(COS 226 Lecture 16: Geometric search

Extend secarch ADT to geometric data

PROBLEMS
* Range search
* Intersections among geometric objects
e Near neighbor search
e Point location

TWO-DIMENSIONAL
MULTIDIMENSIONAL

APPROACHES
o trees
¢ divide-and-conquer
e discretized algorithms

(Range secarching

Possible addition to symbol-table ADT:

void STinit();
voi d STinsert(ltem x);
Item STsear ch(Key v);
int STenpty();
Gnt STrange(Key v1, Key VZ))

Options to actually process the records

* pass a procedure to call for each record in the range

e return list of records (possibly sorted)

Depends on how many records expected (count them first)

ARRAY implementation: do binary secarch on both keys

HASH TABLE implementation: no easy algorithm

BST, TRIE implementations: recursive traversal works

(BST 1D range searching)

Recursively search subtrees that COULD HAVE keys in interval
° root may or may not be in interval
e secarch BOTH subtrees if it is
Key v1, v2; int count = 0;
int BSTrangeR(link h)
{ int tx1 = (h->key >= vl1);
int tx2 = (h->key <= v2);
if (tx1 & (h->I !'= z)) BSTrangeR(h->l);
if (tx1l && tx2) count ++;
if (tx2 & & (h->r !'= z)) BSTrangeR(h->r);

}
R o.-) .o s -.o] 16.3
(2D Range searching)

Same basic method works in higher dimensions (!)
e discovered by an undergraduate

INTERVAL in 1D is RECTANGLE in 2D

2D TREE: alternate x and y

Recursively search subtrees that COULD HAVE keys in interval
e root may or may not be in rectangle

e search BOTH subtrees if it is

Corresponds to recursive subdivision of the plane
 alternating horizontal and vertical lines

kD tree: trivial generalization

16.4

(2D tree example)

Each EXTERNAL node corresponds to an area in the plane
Each INTERNAL node divides its area into two subdivisions
Switch between horizontal and vertical dividing lines

N
S I
L

K

+P
H
D
M
B
Quad tree

e use 4-way tree (divide on both coordinates at once)

16.5

(2D tree range secarching)

int x1, y1, x2, y2, count = 0;
TDTr angeR(link h, int d)
{ int t1,t2,tx1,tx2,tyl, ty2;

if (h ==2) return;
txl = x1 < h->p.x; tx2 = h->p.x <= x2;
tyl = yl < h->p.y; ty2 h->p.y <= y2;
tl =d ? tx1l: tyl; t2 =d ? tx2 : ty2;
if (t1 & (h->I !'= z)) TDIrangeR(h->l, !d);
if (txl && tx2 && tyl && ty2) count ++;
if (t2 & (h->r !'= z)) TDIrangeR(h->r, !d);

_.l 16.6

(Manhattan line intersection problem)

N lines, all either horizontal or vertical
How many pairs intersect?

- ‘_1444'.7‘:“, ||
ﬁ__J4|_.L|_|J_i—=T__'j||—_|_ _E|I:|I'_'
- — n— _
=T =
'|'1l1-hT'—|l|'HT_UW= T

T _ —|_L|h| L_Em —_II_|: _|| l_lr_
g —|+|| II”=_ ==
E iy T
C = Ty S
L P e e T

As with other secarch problems
* usually no harder to REPORT all intersections
 (call a given function for each)

(Manhattan line intersection)

Dynamic SWEEP LINE algorithm

Horizontal line sweeps from bottom to top
e vertical data line represents “point”
e horizontal data line represents “interval”

LA — =y 2T !
hl-l.|| IL{—=%_||‘L'|‘L_—|-t -F|L|iI_JI
s e
e
T =755
I I:E", __'l—l'_: I_lr_
c — —"I’ __—J_|—_||u |
1 |II —|+|| III|=__=t_—_ ——00—00—0 00— 00—
aE gy
| | = Il —,_:_HI——I =
e L e e
i

There is an h-v intersection if “point’ is in “interval”’

Reduces 2D line intersection problem to ID range secarching!
16.8

(Sweep line implementation) (ID BST near neighbor secarching)

