

 programming/problem solving

Algorithm: method for solving a problem

Data Structure: a way to store information

Efficient algorithms use good data structures

1.1

Why study algorithms?

Using a computer?

 want it to go faster

 want it to process more data

 want to do something that would otherwise be impossible

Technology improves things by a constant factor

...but might be costly

Good algorithm design can do much better

...and might be cheap

Supercomputer cannot rescue a bad algorithm

Algorithms as a field of study

 old enough that basics are known

 new enough that new discoveries arise

 burgeoning application areas

 philosophical implications 1.2

Analysis of algorithms

Compare algorithms by comparing estimated costs

N: size of the input

Typical running times (within constant factor)

 1

 log N

 N

 N log N

 N^2

 2^N

Worst Case (guarantee)

Average Case (prediction)

Other functions sometimes arise

 sqrt N

 loglog N [log(log N)]

 log* N number of logs until 1 reached 1.3

Sample problem: Online connectivity

Input:

 sequence of pairs of integers (p, q)

 p "is connected to" q

Output:

 nothing if p and q are already connected

 (p, q) otherwise

Assume "is connected to" is commutative and transitive

 if p is connected to q then q is connected to p

 if (also) q is connected to r then p is connected to r

Output lists previously unknown connections

Example of application

 integers represent computers

 pairs represent network connections

 can p and q communicate through network? 1.4

Online connectivity example

 in out evidence

 3 4 3 4

 4 9 4 9

 8 0 8 0

 2 3 2 3

 5 6 5 6

 2 9 (2--3--4--9)

 5 9 5 9

 7 3 7 3

 4 8 4 8

 5 6 (5--6)

 0 2 (2--3--4--8--0)

 6 1 6 1

1.5

Network connectivity example

1.6

UNION and FIND

Disconnected piece may be hard to spot

...particularly for a computer!

Number of nodes and edges can be huge

 Internet

 computer chip

Need to design data structure and algorithms

Data structure to record connectivity information

Algorithm to use it to test connectivity (FIND)

Algorithm to update data structure (UNION)

1.7

Quick-find algorithm

Maintain array with names for components

 if i and j are connected,

 id[i] and id[j] are the same

To maintain this property for p-q connection

 ignore if id[p] = id[q]

 change all entries with p’s id to q’s id

QUICK-FIND name due to constant-time test

to find out if edge makes a new connection

SLOW-UNION?

1.8

Quick-find implementation

 main(int argc, char *argv[])

 { int i, p, q, t, N = atoi(argv[1]);

 int *id = malloc(N*sizeof(int));

 for (i = 0; i < N; i++) id[i] = i;

 while (scanf("%d %d\n", &p, &q) != EOF)

 {

 if (id[p] == id[q]) continue;

 t = id[p];

 for (i = 0; i < N; i++)

 if (id[i] == t) id[i] = id[q];

 printf(" %d %d\n", p, q);

 }

 }

1.9

Quick-find example

3-4
 0 1 2 4 4 5 6 7 8 9

4-9
 0 1 2 9 9 5 6 7 8 9

8-0
 0 1 2 9 9 5 6 7 0 9

2-3
 0 1 9 9 9 5 6 7 0 9

5-6
 0 1 9 9 9 6 6 7 0 9

5-9
 0 1 9 9 9 9 9 7 0 9

7-3
 0 1 9 9 9 9 9 9 0 9

4-8
 0 1 0 0 0 0 0 0 0 0

6-1
 1 1 1 1 1 1 1 1 1 1

0

1
2 3 4 5 6 7 8 9

01

2 3 4 5 6 7 8 9

01

2 3 4 5 6 7 8

9

01

2 3 4 5 6

7

8

9

01

2 3 4 5

6 7

8

9

01

2 3 4

5 6 7

8

9

01 2

3 4

5 6 7

8

9

0 1 2

3 4

5 6 7 89

0 1 2

3

4 5 6 7 8 9

1.10

Problem size and computation time

Rough standard for 2000

 10^9 operations per second

 10^9 words of memory

 touch each word in approximately 1 second

 (roughly unchanged since at least 1950)

Ex: huge problem for quick-find

 10^10 edges connecting 10^9 nodes

 (edges need not fit in memory)

 Quick-find might take 10^20 operations

 (relabel each node (10 ops) for each edge)

 3000 years of computer time (too much)

1.11

Quadratic running time

Quick estimate of running time

 number of edges and nodes both O(N)

 running time of quick-find O(N^2)

(10N)^2/10 = 10N^2

Gap grows as scale increases

 new computer may be 10 times faster

 ...but has 10 times as much memory

 so (with quadratic algorithm)

 ...takes 10 times as long to finish!

1.12

Quick-union algorithm

Maintain array with names for components

 if i and j are connected,

 (id[i])* and (id[j])* are the same

 where (id[i])* = id[id[id[...id[i]]]]

 (go until it doesn’t change)

To maintain this property for p-q connection

 ignore if (id[p])* = (id[q])*

 set id[i] to j

QUICK-UNION: constant-time for new connection

SLOW-FIND?

