
COS 226 Lecture 9: Hashing    

Symbol Table, Dictionary

  records with keys

  INSERT

  SEARCH

Balanced trees, randomized trees

  use O(lgN) comparisons

Is lgN required?

  (no, and yes)

Are comparisons necessary?

  (no)

9.1

Hashing: basic plan      

Save keys in a table, at a location determined by the key

KEY-INDEXED TABLE

HASH FUNCTION

  method for computing table index from key

COLLISION RESOLUTION STRATEGY

  algorithm and data structure to handle

    two keys that hash to the same index

Time-space tradeoff

  No space limitation: 

    trivial hash function with key as address

  No time limitation: 

    trivial collision resolution: sequential search

  Limitations on both time and space

    hashing
9.2

Hash function for short keys    

Treat key as integer, use PRIME table size M

  h(K) = K mod M 

Ex: four-character keys, table size 101   

  bin   01100001011000100110001101100100

  hex      6   1   6   2   6   3   6   4

  ascii        a       b       c       d

Key "abcd" hashes to 11

   0x61626364 = 1633831724 

   16338831724 % 101 = 11

Key "dcba" hashes to 57

   0x64636261 = 1684234849

   1633883172 % 101 = 57

Key "abbc" also hashes to 57

   0x61626263 = 1633837667 

   1633837667 % 101 = 57

Obvious point:      

  huge number of keys, small table: most collide! 9.3

Hash function for long keys (strings)   

Same function: h(K) = K mod M 

Need multiprecision arithmetic calculation

  Use Horner’s method

Ex: (check with 4 chars; works for any length)

  hex      6   1   6   2   6   3   6   4

  ascii        a       b       c       d

  0x61626364 = 256*(256*(256*97+98)+99)+100

take mod after each multiplication:

    256*97+98  = 24930 % 101 = 84

    256*84+99  = 21603 % 101 = 90

    256*90+100 = 23140 % 101 = 11

9.4



String hash function implementation     

  int hash(char *v, int M)

    { int h, a = 117;

      for (h = 0; *v != ’ ’; v++) 

        h = (a*h + *v) % M;

      return h;

    }

Scramble by replacing 256 by 117

Uniform hashing:

  use a different random value for each digit

9.5

Collisions        

N keys, table size M

How many insertions until the first collision?

BIRTHDAY PARADOX (classical probability theory)   

  Assume hash function "random"

  Expected insertions to first collision (table size M):

    M    sqrt(pi M/2)

.       100        12

.      1000        40

.     10000       125

Option 1: Allow N >> M  

  put keys hashing to i in a list

  about N/M keys per list

Option 2: Keep N < M  

  put keys somewhere in table

  complex collision pattern 9.6

Collisions (continued)       

Experiment 1:

  generate random probes between 0 and 100

  84 35 45 32 89 1 58 16 38 69 5 90 16 53 61 ...

  collision at 13th as predicted

Experiment 2:

  use hash function to scatter 4-char keys

   bcba 47     ccad  1      baca 26      abad  4

   bddc 43     bdac 83      dbcb 24      cada 85

   dabc 85     dabb 84      dbab 17      dabd 86

   dbdb 78     dcbd 60      dbdd 80

   babb 74     bccc  2      addd 39

   bcbd 50     adbc 31      bcda 55

collision after 20 probes

  still as predicted (standard dev. not small) 9.7

Separate chaining       

Simple, practical, widely used

Cuts search time by a factor of M over sequential search

Method: M linked lists, one for each table

.     0:    *

.     1:    L    A    A    A    *

.     2:    M    X    *

.     3:    N    C    *

.     4:    *

.     5:    E    P    E    E    *

.     6:    *

.     7:    G    R    *

.     8:    H    S    *

.     9:    I    *

.    10:    * 

9.8



Separate chaining analysis      

Insert cost: 1

Avg. search cost (successful): N/2M

Avg. search cost (unsuccessful): N/M

Classical balls-and-urns "occupancy" problem

  Probability that some list length is > t(N/M)

    exponentially small in t

  Long lists unlikely PROVIDED hash is random

  [Analysis doesn’t account for bugs or bad hashes]

M large: CONSTANT avg. search time

  independent of how keys are distributed (!)

