COS 226 Lecture 9: Hashing

Hash function for short keys

Treat key as integer, use PRIME table size M - $h(K)=K \bmod M$

Ex: four-character keys, table size 101

bin	01100001011000100110001101100100							
hex	6	1	6	2	6	3	6	4
ascii		a		b		c		d

Key "abcd" hashes to II

$$
0 \times 61626364=1633831724
$$

$$
16338831724 \% 101=11
$$

Key "deba" hashes to 57
$0 \times 64636261=1684234849$
$1633883172 \% 101=57$
Key "abbc" also hashes to 57
$0 \times 61626263=1633837667$
$1633837667 \% 101=57$
Obvious point:

- huge number of keys, small table: most collide!

Hashing: basic plan

save keys in a table, at a location determined by the key KEY-INDEXED TABLE

HASH FUNCTION

- method for computing table index from key COLLISION RESOLUTION STRATEGY
- algorithm and data structure to handle
two keys that hash to the same index

Time-space tradeoff

- No space limitation:
trivial hash function with key as address
- No time limitation:
trivial collision resolution: sequential search
- Limitations on both time and space
hashing

String hash function implementation

Collisions (continued)

- still as predicted (standard dev. not small)

Separate chaining

Simple, practical, widely used
Cuts search time by a factor of M over sequential search Method: M linked lists, one for each table

1:	L	A	A	A	*
2 :	M	X	*		
3:	N	C	*		
4:	*				
5 :	E	P	E	E	*
6 :	*				
7 :	G	R	*		
8 :	H	S	*		
9 :	I	*			
10:	*				

Option 2: Keep N く M

- put keys somewhere in table
- complex collision pattern 9.6

```
Insert cost: I
Avg. search cost (successful): N/2M
Avg. search cost (unsuccessful): N/M
Classical balls-and-urns "occupancy" problem
    - Probability that some list length is > t(N/M)
        exponentially small in t
    -Long lists unlikely PROVIDED hash is random
    - [Analysis doesn't account for bugs or bad hashes]
M large: CONSTANT avg. search time
    - independent of how keys are distributed (!)
Keep lists sorted?
    - increases insert time to N/2M
    -cuts unsuccessful search time to N/2M
```

```
void STinit(int max)
    { int i;
        N = 0; M = 2*max;
        st = malloc(M*sizeof(Item));
        for (i = 0; i < M; i++) st[i] = NULLitem;
    }
void STinsert(Item item)
    { Key v = key(item);
        int i = hash(v, M);
        while (!null(i)) i = (i+1) % M;
        st[i] = item; N++;
    }
Item STsearch(Key v)
    { int i = hash(v, M);
        while (!null(i))
            if eq(v, key(st[i])) return st[i];
            else i = (i+1) % M;
        return NULLitem;
    }
```


Lincar Probing

Linear probing example

No links，keep everything in table
Method：start linear search at hash position
－（stop when empty position hit）

Still get $O(1)$ avg．search time if table sparse

Very sparse table：like separate chaining
As table fills up：CLUSTERING occurs
－（infinite loop on full table）

 ப

பப・リーリー・•••
คிம

CLUSTERING

- bad phenomenon: items clump together
- long clusters tend to get longer
- avg. search cost grows to M as table fills

Precise analysis very difficult.

THM (Knuth):

- Insert cost: approx. ($\left.1+1 /(1-N / M) \sim_{2}\right) / 2$
- Scarch cost (hit): approx. (1+ $/ /(1-N / M)) / 2$
- Search cost (miss): same as insert

Too slow when table gets $70 \%-80 \%$ full

Double Hashing

Avoid clustering by using 2nd hash to compute skip for search

Clelen


```
Hashing:
    - grow table while keeping search cost O(1)
    - when number of keys in table doubles
        rebuild to double the size of the table
Ex: separate chaining
    - avg search cost < 2
    - 4M keys in table of size M
    - proof by induction: amortized cost < 2
        cost to build: x*4M
        cost to rebuild to new table size 2M: 4M
        amortized cost of first 8M insertions:
            (x*4M + 4M + 4M)/8M
            x/2 + 1 < x
```

same argument works for other basic ADTs!
Ex: stacks, queues in arrays, double hashing

separate chaining vs. double hashing

space for separate chaining w/ rehashing

- 4M keys (or links to keys)
- M table links (approx same size as keys)
- 4M links in nodes
- Total space: 9 M words for 4 M items
- Avg search time: 2

Double hashing in same space
-4M items, table size 9M

- avg search time: $1 /(1-4 / 9)=1.8$ (10% faster)

Double hashing in same time

- 4 M items, avg search time 2
- space needed: 8 M words $(1 /(1-4 / 8)=2)(11 \%$ less)
separate chaining advantages
- idiot-proof (doesn't break)
- no large chunks of memory (is that good?)

DELETION

- Separate chaining: trivial
- Linear probing: rehash keys in cluster or use indirect method (see below)
- Double hashing: no casy direct method mark deleted nodes as "deadwood" rebuild periodically to clear deadwood

```
SORT, FIND kth largest
```

- Separate chaining w/ sorted lists
- Linear probing/double hashing have to do full sort
JOIN
- Separate chaining: casy
- Linear probing/double hashing: rehash whole table

Reasons not to use hashing

Hashing achieve ST ADT implementation goal

- search and insert in constant time.

Why use anything else?

- no performance guarantee
- too much arithmetic on long keys
- takes extra space
- doesn't support all ADT ops efficiently
- compare abstraction works for partial order (searching without keys)

Other hashing variants

Perfect hashing

- fixed set of keys
- hash function with no collisions
- good hack for small tables
- not practical for large tables
- totally static

Coalesced hashing

- properly account for link space
- mix hash table, storage allocation

Ordered hashing

- cut costs in half as with ordered lists

Brent's variation

- guarantec constant search cost
- up to M insert cost

