CS 226 Lecture I: Introduction

Analysis of algorithms

Why study algorithms?

Using a computer?

- want it to go faster
- want it to process more data
- want to do something that would otherwise be impossible
Technology improves things by a constant factor
...but might be costly
Good algorithm design can do much better
...and might be cheap
supercomputer cannot rescue a bad algorithm
Algorithms as a field of study
- old enough that basics are known
- new enough that new discoveries arise
- burgeoning application areas
- philosophical implications
- want it to go faster
- want it to process more data
- want to do something that would otherwise be impossible

Technology improves things by a constant factor
...but might be costly
Good algorithm design can do much better
...and might be cheap

Supercomputer cannot rescue a bad algorithm

Algorithms as a field of study

- old enough that basics are known
- new enough that new discoveries arise
- philosophical implications

```
Compare algorithms by comparing estimated costs
N: size of the input
Typical running times (within constant factor)
    - I
    - log N
    -N
    -N log}
    - N^2
    -2^N
Worst Case (guarantee)
Average Case (prediction)
Other functions sometimes arise
    -sqrt N
    - loglog N [log(log N)]
    - log* N number of logs until I reached

\section*{Sample problem: Online connectivity}
```

Input:

- sequence of pairs of integers (p, q)
- p "is connected to" q
Output:
- nothing if p and q are already connected
- (p, q) otherwise
Assume "is connected to" is commutative and transitive
- if p is connected to q then q is connected to p
- if (also) q is connected to r then p is connected to r
Output lists previously unknown connections
Example of application
- integers represent computers
- pairs represent network connections
- can p and q communicate through network? 1.4

```
\begin{tabular}{|c|c|c|}
\hline in & out & evidence \\
\hline 34 & 34 & \\
\hline 49 & 49 & \\
\hline & 80 & \\
\hline & 23 & \\
\hline & 56 & \\
\hline & & (2--3--4--9) \\
\hline 59 & 59 & \\
\hline & 73 & \\
\hline & 48 & \\
\hline 56 & & (5--6) \\
\hline & & (2--3--4--8--0) \\
\hline & 61 & \\
\hline
\end{tabular}
Disconnected piece may be hard to spot
...particularly for a computer!
Number of nodes and edges can be huge
    - Internet
    - computer chip
Need to design data structure and algorithms
Data structure to record connectivity information
Algorithm to use it to test connectivity (FIND)
Algorithm to update data structure (UNION)

\section*{Network connectivity example}


\section*{Quick-find algorithm}

Maintain array with names for components
- if \(i\) and \(j\) are connected,
- id[i] and id[j] are the same

To maintain this property for \(p-q\) connection
- ignore if id[p] = id[q]
- change all entries with \(p\) 's id to \(q\) 's id

QUICK-FIND name due to constant-time test to find out if edge makes a new connection SLOW-UNION?
```

3-4

```

```

4-9

```

```

8-0
0}112999566700
2-3

```

```

5-6

```

```

5-9
0 1 9 9 9 9 9 7 0 9
7-3
0 1 9 9 9 9 9 9 0 9
4-8
01000 0 0 0 0 0 0
6-1
1

```
main(int argc, char *argv[])
{ int i, p, q, t, N = atoi(argv[1]);
    int *id = malloc(N*sizeof(int));
    for (i = 0; i < N; i++) id[i] = i;
    while (scanf("%d %d\n", &p, &q) != EOF)
        {
            if (id[p] == id[q]) continue;
            t = id[p];
            for (i = 0; i < N; i++)
            if (id[i] == t) id[i] = id[q];
        printf(" %d %d\n", p, q);
    }
}
```


Quick-find example

```
Rough standard for 2000
    - 10^9 operations per second
    - 10^9 words of memory
    - touch each word in approximately I second
            (roughly unchanged since at least 1950)
Ex: huge problem for quick-find
    - 10^10 edges connecting 10^9 nodes
            (edges need not fit in memory)
    - Quick-find might take 10^20 operations
            (relabel each node (10 ops) for each edge)
    -3000 years of computer time (too much)
```

Quick estimate of running time

- number of edges and nodes both $O(N)$
- running time of quick-find $O\left(N \not \wedge_{2}\right)$
$(10 N) \wedge_{2} / 10=10 N^{\prime}$

Gap grows as scale increases

new computer may be 10 times faster
...but has 10 times as much memory
so (with quadratic algorithm)
...takes 10 times as long to finish!

Quick-union algorithm

Maintain array with names for components

- if i and j are connected,
- (id[i])* and (id[j])* are the same
- where (id[i])* = id[id[id[...id[i]]]]
(go until it doesn't change)

To maintain this property for $p-q$ connection

- ignore if (id[p])* = (id[q])*
- set id[i] to j

QUICK-UNION: constant-time for new connection SLOW-FIND?

