( COS 226 Lecture 16: Geometric search

Extend secarch ADT to geometric data

PROBLEMS
* Range search
* Intersections among geometric objects
e Near neighbor search
e Point location

TWO-DIMENSIONAL
MULTIDIMENSIONAL

APPROACHES
o trees
¢ divide-and-conquer
e discretized algorithms

( Range secarching

Possible addition to symbol-table ADT:

void STinit();
voi d STinsert(ltem x);
Item STsear ch(Key v);
int STenpty();
Gnt STrange(Key v1, Key VZ))

Options to actually process the records

* pass a procedure to call for each record in the range

e return list of records (possibly sorted)

Depends on how many records expected (count them first)

ARRAY implementation: do binary secarch on both keys

HASH TABLE implementation: no easy algorithm

BST, TRIE implementations: recursive traversal works

( BST 1D range searching )

Recursively search subtrees that COULD HAVE keys in interval
° root may or may not be in interval
e secarch BOTH subtrees if it is
Key v1, v2; int count = 0;
int BSTrangeR(link h)
{ int tx1 = (h->key >= vl1);
int tx2 = (h->key <= v2);
if (tx1 & (h->I !'= z)) BSTrangeR(h->l);
if (tx1l && tx2) count ++;
if (tx2 & & (h->r !'= z)) BSTrangeR(h->r);

}
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( 2D Range searching )

Same basic method works in higher dimensions (!)
e discovered by an undergraduate

INTERVAL in 1D is RECTANGLE in 2D

2D TREE: alternate x and y

Recursively search subtrees that COULD HAVE keys in interval
e root may or may not be in rectangle

e search BOTH subtrees if it is

Corresponds to recursive subdivision of the plane
 alternating horizontal and vertical lines

kD tree: trivial generalization
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( 2D tree example )

Each EXTERNAL node corresponds to an area in the plane
Each INTERNAL node divides its area into two subdivisions
Switch between horizontal and vertical dividing lines
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Quad tree

e use 4-way tree (divide on both coordinates at once)
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( 2D tree range secarching )

int x1, y1, x2, y2, count = 0;
TDTr angeR(link h, int d)
{ int t1,t2,tx1,tx2,tyl, ty2;

if (h ==2) return;
txl = x1 < h->p.x; tx2 = h->p.x <= x2;
tyl = yl < h->p.y; ty2 h->p.y <= y2;
tl =d ? tx1l: tyl; t2 =d ? tx2 : ty2;
if (t1 & (h->I !'= z)) TDIrangeR(h->l, !d);
if (txl && tx2 && tyl && ty2) count ++;
if (t2 & (h->r !'= z)) TDIrangeR(h->r, !d);
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( Manhattan line intersection problem )

N lines, all either horizontal or vertical
How many pairs intersect?
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As with other secarch problems
* usually no harder to REPORT all intersections
 (call a given function for each)

( Manhattan line intersection )

Dynamic SWEEP LINE algorithm

Horizontal line sweeps from bottom to top
e vertical data line represents “point”
e horizontal data line represents “interval”
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There is an h-v intersection if “point’ is in “interval”’

Reduces 2D line intersection problem to ID range secarching!
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( Sweep line implementation ) ( ID BST near neighbor secarching )

Uses both PQ and 5T (with range search) ADT Recursively search subtrees that COULD HAVE near neighbor

e PQ: get y coordinates in increasing order
e 5T: range search on x coordinates for intersection

Three types of “events”

B: bottom of vertical line [INSERT x]
T: top of vertical line [DELETE x]

H: horizontal line [RANGE (x), x2)]

Generalizes to give fast algorithms for

e rectangles, general lines, circles, convex polygons
Generalizes to higher dimensions

* "sweep hyperplane”
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( Near neighbor secarching )

Another possible addition to Search ADT:

void STinit();
void STinsert(ltemx);
Item STsearch(Key v);
int STenpty();
( It em STnear est ( Key VD

Find the record with key value closest to v

Need a concept of "distance”, not just “less”
* ecasy if keys are numbers, or points in space

ARRAY implementation: scan both ways after binary scarch
HASH TABLE implementation: no easy algorithm
BST, TRIE implementations: recursive traversal works
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e may search BOTH subtrees

voi d BSTnear (link h)

{
if (h ==2) return;
if (dist(v, h->key) < mn)
{ best = h; mn = dist(v, best->key); }
if (v < h->key || (v - h->key) < mn)
BSTnear (h->l);
if (v > h->key || (h->key - v) < mn)
BSTnear (h->r);
}

Multidimensional near neighbor searching:

* same algorithm on kD tree
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( Voronoi diagram )

Given: set 5 of N points
point x's Voronoi REGION:
e set of points closer to x than to any other y in 5

Voronoi EDGES: perpendicular bisectors of point pairs
e intersect at centroids of point triple triangles
Voronoi DIAGRAM: union of Voronoi edges

Challenge to compute
* Representation?
e Degenerate cases?
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( Delaunay triagulation )

Given: set 5 of N points
DELAUNAY TRIANGULATION
* edge x-y iff Voronoi edge separates x and y

Quter boundary is convex hull
Representation ecasier: no extra points

THM: Voronoi diagram and Delauney triangulation
can be computed in N log N steps (!)

 divide and conquer

e sweep line

e randomize

. . 6.
o discretize 13

( 2D divide-and-conquer )

Ex: CLOSEST PAIR algorithm
e sort on x
e divide into two sets of N/2 points
o find closest pair in ecach half
o find closest pair crossing boundary

Boundary check MUST be efficient (terminates recursion)
e sort on y to make boundary check casy
ey sort comes for free (!!)

Implementation: tricky exercise in recursion (see text) **

( Grid methods )

Grids : geometric search = tries : search ADT

Grid method
* define uniform grid of fixed-size squares
* put points in lists associated with squares
e ignore points in faraway grid squares

Time-space tradeoff like MSD sort
e grid too fine: empty cells
e grid too coarse: lists too long
Use 2- or 3-level grids, or recurse ala quad trees
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( Grid methods (continued) )

Ex: range searching
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For graphics applications
e ultimate grid is PIXEL ARRAY
e leads to "discretized algorithms”
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( Point location problem

Ex: find state corresponding to point on map

Planar subdivision
* 2D tree planar decomposition
* N lines
e Voronoi diagram
e grid
e pixel array

Which division contains the given point?

Difficult in general
if only because of difficulty of
representing planar subdivisions

( Discretized line intersection

p-by-p bit raster, p~2 pixels
N lines

Draw rasterized verson of line

e report intersection if pixel already

Cost:
e p*2 to initialize pixels to o
e number of pixels on lines

Cost dominated by p~2

Line intersection same cost as drawing blank picture!
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( Discretized Voronoi diagram

put 1 pixels on a priority queue
priority: distance to closest point

ALGORITHM
e remove pixel from priority queue
e check all neighbor pixels
if closer or same: ignore
if farther: check pixel value
if o, set to 1 and put back on pq
if 1, must be on a voronoi edge!

Time proportional to initialize plus product of
e number of pixels on diagram
e diameter of largest cell

ldea: refine discretized diagram to compute real diagram
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