(COS 226 Lecture ¢: Hashing) (Hash function for short keys)

Symbol Table, Dictionary Treat key as integer, use PRIME table size M
e records with keys e h(K) = K mod M
o INSERT Ex: four-character keys, table size 10
* SEARCH bi n 01100001011000100110001101100100
hex 6 1 6 2 6 3 6 4
Balanced trees, randomized trees asci i a b c d
* use O(IgN) comparisons Key “"abcd” hashes to n
0x61626364 = 1633831724
Is IgN required? 16338831724 % 101 = 11
* (no, and yes) Key “"deba’” hashes to 57
Are comparisons necessary? 0x64636261 = 1684234849
e (no) 1633883172 % 101 = 57

Key “abbc” also hashes to 57
0x61626263 = 1633837667
1633837667 % 101 = 57

Obvious point:

> * huge number of keys, small table: most collide! i
(Hashing: basic plan) (Hash function for long keys (strings))
Save keys in a table, at a location determined by the key Same function: h(K) = K mod M

KEY-INDEXED TABLE

Need multiprecision arithmetic calculation

HASH FUNCTION e Use Horner’'s method
e method for computing table index from key
COLLISION RESOLUTION STRATEGY Ex: (check with 4 chars; works for any length)
¢ algorithm and data structure to handle hex 6 1 6 2 6 3 6 4
two keys that hash to the same index asci i a b c d
Time-space tradeoff 0x61626364 = 256* (256* (256*97+98) +99) +100
* No space limitation:
trivial hash function with key as address take mod after ecach multiplication:
* No time limitation: 256*97+98 = 24930 % 101 = 84
trivial collision resolution: sequential search 256*84+99 = 21603 % 101 = 90
e Limitations on both time and space 256*90+100 = 23140 % 101 = 11

hashing

92 9-4

(String hash function implementation) (Collisions (continued))

int hash(char *v, int M Experiment
{ int h, a = 117; e generate random probes between o and ioo
for (h = 0; *v !=" "; v++) *84 35 45 32 89 1 ;838 69 5 9053 6 ...
h = (a*h + *v) %M « collision at 13th as predicted
return h;
} Experiment 2:

e use hash function to scatter 4-char keys
Scramble by replacing 256 by nz

bcba 47 ccad 1 baca 26 abad 4
Uniform hashing: bddc 43 bdac 83 dbch 24 cada
° use a different random value for ecach digit dabc dabb 84 dbab 17 dabd 86
dbdb 78 dcbd 60 dbdd 80
babb 74 bccec 2 addd 39
bcbd 50 adbc 31 bcda 55

collision after 20 probes

s o still as predicted (standard dev. not small) 7
(Collisions) (Separate chaining)
N keys, table size M Simple, practical, widely used
How many insertions until the first collision? Cuts search time by a factor of M over sequential secarch

Method: M linked lists, one for ecach table
BIRTHDAY PARADOX (classical probability theory)

e Assume hash function ‘random” 0: *
o Expected insertions to first collision (table size M): 1: L A A A *
M sqrt(pi M/2) 2: M X *
100 12 3: N C *
1000 40 4: *
10000 125 5: E P E E *
6: *
Option 11 Allow N » M 7 G R *
e put keys hashing to i in a list 8: H S *
e about N/M keys per list 9: I *
Option 2: Keep N < M 10: *
e put keys somewhere in table
9-6 9-8

e complex collision pattern

(Separate chaining analysis)

Insert cost: |
Avg. search cost (successful): N/2M
Avg. search cost (unsuccessful): N/M

Classical balls-and-urns “occupancy’ problem
» Probability that some list length is > +(N/M)
exponentially small in ¢
e Long lists unlikely PROVIDED hash is random
* [Analysis doesn't account for bugs or bad hashes]

M large: CONSTANT avg. search time
o independent of how keys are distributed (!)

Keep lists sorted?
e increases insert time to N/2M

e cuts unsuccessful search time to N/2M
9-9

(Linear Probing)

No links, keep everything in table

Method: start linear search at hash position
e (stop when empty position hit)

5till get O() avg. secarch time if table sparse
Very sparse table: like separate chaining

As table fills up: CLUSTERING occurs
o (infinite loop on full table)

Linear probing code

void STinit(int max)

{int i;

N =0, M= 2*max;
st = mall oc(Msizeof (Item);

for (i =0; i <M i++) st[i] = NULLitem
}
void STinsert(ltemitem
{ Key v = key(item;
int i = hash(v, M;
while (Tnull(i)) i = (i+1) %M
st[i] = item Nt+;
}

Item STsear ch(Key v)

{int i =

hash(v, M;

while (Tnull(i))

if eq(v,

el se

i = (i+1) %

return NULLi tem

key(st[i])) return st[i];

