(CO5 226 Lecture 15: Geometric algorithms)

Important applications involve geometry
* models of physical world
e computer graphics
* mathematical models

Ancient mathematical foundations
Most geometric algorithms less than 25 years old

Knowledge of fundamental algorithms is critical
e use them directly
e use the same design strategies
* know how to compare and evaluate algs

(Warning: intuition may mislead)

Humans have spatial intuition in 2D and 3D
e computers do not!
e neither have good intuition in high dimensions

Ex: Is a polygon convex?

we think of this alg sees this or even this

(Warning: intuition may mislead (continued))

Ex: Find intersections among set of rectangles

e we think of this algorithm seces this

153

(Geometric algorithms: overview)

New primitives

e points, lines, planes; polygons, circles
Primitive operations

» distance, angles

* “compare’ point to line

* do two line segments intersect?

Problems extend to higher dimensions
* (algorithms sometimes do, sometimes don't)
Higher level intrinsic structures arise

Basic problems
e intersection
o proximity
e point location
e range search

15.4

(Approaches to solving geometric problems)

e incremental (brute-force)

e divide-and-conquer

* sweep-line algs

e multidimensional tree structures
e randomized algs

e discretized algorithms

 online and dynamic algs

155

(Algorithm design paradigms)

Draw from knowledge about fundamental algs
Move up one level of abstraction
* use fundamental algs and data structures
* know their performance characterisitics

More primitives lead to wider range of problems
Some problems too complex to admit simple algorithms

For many important problems
¢ classical approaches give good algorithms
e need research to find "best” algorithms
* no excuse for using "dumb’ algorithms

15.6

(Algorithm design paradigms (continued))

Progression of algorithm design (oversimplified)

all possibilities doubl e recursion
brute force nested for | oops
di vi de- and- conquer recursion, trees
el egant idea 1 "for" |oop
randoni zati on random choi ces

Many examples in geometric algorithms

2°N
N2
N log N
N
N

15.7

(Geometric primitives (2D)

POINT
two numbers (x, y)
LINE

two numbers a and b [ax + by =

LINE SEGMENT

four numbers (x1, y1) (x2, y2)
POLYGON

sequence of points

No shortage of other geometric shapes
TRIANGLE

SQUARE

CIRCLE

1]

* 3D and higher dimensions more complicated

15.8

(Building algorithms from geometric primitives)

First, neced good implementations of primitives!
e is polygon simple?
* is point on line?
e is point inside polygon?
e do two line segments intersect?
e do two polygons intersect?

Algorithms search through SETS of primitives
e all points in specified range
* closest pair in set of points
e intersecting pairs in set of line segments
e overlapping areas in set of polygons

5.9

(Line segment intersection)

Do two line segments intersect?

To implement INTERSECT(h, l2)
° use simpler primitive SAME(p), p2, I):
Given two points pi, p2 and a line |,
are pi and p2 on the same side of 1?

To implement SAME
° use simpler primitive CCW(p1, p2, p3):
Given three points pi, p2, p3,
is the route piI-p2-p3 a ccw turn?

two ccw tests to implement SAME
four ccw tests to implement INTERSECT

15.10

(CCW implementation)

compare slopes
e less:
° greater:
* equal: points are collinear
#t ypedef struct point PO NT
int ccw(PONT p0, PONT pl, PO NT p2)

{
int dx1, dx2, dyl, dy2;
dx1 = pl.x - p0.x; dyl = pl.y - pO.y;
dx2 = p2.x - p0.x; dy2 = p2.y - p0.y;

i f (dx1*dy2 > dyl*dx2) return 1;
if (dxl*dy2 < dyl*dx2) return -1;
return O;

151

(CCW implementation (continued))

Still not quite right! Bug in degenerate case

o four collinear points

* Does AB intersect CD?
on the line in the order ABCD: NO
on the line in the order ACDB: YES

Can't just return o if dxixdyz = dxa*dy (see book)

CCW is an important basic primitive
Ex: is point inside convex N-gon? N CCW tests

Lesson:
e geometric primitives are tricky to implement
e can't ignore degenerate cases

1502

(Convex hull of a point set)

Basic property of a set of points

CONVEX HULL:
* smallest convex polygon enclosing the points
e shortest fence surrounding the points
e intersection of halfplanes defined by point pairs

Running time of algorithm can depend on
* N: number of points
* M: number of points on the hull

e point distribution
1513

(Package-wrap algorithm)