1.13

Quick-union implementation

 main(int argc, char *argv[])

 { int i, j, p, q, t, N = atoi(argv[1]);

 int *id = malloc(N*sizeof(int));

 for (i = 0; i < N; i++) id[i] = i;

 while (scanf("%d %d\n", &p, &q) != EOF)

 {

 i = p; j = q;

 while (i != id[i]) i = id[i];

 while (j != id[j]) j = id[j];

 if (i == j) continue;

 id[i] = j;

 }

 }

1.14

Quick-union example

3-4
 0 1 2 4 4 5 6 7 8 9

4-9
 0 1 2 4 9 5 6 7 8 9

8-0
 0 1 2 4 9 5 6 7 0 9

2-3
 0 1 9 4 9 5 6 7 0 9

5-6
 0 1 9 4 9 6 6 7 0 9

5-9
 0 1 9 4 9 6 9 7 0 9

7-3
 0 1 9 4 9 6 9 9 0 9

4-8
 0 1 9 4 9 6 9 9 0 0

6-1
 1 1 9 4 9 6 9 9 0 0

01

2 4 6 7

89

01

2

3

4

5

6 7 8

9

01

2

3

4

5

6

7

8

9

01

2

3

4 5

6 7

8

9

01

2

3

4

5 6 7

8

9

01 2

3

4

5 6 7

8

9

0 1 2

3

4

5 6 7 89

0 1 2

3
4 5 6 7 8 9

1.15

Weighted quick-union algorithm

Quick-find defect:

 UNION could be too expensive

 trees are flat, but too hard to keep them flat

Quick-union defect:

 FIND could be too expensive

 trees could get tall

Modify quick-union to avoid tall trees

 keep track of size of each component

 balance by linking small one below large one

1.16

Weighted quick-union implementation

 for (i = 0; i < N; i++) id[i] = i;

 for (i = 0; i < N; i++) sz[i] = 1;

 while (scanf("%d %d\n", &p, &q) != EOF)

 {

 for (i = p; i != id[i]; i = id[i]) ;

 for (j = q; j != id[j]; j = id[j]) ;

 if (i == j) continue;

 if (sz[i] < sz[j])

 { id[i] = j; sz[j] += sz[i]; }

 else

 { id[j] = i; sz[i] += sz[j]; }

 printf(" %d %d\n", p, q);

 }

1.17

Weighted quick-union example

3-4
 0 1 2 3 3 5 6 7 8 9

4-9
 0 1 2 3 3 5 6 7 8 3

8-0
 8 1 2 3 3 5 6 7 8 3

2-3
 8 1 3 3 3 5 6 7 8 3

5-6
 8 1 3 3 3 5 5 7 8 3

5-9
 8 1 3 3 3 3 5 7 8 3

7-3
 8 1 3 3 3 3 5 3 8 3

4-8
 8 1 3 3 3 3 5 3 3 3

6-1
 8 3 3 3 3 3 5 3 3 3

0

1 2

3

4 5

6

78 9

0

1

2

3

4 5

6

78 9

0

1

2

3
4 5

6

7

8

9

0

1

2

3

4 5
6

78

9

0

1

2

3

4

5
6

78

9

0

1

2
3
4

5 6 78

9

0
1 2 3

4

5 6 78
9

0 1 2 3

4
5 6 7 8

9

0 1 2 3
4

5 6 7 8 9

1.18

Weighted quick-union worst case

0-1
 0 0 2 3 4 5 6 7 8 9

2-3
 0 0 2 2 4 5 6 7 8 9

4-5
 0 0 2 2 4 4 6 7 8 9

6-7
 0 0 2 2 4 4 6 6 8 9

8-9
 0 0 2 2 4 4 6 6 8 8

0-2
 0 0 0 2 4 4 6 6 8 8

4-6
 0 0 0 2 4 4 4 6 8 8

0-4
 0 0 0 2 0 4 4 6 8 8

6-8
 0 0 0 2 0 4 4 6 0 8 0

1 2

3

4

5 6

7

8

9

0

1 2

3

4

5 6

7

8

9

0

1 2

3

4
5 6

7

8

9

0
1 2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8
9

0

1

2

3

4

5

6
7

8 9

0

1

2

3

4
5

6 7 8 9

0

1

2
3

4 5 6 7 8 9

0
1

2 3 4 5 6 7 8 9

1.19

Weighted quick union analysis

Is performance improved?

To answer this question, need to:

 run empirical studies

 analyze the algorithm

Good news:

 Worst case is O(lg N) steps per edge

Better news:

 Average case is O(1) steps per edge

Ex: huge practical problem

 10^10 edges connecting 10^9 nodes

 reduces time from 3000 years to 1 minute

Supercomputer wouldn’t help much

Good algorithm makes solution possible
1.20

Path compression for weighted quick-union

Stop at guaranteed acceptable performance?