M

Linear probing example

TEREELL

U

uumuémmm

EECECLL

LeiLeneis

EECECLL

Lsienenes!
EECECLE

L

FEOCISIE

SEECCIEE

U

oY

o OEE

p
RO

SECCCLE

EECCCL L

ooy

ULy

L

e

AR Oy

\ﬂ\ﬂl!)l!)\!J\Jl!Jl:J_J\J

\ﬂ\ﬂ\ﬂl!)\!J\Jl!Jl:J_J\J

T A

s e

YOOy

(Linear probing analysis

CLUSTERING

e bad phenomenon: items clump together

e long clusters tend to get longer

* avg. search cost grows to M as table fills
Precise analysis very difficult.

THM (Knuth):
e Insert cost: approx. (1+ 1/(1-N/M)~2)/2
e Search cost (hit): approx. (1+ 1/(1I-N/M))/2
* Search cost (miss): same as insert

Too slow when table gets 70%-80% full

(Double Hashing

)

Avoid clustering by using 2nd hash to compute skip for search

u
uuummmmuumwuu
L

uu\huuwmm‘”uum oL
m\g__\\ﬂ
(. mmmuuﬂ\ﬂuuuwum
o
piuee

U
° \ﬂ\ﬂ\——“ﬂ\ﬂu
mmmmuummumuwuu
LU el

Liele
UL
OIS

s oL

uumumwmmmuu AR U
Liene!
Liieneneiss
RO
pueue
o
ERELICIE
ummuummwmummmm
m.
pueue LS
mmmmmmmmmmmum
U

LU

(Double Hashing analysis)

Extremely difficult

THM: (Guibas-5zemeredi) Nearly equivalent to random probe ideal

e Insert cost: approx. 1/(1-N/M)
e Search cost (hit): approx. In(1+N/M)/(N/M)
e Search cost (miss): same as insert

Not too slow until table gets go%-9g5% full

915

(Amortized analysis of algorithms)

Mecasure running time for X operations by
e (total cost of all X operations)/ X

Ex:
e insert N eclements in a heap:
(lgr + 192 + ... + IgN) / N = IgN + O()

Ex:
e insert N clements in a binomial queue:
(1xN/2 + 2xN/4 + 3*¥N/8 +..)/N £ 2

Worst case for a SEQUENCE of operations
e guarantee bound on TOTAL
(same as cost per operation)
¢ individual operation may be slow

(Dynamic hashing)

Hashing:
e grow table while keeping search cost O()
e when number of keys in table doubles
rebuild to double the size of the table

Ex: separate chaining
* avg search cost ¢ 2
* 4M keys in table of size M
o proof by induction: amortized cost < 2
cost to build: xx4M
cost to rebuild to new table size 2M: 4M
amortized cost of first 8M insertions:
(x*¥4M + 4M + gzM)/8M
x/2 + 1 { %
Same argument works for other basic ADTs!

Ex: stacks, queues in arrays, double hashing "

(Separate chaining vs. double hashing)

Space for separate chaining w/ rehashing
* 4M keys (or links to keys)
* M table links (approx same size as keys)
* 4M links in nodes
e Total space: gM words for 4M items
e Avg search time: 2

Double hashing in same space

* 4M items, table size 9gM

* avg secarch time: 1/(1-4/9) = 1.8 (10% faster)
Double hashing in same time

* 4M items, avg secarch time 2

* space needed: 8M words (1/(1-4/8) = 2) (n% less)

Separate chaining advantages
e idiot-proof (doesn't break)

* no large chunks of memory (is that good?) o8

(Other 5T ADT operations)

DELETION
e Separate chaining: trivial
e Linear probing: rehash keys in cluster
or use indirect method (see below)
e Double hashing: no easy direct method
mark deleted nodes as “"deadwood”
rebuild periodically to clear deadwood
SORT, FIND kth largest
e Separate chaining w/ sorted lists
e Linear probing/double hashing
have to do full sort
JOIN
e Separate chaining: ecasy
e Linear probing/double hashing:

rehash whole table
919

(Reasons not to use hashing)

Hashing achieve ST ADT implementation goal
e search and insert in constant time.

Why use anything else?
e no performance guarantee
e too much arithmetic on long keys
* takes extra space
* doesn’t support all ADT ops efficiently

* compare abstraction works for partial order
(searching without keys)

9-20

(Other hashing variants)

Perfect hashing

o fixed set of keys

* hash function with no collisions

e good hack for small tables

e not practical for large tables

e totally static
Coalesced hashing

e properly account for link space

e mix hash table, storage allocation
Ordered hashing

e cut costs in half as with ordered lists
Brent's variation

* guarantee constant search cost

cup to M insert cost