Operates like sclection sort

Abstract idea
* sweep line anchored at current point CCW
o first point hit is on hull

Implementation

e compute angle to all points
e pick smallest angle larger than current one

15.14

(Package-wrap implementation

int wap(PONT p[], int N
{int i, min, M float th, v; struct point t;
for (mMin=20, i =1; i <N, i++)
if (pli]l.y <p[nmnl.y) mn=i;
P[Nl = p[mn]; th = 0.0;
for (M= 0; M< N M+
{
t =p[M; p[M = p[nin]; p[mn] =t;
min=N v =th, th = 360.0;
for (i = ML, i <= N, i++)
if (theta(p[M, p[i]) > V)
if (theta(p[M, p[i]) < th)
{ min=1i; th =theta(p[M, p[nmin]);}
if (mMn == return M

}

Use pscudo-angle theta to save time (see text)

(Package-wrap example

15.15

15.16

(Graham Scan)

Sort points on angle with bottom point as origin
o forms simple closed polygon

Proceed through polygon
» discard points that would cause a CW turn

int grahanscan(struct point p[], int N)
{int i, min, M struct point t;
for (min=1, i =2; i <= N i++)
if (pli]l.y <p[mn].y) nin=i;
for (i =1; i <= N i++4)
if (plil.y == p[mn].y)
if (p[i].x >p[mn].x) mn
t =p[1]; p[1] = p[mn]; p[nn]
qui cksort(p, 1, N);

1
—

p[O] = p[N;
for (M= 3, i =4; i <= N i++)
{
while (ccw(p[M,p[M1],p[i]) >= 0) M-;
Me+ t = p[M; p[M = p[i]; p[i] =t;
}
return M 57
}
(Graham scan example)

1518

(Divide-and-conquer convex hull algorithms)

divide points

divide space

o .

(Incremental convex hull algorithm)

Consider next point
o if inside hull of previous points, ignore
e if outside, update hull

Two subproblems to solve
e test if point inside or outside polygon
* update hull for outside points
Both subproblems
e can be solved by looking at all hull points
e can be improved with binary search
Randomized algorithm
e consider points in random order
* N+ Mlog M e

("Sweep line” convex hull algorithm)

Sort points on x-coordinate first

Eliminates ‘inside'’ test

Total time proportional to N log N (for sort)

15.21

(Quick elimination)

Improve the performance of any convex hull
* algorithm by quickly eliminating mos+t
e points (known not to be on the hull)
Use points at ‘corners’: max, min x+y, x-y

Check if point inside quadrilateral: four CCW tests
Check if point inside rectangle: four comparisons

Almost all points climinated if points random
e number of points left proportional to N~(1/2)
LINEAR algorithm 52

(Summary of 2D convex hull algs)

Package wrap

« NM
Graham scan

* N log N (sort time)
Divide-and-conquer

* N log N (with work)
Quick eclimination

* N (fast average-case)
One-by-one climination

*Nlog M
Sweep line

*N log N (sort time)

How many points on the hull?
Worst case: N
Average case: depends on distribution
e uniform in a convex polygon: log N
o uniform in a circle: N~(1/3)
requires understanding of basic properties of DATA 23

(Higher dimensions)

Multifaceted (convex) polytope encloses points
NOT a simple object

Ex: N points d dimensions
* d=2: convex hull
e d=3: Euler's formula (v - ¢ + f = 2)
* d73: exponential number of facets at worst

EXTREME POINTS
e return points on the hull, not necc in order

Package-wrap
Divide-and-conquer
Randomized

Interior eclimination
15-24

(Geometric models of mathematical problems)

Impact of geometric algs extends far beyond physical models

Geometric problem

» find point where two lines intersect in 2D

o find point where three planes intersect in 3D
Mathematical equivalent

* solve simultancous ecquations

* algorithm: gaussian climination

Geometric problem

o find convex polytope defined by intersecting half-planes

e find vertex hit by line of given slope moving in from infinity
Mathematical equivalent

* LINEAR PROGRAMMING

e algorithm: SIMPLEX (stay tuncd)

15.25

(Linear programming example)

Maximize a+b subject to the constraints
eb-a (g
ea + 4b < 45
e2a + b € 27
e3a - 4b € 24
ea J)o
eb Yo

(0, 5)

(0, 0)

15.26