Keep lists sorted?

  increases insert time to N/2M

  cuts unsuccessful search time to N/2M
9.9

Linear Probing       

No links, keep everything in table

Method: start linear search at hash position 

  (stop when empty position hit)

Still get O(1) avg. search time if table sparse

Very sparse table: like separate chaining

As table fills up: CLUSTERING occurs

  (infinite loop on full table)

9.10

Linear probing code      

  void STinit(int max)

    { int i; 

      N = 0; M = 2*max;

      st = malloc(M*sizeof(Item));

      for (i = 0; i < M; i++) st[i] = NULLitem; 

    }

  void STinsert(Item item)

    { Key v = key(item);

      int i = hash(v, M);

      while (!null(i)) i = (i+1) % M;

      st[i] = item; N++;

    }

  Item STsearch(Key v)

    { int i = hash(v, M);

      while (!null(i))

        if eq(v, key(st[i])) return st[i]; 

        else i = (i+1) % M;

      return NULLitem;

    }

9.11

Linear probing example      

9.12



Linear probing analysis      

CLUSTERING       

  bad phenomenon: items clump together

  long clusters tend to get longer

  avg. search cost grows to M as table fills

Precise analysis very difficult.

THM (Knuth):      

  Insert cost: approx. (1+ 1/(1-N/M)^2)/2

  Search cost (hit): approx. (1+ 1/(1-N/M))/2

  Search cost (miss): same as insert

Too slow when table gets 70%-80% full

9.13

Double Hashing       

Avoid clustering by using 2nd hash to compute skip for search

9.14

Double Hashing analysis      

Extremely difficult

THM: (Guibas-Szemeredi) Nearly equivalent to random probe ideal

  Insert cost: approx. 1/(1-N/M)

  Search cost (hit): approx. ln(1+N/M)/(N/M)

  Search cost (miss): same as insert

Not too slow until table gets 90%-95% full

9.15

Amortized analysis of algorithms     

          

Measure running time for X operations by

  (total cost of all X operations)/ X

Ex:        

  insert N elements in a heap: 

    (lg1 + lg2 + ... + lgN) / N = lgN + O(1)

Ex:        

  insert N elements in a binomial queue:

    (1*N/2 + 2*N/4 + 3*N/8 +...)/N < 2

Worst case for a SEQUENCE of operations

  guarantee bound on TOTAL

    (same as cost per operation)

  individual operation may be slow

9.16



Dynamic hashing       

Hashing: 

  grow table while keeping search cost O(1)

  when number of keys in table doubles

    rebuild to double the size of the table 

Ex: separate chaining      

  avg search cost < 2

  4M keys in table of size M

  proof by induction: amortized cost < 2

    cost to build: x*4M

    cost to rebuild to new table size 2M: 4M

    amortized cost of first 8M insertions:

      (x*4M + 4M + 4M)/8M 

      x/2 + 1 < x

Same argument works for other basic ADTs!

Ex: stacks, queues in arrays, double hashing  9.17

Separate chaining vs. double hashing    

Space for separate chaining w/ rehashing

  4M keys (or links to keys)

  M table links (approx same size as keys)

  4M links in nodes

  Total space: 9M words for 4M items

  Avg search time: 2

Double hashing in same space

  4M items, table size 9M

  avg search time: 1/(1-4/9) = 1.8 (10% faster)

Double hashing in same time

  4M items, avg search time 2

  space needed: 8M words (1/(1-4/8) = 2) (11% less)

Separate chaining advantages

  idiot-proof (doesn’t break)

  no large chunks of memory (is that good?) 9.18

Other ST ADT operations     

DELETION       

  Separate chaining: trivial

  Linear probing: rehash keys in cluster

    or use indirect method (see below)

  Double hashing: no easy direct method

    mark deleted nodes as "deadwood"

    rebuild periodically to clear deadwood

SORT, FIND kth largest    

  Separate chaining w/ sorted lists

  Linear probing/double hashing

    have to do full sort

JOIN       

  Separate chaining: easy

  Linear probing/double hashing: 

    rehash whole table
9.19

Reasons not to use hashing    

Hashing achieve ST ADT implementation goal

  search and insert in constant time.

Why use anything else?

  no performance guarantee

  too much arithmetic on long keys

  takes extra space

  doesn’t support all ADT ops efficiently

  compare abstraction works for partial order

    (searching without keys)        
9.20



Other hashing variants      

Perfect hashing      

  fixed set of keys

  hash function with no collisions

  good hack for small tables

  not practical for large tables

  totally static

Coalesced hashing      

  properly account for link space

  mix hash table, storage allocation

Ordered hashing      

  cut costs in half as with ordered lists

Brent’s variation      

  guarantee constant search cost

  up to M insert cost

9.21