...not hard to improve alg further

Modify weighted quick-union to compress tree

 make every node hit point to the new root

No reason not to!

In practice, keeps trees almost completely flat

Same effect as quick-find, without the work

1.21

Path compression implementation

 for (i = 0; i < N; i++) id[i] = i;

 for (i = 0; i < N; i++) sz[i] = 1;

 while (scanf("%d %d\n", &p, &q) != EOF)

 {

 for (i = p; i != id[i]; i = id[i]) ;

 for (j = q; j != id[j]; j = id[j]) ;

 if (i == j) continue;

 if (sz[i] < sz[j])

 { id[i] = j; sz[j] += sz[i]; t = j; }

 else

 { id[j] = i; sz[i] += sz[j]; t = i; }

 for (i = p; i != id[i]; i = id[i])

 id[i] = t;

 for (j = q; j != id[j]; j = id[j])

 id[j] = t;

 printf(" %d %d\n", p, q);

 }
1.22

Path compression example

3-4
 0 1 2 3 3 5 6 7 8 9

4-9
 0 1 2 3 3 5 6 7 8 3

8-0
 8 1 2 3 3 5 6 7 8 3

2-3
 8 1 3 3 3 5 6 7 8 3

5-6
 8 1 3 3 3 5 5 7 8 3

5-9
 8 1 3 3 3 3 5 7 8 3

7-3
 8 1 3 3 3 3 5 3 8 3

4-8
 8 1 3 3 3 3 5 3 3 3

6-1
 8 3 3 3 3 3 3 3 3 3

1 2

3

4 5 6 78 9

0

1

2

3

4 5

6

78 9

0

1

2

3
4 5

6

7

8

9

0

1

2

3

4 5
6

78

9

0

1

2

3

4

5
6

78

9

0

1

2
3
4

5 6 78

9

0
1 2 3

4

5 6 78
9

0 1 2 3

4
5 6 7 8

9

0 1 2 3
4

5 6 7 8 9

1.23

Path compression analysis

THM: Worst-case tree height is O(lg* N)

Proof: Extremely difficult

...but the *algorithm* is still simple!

Note: lg* N is constant in this world

 . N lg* N

 . 2 1

 . 4 2

 . 16 3

 . 65536 4

 . any practical value 5

OPTIMAL algorithm

 cost within a constant factor of cost of gathering data

theory: QFWPC is not optimal

practice: it is (in the real world)
1.24

Union-find summary

Worst-case cost per edge is proportional to

 quick-find N

 quick-union N

 weighted lg N

 path compression 5

Online algorithm: can solve problem while

collecting the data, for "free"

Set-merging abstraction

 FIND: is A in the same set as B?

 UNION: merge A’s set and B’s set

1.25

Lessons

A "trivial" algorithm can be useful

...and nontrivial to study

 start with simple algorithm

 don’t use simple algorithm for large problems

 can’t use simple algorithm for huge problems

 higher level of abstraction (tree) is helpful

 fast performance on real data OK, but

 strive for worst-case performance guarantees

 identify fundamental abstraction

1.26

SORTING

 Elementary algorithms, Shellsort

 Quicksort

 Mergesort

 Priority queues

 Radix sorts

Sort an array that fills memory

Make the union of M spelling dictionaries

Priority queue ADT

1.27

SEARCHING

 Tree searching

 Hashing

 Trie searching

Oxford English Dictionary

Internet search engines

DNA subsequence library

Dictionary ADT for other algorithms

1.28

STRINGS

 String searching

 Pattern matching

 File compression

file systems, audio and video

1.29

GEOMETRIC ALGORITHMS

 Elementary algorithms

 Convex hull

 Multidimensional searching

N-body simulation

World models for games and movies

CAD

1.30

GRAPH ALGORITHMS

 Properties of graphs

 Searching in graphs

 Advanced graph algorithms

Connectivity

matching (e. g. students to jobs)

networks

1.31

OTHER TOPICS

 Mathematical algorithms

 Dynamic programming

 Parallel algorithms

 Randomized algorithms

 Intractable problems

1.32

COURSE MATERIALS

Text

 Algorithms, 3rd edition, in C

 Parts 1-4 (126 text)

 Part 5 (graph algorithms)

 Strings and Geometry sections of old book

 copies available after midterm

Lecture notes

 online

Online course information on homepage

READ HANDOUT ONE

READ ONLINE INFORMATION

1.33

COURSEWORK

Programming Assignments

 weekly, eleven in all

 electronic submission

 programs due Thursdays 11:59PM

 writeups due Fridays 4:59PM

 first one due NEXT Thursday

Problem Sets

 weekly, nine in all

 due in precept

 first one due NEXT Monday

Exams

 closed book w/ cheat sheet

 midterm in class Wednesday before break

 final at scheduled time

1.34

