
COS 226 Lecture 15: Geometric algorithms   

Important applications involve geometry

  models of physical world

  computer graphics

  mathematical models

Ancient mathematical foundations

Most geometric algorithms less than 25 years old

Knowledge of fundamental algorithms is critical

  use them directly

  use the same design strategies

  know how to compare and evaluate algs

15.1

Warning: intuition may mislead     

Humans have spatial intuition in 2D and 3D

  computers do not!

  neither have good intuition in high dimensions

Ex: Is a polygon convex?    

we think of this   alg sees this   or even this

15.2

Warning: intuition may mislead (continued)    

Ex: Find intersections among set of rectangles  

  we think of this       algorithm sees this

15.3

Geometric algorithms: overview      

New primitives

  points, lines, planes; polygons, circles

Primitive operations

  distance, angles

  "compare" point to line

  do two line segments intersect?

Problems extend to higher dimensions

  (algorithms sometimes do, sometimes don’t)

Higher level intrinsic structures arise

Basic problems

  intersection

  proximity

  point location

  range search
15.4



Approaches to solving geometric problems    

  incremental (brute-force)

  divide-and-conquer

  sweep-line algs

  multidimensional tree structures

  randomized algs

  discretized algorithms

  online and dynamic algs

15.5

Algorithm design paradigms      

Draw from knowledge about fundamental algs

Move up one level of abstraction

  use fundamental algs and data structures

  know their performance characterisitics

More primitives lead to wider range of problems

Some problems too complex to admit simple algorithms

 

For many important problems

  classical approaches give good algorithms

  need research to find "best" algorithms

  no excuse for using "dumb" algorithms

15.6

Algorithm design paradigms (continued)     

Progression of algorithm design (oversimplified)

  all possibilities    double recursion     2^N

  brute force          nested for loops     N^2

  divide-and-conquer   recursion, trees   N log N

  elegant idea         1 "for" loop          N

  randomization        random choices        N

Many examples in geometric algorithms

15.7

Geometric primitives (2D)      

POINT       

    two numbers (x, y)

LINE       

    two numbers a and b [ax + by = 1]

LINE SEGMENT      

    four numbers (x1, y1) (x2, y2)

POLYGON       

    sequence of points

No shortage of other geometric shapes

TRIANGLE       

SQUARE       

CIRCLE       

  3D and higher dimensions more complicated
15.8



Building algorithms from geometric primitives    

First, need good implementations of primitives!

  is polygon simple?

  is point on line?

  is point inside polygon?

  do two line segments intersect?

  do two polygons intersect?

Algorithms search through SETS of primitives

  all points in specified range

  closest pair in set of points

  intersecting pairs in set of line segments

  overlapping areas in set of polygons

15.9

Line segment intersection      

Do two line segments intersect?

To implement INTERSECT(l1, l2)

  use simpler primitive SAME(p1, p2, l):

    Given two points p1, p2 and a line l,

    are p1 and p2 on the same side of l?

To implement SAME

  use simpler primitive CCW(p1, p2, p3):

    Given three points p1, p2, p3,

    is the route p1-p2-p3 a ccw turn?

two ccw tests to implement SAME

four ccw tests to implement INTERSECT

15.10

CCW implementation       

compare slopes

  less:

  greater: 

  equal: points are collinear

  #typedef struct point POINT

  int ccw(POINT p0, POINT p1, POINT p2)

    {

      int dx1, dx2, dy1, dy2;

      dx1 = p1.x - p0.x; dy1 = p1.y - p0.y;

      dx2 = p2.x - p0.x; dy2 = p2.y - p0.y;

      if (dx1*dy2 > dy1*dx2) return 1;

      if (dx1*dy2 < dy1*dx2) return -1;

      return 0;

    }

15.11

CCW implementation (continued)      

Still not quite right! Bug in degenerate case

  four collinear points

  Does AB intersect CD?

    on the line in the order ABCD: NO

    on the line in the order ACDB: YES

Can’t just return 0 if dx1*dy2 = dx2*dy1 (see book)

CCW is an important basic primitive

Ex: is point inside convex N-gon? N CCW tests

Lesson: 

  geometric primitives are tricky to implement

  can’t ignore degenerate cases

15.12



Convex hull of a point set   

Basic property of a set of points

CONVEX HULL:

  smallest convex polygon enclosing the points

  shortest fence surrounding the points

  intersection of halfplanes defined by point pairs

Running time of algorithm can depend on

  N: number of points

  M: number of points on the hull

  point distribution
15.13

Package-wrap algorithm       

Operates like selection sort

Abstract idea

  sweep line anchored at current point CCW

  first point hit is on hull

Implementation

  compute angle to all points

  pick smallest angle larger than current one

15.14

Package-wrap implementation       

  int wrap(POINT p[], int N)

