COS 226 Lecture 15: Geometric algorithms

Important applications involve geometry

- models of physical world
- computer graphics
- mathematical models

Ancient mathematical foundations
Most geometric algorithms less than 25 years old

Knowledge of fundamental algorithms is critical

- use them directly
- use the same design strategies
- know how to compare and evaluate algs

Warning: intuition may mislead

Humans have spatial intuition in 2D and 3D

- computers do not!
- neither have good intuition in high dimensions

Ex: Is a polygon convex?
we think of this alg sees this or even this

Warning: intuition may mislead (continued)

Ex: Find intersections among set of rectangles

- we think of this algorithm sees this

Geometric algorithms: overview

New primitives

- points, lines, planes; polygons, circles

Primitive operations

- distance, angles
- "compare" point to line
- do two line segments intersect?

Problems extend to higher dimensions

- (algorithms sometimes do, sometimes don't)

Higher level intrinsic structures arise

Basic problems

- intersection
- proximity
- point location
- range search
- incremental (brute-force)
- divide-and-conquer
- sweep-line algs
- multidimensional tree structures
- randomized algs
- discretized algorithms
- online and dynamic algs

Algorithm design paradigms

Draw from knowledge about fundamental algs Move up one level of abstraction

- use fundamental algs and data structures
- know their performance characterisitics

More primitives lead to wider range of problems some problems too complex to admit simple algorithms

For many important problems

- classical approaches give good algorithms
- need research to find "best" algorithms
- no excuse for using "dumb" algorithms

Progression of algorithm design (oversimplified)

all possibilities	double recursion	$2^{\wedge} N$
brute force	nested for loops	$\mathbf{N}^{\wedge} 2$
divide-and-conquer	recursion, trees	N
$\log N$		
elegant idea	1 "for" loop	N
randomization	random choices	N

Many examples in geometric algorithms

POINT

```
        two numbers ( }x,y\mathrm{ )
```

LINE
two numbers a and $b[a x+b y=1]$
LINE SEGMENT
four numbers $(x 1, y 1)\left(x_{2}, y_{2}\right)$
POLYGON
sequence of points
No shortage of other geometric shapes
TRIANGLE
SQUARE
CIRCLE

```
First, need good implementations of primitives!
    - is polygon simple?
    - is point on line?
    - is point inside polygon?
    - do two line segments intersect?
    - do two polygons intersect?
Algorithms search through SETS of primitives
    - all points in specified range
    - closest pair in set of points
    - intersecting pairs in set of line segments
    - overlapping areas in set of polygons
```


CCW implementation (continued)

Still not quite right! Bug in degenerate case

- four collinear points
- Does AB intersect CD?
on the line in the order $A B C D: N O$
on the line in the order $A C D B$: YES

Can't just return \circ if $d x_{1} * d y_{2}=d x_{2} * d y 1$ (see book)

CCW is an important basic primitive
Ex: is point inside convex N-gon? N CCW tests

Lesson:

- geometric primitives are tricky to implement
- can't ignore degenerate cases
two cew tests to implement SAME
four cew tests to implement INTERSECT

```
compare slopes
    - less:
    - greater:
    - equal: points are collinear
#typedef struct point POINT
int ccw(POINT p0, POINT p1, POINT p2)
    {
        int dx1, dx2, dy1, dy2;
        dx1 = p1.x - p0.x; dy1 = p1.y - p0.y;
        dx2 = p2.x - p0.x; dy2 = p2.y - p0.y;
        if (dx1*dy2 > dy1*dx2) return 1;
        if (dx1*dy2 < dy1*dx2) return -1;
        return 0;
    }
```

To implement INTERSECT $(1,12)$
- use simpler primitive SAME(p1, $\left.p_{2}, 1\right)$:
Given two points pl, P^{2} and a line 1 ,
are p_{1} and p_{2} on the same side of I ?
To implement SAME
- use simpler primitive $C C W\left(p_{1}, p_{2}, p_{3}\right)$:
Given three points $p 1, p_{2}, P_{3}$,
is the route p1-p2-p3 a cow turn?

