
COS 226 Lecture 16: Geometric search

Extend search ADT to geometric data

PROBLEMS

 Range search

 Intersections among geometric objects

 Near neighbor search

 Point location

TWO-DIMENSIONAL

MULTIDIMENSIONAL

APPROACHES

 trees

 divide-and-conquer

 discretized algorithms

16.1

Range searching

Possible addition to symbol-table ADT:

 . void STinit();

 . void STinsert(Item x);

 . Item STsearch(Key v);

 . int STempty();

 . int STrange(Key v1, Key v2);

Options to actually process the records

 pass a procedure to call for each record in the range

 return list of records (possibly sorted)

Depends on how many records expected (count them first)

ARRAY implementation: do binary search on both keys

HASH TABLE implementation: no easy algorithm

BST, TRIE implementations: recursive traversal works
16.2

BST 1D range searching

Recursively search subtrees that COULD HAVE keys in interval

 root may or may not be in interval

 search BOTH subtrees if it is

 Key v1, v2; int count = 0;

 int BSTrangeR(link h)

 { int tx1 = (h->key >= v1);

 int tx2 = (h->key <= v2);

 if (tx1 && (h->l != z)) BSTrangeR(h->l);

 if (tx1 && tx2) count++;

 if (tx2 && (h->r != z)) BSTrangeR(h->r);

 }

16.3

2D Range searching

Same basic method works in higher dimensions (!!)

 discovered by an undergraduate

INTERVAL in 1D is RECTANGLE in 2D

2D TREE: alternate x and y

Recursively search subtrees that COULD HAVE keys in interval

 root may or may not be in rectangle

 search BOTH subtrees if it is

Corresponds to recursive subdivision of the plane

 alternating horizontal and vertical lines

kD tree: trivial generalization

16.4

2D tree example

Each EXTERNAL node corresponds to an area in the plane

Each INTERNAL node divides its area into two subdivisions

Switch between horizontal and vertical dividing lines

A
B

C
D

G H
I

J
M

E
O F

P K
L

N

A

B

C

D

E

F

G

H

I

J

K
L

M

N

O

P

Quad tree

 use 4-way tree (divide on both coordinates at once)

16.5

2D tree range searching

 int x1, y1, x2, y2, count = 0;

 TDTrangeR(link h, int d)

 { int t1,t2,tx1,tx2,ty1,ty2;

 if (h == z) return;

 tx1 = x1 < h->p.x; tx2 = h->p.x <= x2;

 ty1 = y1 < h->p.y; ty2 = h->p.y <= y2;

 t1 = d ? tx1 : ty1; t2 = d ? tx2 : ty2;

 if (t1 && (h->l != z)) TDTrangeR(h->l, !d);

 if (tx1 && tx2 && ty1 && ty2) count++;

 if (t2 && (h->r != z)) TDTrangeR(h->r, !d);

 }

16.6

Manhattan line intersection problem

N lines, all either horizontal or vertical

How many pairs intersect?

As with other search problems

 usually no harder to REPORT all intersections

 (call a given function for each)
16.7

Manhattan line intersection

Dynamic SWEEP LINE algorithm

Horizontal line sweeps from bottom to top

 vertical data line represents "point"

 horizontal data line represents "interval"

There is an h-v intersection if "point" is in "interval"

Reduces 2D line intersection problem to 1D range searching!
16.8

Sweep line implementation

Uses both PQ and ST (with range search) ADT

 PQ: get y coordinates in increasing order

 ST: range search on x coordinates for intersection

Three types of "events"

B: bottom of vertical line [INSERT x]

T: top of vertical line [DELETE x]

H: horizontal line [RANGE (x1, x2)]

Generalizes to give fast algorithms for

 rectangles, general lines, circles, convex polygons

Generalizes to higher dimensions

 "sweep hyperplane"

16.9

Near neighbor searching

Another possible addition to Search ADT:

. void STinit();

. void STinsert(Item x);

. Item STsearch(Key v);

. int STempty();

. Item STnearest(Key v);

Find the record with key value closest to v

Need a concept of "distance", not just "less"

 easy if keys are numbers, or points in space

ARRAY implementation: scan both ways after binary search

HASH TABLE implementation: no easy algorithm

BST, TRIE implementations: recursive traversal works
16.10

1D BST near neighbor searching

Recursively search subtrees that COULD HAVE near neighbor

 may search BOTH subtrees

 void BSTnear(link h)

 {

 if (h == z) return;

 if (dist(v, h->key) < min)

 { best = h; min = dist(v, best->key); }

 if (v < h->key || (v - h->key) < min)

 BSTnear(h->l);

 if (v > h->key || (h->key - v) < min)

 BSTnear(h->r);

 }

Multidimensional near neighbor searching:

 same algorithm on kD tree
16.11

Voronoi diagram

Given: set S of N points
point x’s Voronoi REGION:

 set of points closer to x than to any other y in S

Voronoi EDGES: perpendicular bisectors of point pairs
 intersect at centroids of point triple triangles

Voronoi DIAGRAM: union of Voronoi edges

Challenge to compute
 Representation?
 Degenerate cases?

16.12

Delaunay triagulation

Given: set S of N points
DELAUNAY TRIANGULATION

 edge x-y iff Voronoi edge separates x and y

Outer boundary is convex hull
Representation easier: no extra points

THM: Voronoi diagram and Delauney triangulation
can be computed in N log N steps (!!)

 divide and conquer
 sweep line
 randomize
 discretize 16.13

2D divide-and-conquer

Ex: CLOSEST PAIR algorithm

 sort on x

 divide into two sets of N/2 points

 find closest pair in each half

 find closest pair crossing boundary

Boundary check MUST be efficient (terminates recursion)

 sort on y to make boundary check easy

 y sort comes for free (!!)

Implementation: tricky exercise in recursion (see text) 16.14

Grid methods

Grids : geometric search :: tries : search ADT

Grid method

 define uniform grid of fixed-size squares

 put points in lists associated with squares

 ignore points in faraway grid squares

Time-space tradeoff like MSD sort

 grid too fine: empty cells

 grid too coarse: lists too long

Use 2- or 3-level grids, or recurse ala quad trees

16.15

Grid methods (continued)

Ex: range searching

A

B

C

D

E

F

G

H

I

J

K
L

M

N

O

P

For graphics applications

 ultimate grid is PIXEL ARRAY

 leads to "discretized algorithms"

16.16

Point location problem

Ex: find state corresponding to point on map

Planar subdivision

 2D tree planar decomposition

 N lines

 Voronoi diagram

 grid

 pixel array

Which division contains the given point?

Difficult in general

 if only because of difficulty of

 representing planar subdivisions

16.17

Discretized line intersection

p-by-p bit raster, p^2 pixels

N lines

Draw rasterized verson of line

 report intersection if pixel already 1

Cost:

 p^2 to initialize pixels to 0

 number of pixels on lines

Cost dominated by p^2

Line intersection same cost as drawing blank picture!

16.18

Discretized Voronoi diagram

put 1 pixels on a priority queue

priority: distance to closest point

ALGORITHM

 remove pixel from priority queue

 check all neighbor pixels

 if closer or same: ignore

 if farther: check pixel value

 if 0, set to 1 and put back on pq

 if 1, must be on a voronoi edge!

Time proportional to initialize plus product of

 number of pixels on diagram

 diameter of largest cell

Idea: refine discretized diagram to compute real diagram
16.19