    { int i, min, M; float th, v; struct point t;

      for (min = 0, i = 1; i < N; i++)

        if (p[i].y < p[min].y) min = i;

      p[N] = p[min]; th = 0.0;

      for (M = 0; M < N; M++)

      {

        t = p[M]; p[M] = p[min]; p[min] = t;

        min = N; v = th; th = 360.0;

        for (i = M+1; i <= N; i++)

          if (theta(p[M], p[i]) > v)

            if (theta(p[M], p[i]) < th)

            { min = i; th = theta(p[M], p[min]);}

        if (min == N) return M;

      }

    }

Use pseudo-angle theta to save time (see text) 15.15

Package-wrap example       

B
M

L
N

E

O

B
M

L
N

E

O

G

B
M

L
N

E

O

G

D

B
M

L

B
M

L
N

B
M

L
N

E

A

B

C

D

E

F

G
H

I
J

K
L

M

N

O
P

B B
M

15.16



Graham Scan       

Sort points on angle with bottom point as origin
  forms simple closed polygon

Proceed through polygon
  discard points that would cause a CW turn

  int grahamscan(struct point p[], int N)

    { int i, min, M; struct point t;

      for (min = 1, i = 2; i <= N; i++)

        if (p[i].y < p[min].y) min = i;

      for (i = 1; i <= N; i++)

        if (p[i].y == p[min].y)

          if (p[i].x > p[min].x) min = i;

      t = p[1]; p[1] = p[min]; p[min] = t;

      quicksort(p, 1, N);

      p[0] = p[N];

      for (M = 3, i = 4; i <= N; i++)

        {

          while (ccw(p[M],p[M-1],p[i]) >= 0) M--;

          M++; t = p[M]; p[M] = p[i]; p[i] = t;

        }

      return M;

}

15.17

Graham scan example      

B
M

L
N

E

O

A

H

B
M

L
N

E

O

G

B
M

L
N

E

O

G

D

B
M

L
N

E

C

B
M

L
N

E

O

B
M

L
N

E

O

A

B
M

L
N

K
F

B
M

L
N

K
F

I

B
M

L
N

E

B
M

L
N

B
M

L
N

P

B
M

L
N

K

15.18

Divide-and-conquer convex hull algorithms     

divide points

divide space

15.19

Incremental convex hull algorithm     

Consider next point
  if inside hull of previous points, ignore
  if outside, update hull

Two subproblems to solve
  test if point inside or outside polygon
  update hull for outside points

Both subproblems
  can be solved by looking at all hull points
  can be improved with binary search

Randomized algorithm
  consider points in random order
  N + M log M 15.20



"Sweep line" convex hull algorithm    

Sort points on x-coordinate first

Eliminates "inside" test

Total time proportional to N log N (for sort)

15.21

Quick elimination       

Improve the performance of any convex hull

  algorithm by quickly eliminating most

  points (known not to be on the hull)

Use points at "corners":  max, min x+y, x-y

Check if point inside quadrilateral: four CCW tests

Check if point inside rectangle: four comparisons

Almost all points eliminated if points random

  number of points left proportional to N^(1/2)

LINEAR algorithm      15.22

Summary of 2D convex hull algs   

Package wrap    
  NM

Graham scan
  N log N (sort time)

Divide-and-conquer
  N log N (with work)

Quick elimination
  N (fast average-case)

One-by-one elimination
  N log M

Sweep line
  N log N (sort time)

How many points on the hull?
Worst case: N
Average case: depends on distribution

  uniform in a convex polygon: log N
  uniform in a circle: N^(1/3)

requires understanding of basic properties of DATA 15.23

Higher dimensions       

Multifaceted (convex) polytope encloses points

NOT a simple object

Ex: N points d dimensions    

  d=2: convex hull

  d=3: Euler’s formula (v - e + f = 2)

  d>3: exponential number of facets at worst

EXTREME POINTS

  return points on the hull, not necc in order

Package-wrap

Divide-and-conquer

Randomized

Interior elimination
15.24



Geometric models of mathematical problems    

Impact of geometric algs extends far beyond physical models

Geometric problem

  find point where two lines intersect in 2D

  find point where three planes intersect in 3D

Mathematical equivalent

  solve simultaneous equations

  algorithm: gaussian elimination

 

Geometric problem

  find convex polytope defined by intersecting half-planes

  find vertex hit by line of given slope moving in from infinity

Mathematical equivalent

  LINEAR PROGRAMMING

  algorithm: SIMPLEX (stay tuned)

15.25

Linear programming example      

Maximize a+b subject to the constraints

  b - a  < 5

  a + 4b < 45

  2a + b < 27

  3a - 4b < 24

  a  > 0

  b  > 0
x

x

2

1
(0,0)

(0,5)

(5,10)
(9,9)

(12,3)

(8,0)

15.26