Basic property of a set of points

CONVEX HULL:

- smallest convex polygon enclosing the points
- shortest fence surrounding the points
- intersection of halfplanes defined by point pairs

Running time of algorithm can depend on

- N : number of points
- M: number of points on the hull
- point distribution

Package-wrap algorithm

Package-wrap example

Operates like selection sort

Abstract idea

- sweep line anchored at current point CCW
- first point hit is on hull

Implementation

- compute angle to all points
- pick smallest angle larger than current one

```
int wrap(POINT p[], int N)
    { int i, min, M; float th, v; struct point t;
        for (min = 0, i = 1; i < N; i++)
            if (p[i].y< p[min].y) min = i;
        p[N] = p[min]; th = 0.0;
        for (M = 0; M < N; M++)
    {
        t = p[M]; p[M] = p[min]; p[min] = t;
        min = N; v = th; th = 360.0;
        for (i = M+1; i <= N; i++)
            if (theta(p[M], p[i]) > v)
            if (theta(p[M], p[i]) < th)
            { min = i; th = theta(p[M], p[min]);}
        if (min == N) return M;
    }
    }
Use pseudo-angle theta to save time (see text)
```

.B • • . B-M $_{\text {M }}$

Sort points on angle with bottom point as origin

- forms simple closed polygon

Proceed through polygon

- discard points that would cause a CW turn

```
int grahamscan(struct point p[], int N)
    { int i, min, M; struct point t;
        for (min = 1, i = 2; i <= N; i++)
            if (p[i].y<p[min].y) min = i;
    for (i = 1; i <= N; i++)
            if (p[i].y == p[min].y)
                if (p[i].x > p[min].x) min = i;
    t = p[1]; p[1] = p[min]; p[min] = t;
```

 quicksort (\(\mathrm{p}, 1, \mathrm{~N}\));
 \(\mathrm{p}[\mathrm{O}]=\mathrm{p}[\mathrm{N}]\);
 for \((M=3, i=4 ; i<=N ; i++)\)
 \{
 while (ccw (p[M],p[M-1],p[i]) >=0) M--;
 \(\mathrm{M}++; \mathrm{t}=\mathrm{p}[\mathrm{M}] ; \mathrm{p}[\mathrm{M}]=\mathrm{p}[\mathrm{i}] ; \mathrm{p}[\mathrm{i}]=\mathrm{t}\);
 \}
 return \(M\);

divide points

divide space

Consider next point

- if inside hull of previous points, ignore
- if outside, update hull

Two subproblems to solve

- test if point inside or outside polygon
- update hull for outside points

Both subproblems

- can be solved by looking at all hull points
- can be improved with binary search

Randomized algorithm

- consider points in random order
- $N+M \log M$

Sort points on x-coordinate first

Eliminates "inside" test

Total time proportional to $N \log N($ for sort)

Quick elimination

Improve the performance of any convex hull

- algorithm by quickly eliminating most
- points (known not to be on the hull)

Use points at "corners': max, min $x+y, x-y$

Check if point inside quadrilateral: four CCW tests Check if point inside rectangle: four comparisons

Almost all points eliminated if points random

- number of points left proportional to $N \wedge(1 / 2)$

LINEAR algorithm

```
Package wrap
    - NM
Graham scan
    - N log N (sort time)
Divide-and-conquer
    - N log N (with work)
Quick climination
    -N (fast average-case)
One-by-one elimination
    -N log M
Sweep line
    -N log N (sort time)
How many points on the hull?
Worst case: N
Average case: depends on distribution
    - uniform in a convex polygon: }\operatorname{log}
    - uniform in a circle: N^(1/3)
requires understanding of basic properties of DATA

\section*{Higher dimensions}

Multifaceted (convex) polytope encloses points
```

NOT a simple object

```
Ex: \(\mathbf{N}\) points \(d\) dimensions
    - \(d=2\) : convex hull
    - \(d=3\) : Euler's formula \((v-c+f=2)\)
    - d)3: exponential number of facets at worst
EXTREME POINTS
    - return points on the hull, not nece in order
Package-wrap
Divide-and-conquer
Randomized
Interior elimination

\section*{Geometric models of mathematical problems}

Impact of geometric algs extends far beyond physical models

Geometric problem
- find point where two lines intersect in 2D
- find point where three planes intersect in 3D

Mathematical equivalent
- solve simultaneous equations
- algorithm: gaussian elimination

\section*{Geometric problem}
- find convex polytope defined by intersecting half-planes
- find vertex hit by line of given slope moving in from infinity

Mathematical equivalent
- LINEAR PROGRAMMING
- algorithm: SIMPLEX (stay tuned)

\section*{Linear programming example}

Maximize \(a+b\) subject to the constraints
- \(b-a<5\)
- \(a+4 b<45\)
- \(2 a+b<27\)
- \(3 a-4 b<24\)
- \(a>0\)
-b>0
```