Quick-union implementation

```
main(int argc, char *argv[])
{ int i, j, p, q, t, N = atoi(argv[1])
    int *id = malloc(N*sizeof(int));
    for (i = 0; i < N; i++) id[i] = i;
    while (scanf("%d %d\n", &p, &q) != EOF)
        {
            i = p; j = q;
            while (i != id[i]) i = id[i];
            while (j != id[j]) j = id[j];
            if (i == j) continue;
            id[i] = j;
        }
```

\}

Weighted quick-union algorithm

Quick-find defect:

- UNION could be too expensive
- trees are flat, but too hard to keep them flat Quick-union defect:
- FIND could be too expensive
- trees could get tall

Modify quick-union to avoid tall trees

- keep track of size of each component
- balance by linking small one below large one

```
for (i = 0; i < N; i++) id[i] = i;
for (i = 0; i < N; i++) sz[i] = 1;
while (scanf("%d %d\n", &p, &q) != EOF)
    {
    for (i = p; i != id[i]; i = id[i]) ;
    for (j = q; j != id[j]; j = id[j]) ;
    if (i == j) continue;
    if (sz[i] < sz[j])
        { id[i] = j; sz[j] += sz[i]; }
    else
        { id[j] = i; sz[i] += sz[j]; }
    printf(" %d %d\n", p, q);
    }
```


Weighted quick-union example

Weighted quick union analysis

Is performance improved?

To answer this question, need to:

- run empirical studies
- analyze the algorithm

Good news:

- Worst case is $O(\lg N)$ steps per edge

Better news:

- Average case is $O(1)$ steps per edge

Ex: huge practical problem

- 10^10 edges connecting $10^{\wedge} 9$ nodes
- reduces time from 3000 years to 1 minute

Supercomputer wouldn't help much

Good algorithm makes solution possible

Path compression for weighted quick-union

Stop at guaranteed acceptable performance?

 ...not hard to improve alg furtherModify weighted quick-union to compress tree

- make every node hit point to the new root

No reason not to!

In practice, keeps trees almost completely flat same effect as quick-find, without the work

Path compression implementation

```
for (i = O; i < N; i++) id[i] = i;
for (i = 0; i < N; i++) sz[i] = 1;
while (scanf("%d %d\n", &p, &q) != EOF)
{
    for (i = p; i != id[i]; i = id[i]) ;
    for (j = q; j != id[j]; j = id[j]) ;
    if (i == j) continue;
    if (sz[i] < sz[j])
            { id[i] = j; sz[j] += sz[i]; t = j; }
    else
        { id[j] = i; sz[i] += sz[j]; t = i; }
    for (i = p; i != id[i]; i = id[i])
        id[i] = t;
    for (j = q; j != id[j]; j = id[j])
        id[j] = t;
    printf(" %d %d\n", p, q);
}
```

THM: Worst-case tree height is $O(1 g * N)$ Proof: Extremely difficult ...but the *algorithm* is still simple!

Note: lg* N is constant in this world

.	N	$\mathrm{lg} * \mathrm{~N}$
.	2	1
.	4	2
.	16	3
.	65536	4
. any practical value	5	

OPTIMAL algorithm

- cost within a constant factor of cost of gathering data theory: QFWPC is not optimal practice: it is (in the real world)
Worst-case cost per edge is proportional to

quick-find	N
quick-union	N
weighted	$\operatorname{lg~N}$
path compression	5

Online algorithm: can solve problem while collecting the data, for "free"

Set-merging abstraction

- FIND: is A in the same set as B ?
- UNION: merge A's set and B's set

Lessons

A "trivial" algorithm can be useful
...and nontrivial to study

- start with simple algorithm
- don't use simple algorithm for large problems
- can't use simple algorithm for huge problems
- higher level of abstraction (tree) is helpful
- fast performance on real data OK, but
- strive for worst-case performance guarantees
- identify fundamental abstraction
- Elementary algorithms, Shellsort
- Quicksort
- Mergesort
- Priority queues
- Radix sorts

Sort an array that fills memory
Make the union of M spelling dictionaries
Priority queue ADT

SEARCHING

- Tree searching
- Hashing
- Trie scarching

Oxford English Dictionary
Internet search engines
DNA subsequence library Dictionary ADT for other algorithms

- String scarching
- Pattern matching
- File compression
file systems, audio and video

OTHER TOPICS

- Mathematical algorithms
- Dynamic programming
- Parallel algorithms
- Randomized algorithms
- Intractable problems

Text

- Algorithms, 3rd edition, in C

Parts 1-4 (126 text)
Part 5 (graph algorithms)

- Strings and Geometry sections of old book copies available after midterm

Lecture notes

- online

Online course information on homepage

READ HANDOUT ONE
READ ONLINE INFORMATION

COURSEWORK

Programming Assignments

- weekly, eleven in all
- electronic submission
programs due Thursdays 11:59PM
writeups due Fridays 4:59PM
- first one due NEXT Thursday

Problem Sets

- weckly, nine in all
- due in precept
- first one due NEXT Monday

Exams

- closed book w/ cheat sheet
- midterm in class Wednesday before break
- final at scheduled time