Uses both PQ and 5T (with range search) ADT Recursively search subtrees that COULD HAVE near neighbor

e PQ: get y coordinates in increasing order
e 5T: range search on x coordinates for intersection

Three types of “events”

B: bottom of vertical line [INSERT x]
T: top of vertical line [DELETE x]

H: horizontal line [RANGE (x), x2)]

Generalizes to give fast algorithms for

e rectangles, general lines, circles, convex polygons
Generalizes to higher dimensions

* "sweep hyperplane”

16.9

(Near neighbor secarching)

Another possible addition to Search ADT:

void STinit();
void STinsert(ltemx);
Item STsearch(Key v);
int STenpty();
(It em STnear est (Key VD

Find the record with key value closest to v

Need a concept of "distance”, not just “less”
* ecasy if keys are numbers, or points in space

ARRAY implementation: scan both ways after binary scarch
HASH TABLE implementation: no easy algorithm
BST, TRIE implementations: recursive traversal works

1610

e may search BOTH subtrees

voi d BSTnear (link h)

{
if (h ==2) return;
if (dist(v, h->key) < mn)
{ best = h; mn = dist(v, best->key); }
if (v < h->key || (v - h->key) < mn)
BSTnear (h->l);
if (v > h->key || (h->key - v) < mn)
BSTnear (h->r);
}

Multidimensional near neighbor searching:

* same algorithm on kD tree
160

(Voronoi diagram)

Given: set 5 of N points
point x's Voronoi REGION:
e set of points closer to x than to any other y in 5

Voronoi EDGES: perpendicular bisectors of point pairs
e intersect at centroids of point triple triangles
Voronoi DIAGRAM: union of Voronoi edges

Challenge to compute
* Representation?
e Degenerate cases?

16,12

(Delaunay triagulation)

Given: set 5 of N points
DELAUNAY TRIANGULATION
* edge x-y iff Voronoi edge separates x and y

Quter boundary is convex hull
Representation ecasier: no extra points

THM: Voronoi diagram and Delauney triangulation
can be computed in N log N steps (!)

 divide and conquer

e sweep line

e randomize

. . 6.
o discretize 13

(2D divide-and-conquer)

Ex: CLOSEST PAIR algorithm
e sort on x
e divide into two sets of N/2 points
o find closest pair in ecach half
o find closest pair crossing boundary

Boundary check MUST be efficient (terminates recursion)
e sort on y to make boundary check casy
ey sort comes for free (!!)

Implementation: tricky exercise in recursion (see text) **

(Grid methods)

Grids : geometric search = tries : search ADT

Grid method
* define uniform grid of fixed-size squares
* put points in lists associated with squares
e ignore points in faraway grid squares

Time-space tradeoff like MSD sort
e grid too fine: empty cells
e grid too coarse: lists too long
Use 2- or 3-level grids, or recurse ala quad trees

16.15

(Grid methods (continued))

Ex: range searching

. o o
oK 2

oC

For graphics applications
e ultimate grid is PIXEL ARRAY
e leads to "discretized algorithms”

16.16

(Point location problem

Ex: find state corresponding to point on map

Planar subdivision
* 2D tree planar decomposition
* N lines
e Voronoi diagram
e grid
e pixel array

Which division contains the given point?

Difficult in general
if only because of difficulty of
representing planar subdivisions

(Discretized line intersection

p-by-p bit raster, p~2 pixels
N lines

Draw rasterized verson of line

e report intersection if pixel already

Cost:
e p*2 to initialize pixels to o
e number of pixels on lines

Cost dominated by p~2

Line intersection same cost as drawing blank picture!

1847

16.18

(Discretized Voronoi diagram

put 1 pixels on a priority queue
priority: distance to closest point

ALGORITHM
e remove pixel from priority queue
e check all neighbor pixels
if closer or same: ignore
if farther: check pixel value
if o, set to 1 and put back on pq
if 1, must be on a voronoi edge!

Time proportional to initialize plus product of
e number of pixels on diagram
e diameter of largest cell

ldea: refine discretized diagram to compute real diagram

16.19

