
COS 226 Lecture 21: Network Flow

Classical problem-solving model (1940s)

OPERATIONS RESEARCH

Modern implementations benefit from

 Graph algorithm technology

 PQ and data structure design

Researchers still seek efficient algorithms

 many variations

 many practical applications

Optimal solutions still not known

21.1

Network flow

NETWORK: weighted digraph

Abstraction for material FLOWING through the edges

 interpret edge weights as CAPACITIES

Ex: oil flowing in pipes

Ex: commodities flowing on roads and rails

Ex: bits flowing in Internet

SOURCE: node where all material originates

SINK: node where all material goes

MAXFLOW PROBLEM: assign flows to edges that

 equalize inflow and outflow at every vertex

 maximize total flow through the network

21.2

Flow network example

0

1 2

3 4

5

 cap
0-1 2
0-2 3
1-3 3
1-4 1
2-3 1
2-4 1
3-5 2
4-5 3

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap flow
0-1 2 2
0-2 3 2
1-3 3 1
1-4 1 1
2-3 1 1
2-4 1 1
3-5 2 2
4-5 3 2

21.3

Increasing flow in a network

AUGMENTING PATH: source-sink path for increasing flow

Easy case:

 ADD flow to each

 edge on the path

Ex: 0-1-3-5, then 0-2-4-5

More complicated case:

 REMOVE flow from

 one or more edges

Ex: 0-2-3-1-4-5

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

11

33

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

11

33

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

11

33

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap flow
0-1 2 2
0-2 3 2
1-3 3 2
1-4 1 1*
2-3 1 1*
2-4 1 1*
3-5 2 2
4-5 3 2*

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap flow
0-1 2 2*
0-2 3 1
1-3 3 2
1-4 1 0
2-3 1 0
2-4 1 1*
3-5 2 2
4-5 3 1

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap flow
0-1 2 2*
0-2 3 0
1-3 3 2
1-4 1 0
2-3 1 0
2-4 1 0
3-5 2 2
4-5 3 0

21.4

Ford-Fulkerson algorithm

GENERIC method for solving maxflow problems

start with 0 flow everywhere

REPEAT until no augmenting paths are left

 increase the flow along ANY augmenting path

Problem 0:

 Does this process lead to the maximum flow?

Problem 1: fill in unspecified details

 How do we find an augmenting path?

Problem 2:

 Cost can be proportional to max capacity

21.5

Bad case for generic FF

BAD NEWS

 number of augmenting paths could be huge

 proportional to max edge capacity!

00

11 22

33

00

11 22

33

00

11 22

33

 cap flow
0-1 X X*
0-2 X 0
1-2 1 0
1-3 X X*
2-3 X 0

00

11 22

33

00

11 22

33

00

11 22

33

 flow
0-1 X*
0-2 X*
1-2 0
1-3 X*
2-3 X*

00

11 22

33

00

11 22

33

00

11 22

33

 cap flow
0-1 X 1
0-2 X 0
1-2 1 1*
1-3 X 0
2-3 X 1

00

11 22

33

00

11 22

33

00

11 22

33

 flow
0-1 1
0-2 1
1-2 0
1-3 1
2-3 1

00

11 22

33

00

11 22

33

00

11 22

33

 flow
0-1 2
0-2 1
1-2 1*
1-3 1
2-3 2

00

11 22

33

00

11 22

33

00

11 22

33

 flow
0-1 2
0-2 2
1-2 0
1-3 2
2-3 2

GOOD NEWS

 always possible to avoid this case

21.6

Maxflow-mincut theorem

CUT: set of edges separating source from sink

THM: maxflow is equivalent to mincut

Proof: [see text]

THM: Ford-Fulkerson method gives maximum flow

Proof sketch:

 if there is no augmenting path,

 identify the first full forward

 or empty backward edge on every path

 that set of edges defines a min cut

AUGMENTING-PATH ALG: specific method for finding a path

Design goals:

 find paths quickly

 use as few iterations as possible 21.7

Edmonds-Karp algorithms

Idea 1: use BFS to find augmenting path

Idea 2: find path that increases the flow

BOTH easy to implement with standard PFS (!)

RESIDUAL NETWORK

for each edge in original network

 flow x in edge u-v with capacity c

define TWO edges in residual network

 FORWARD edge: flow c-x in edge u-v

 BACKWARD edge: flow -x in edge v-u

easy implicit implementation:

#define Q (u->cap < 0 ? -u->flow : u->cap - u->flow)

Graph search in residual network finds augmenting path
21.8

Residual networks

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap flow
0-1 2 0
0-2 3 0
1-3 3 0
1-4 1 0
2-3 1 0
2-4 1 0
3-5 2 0
4-5 3 0

0-1 2
0-2 3
1-3 3
1-4 1
2-3 1
2-4 1
3-5 2
4-5 3

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap flow
0-1 2 2
0-2 3 0
1-3 3 2
1-4 1 0
2-3 1 0
2-4 1 0
3-5 2 2
4-5 3 0

 1-0 2
0-2 3
1-3 1 3-1 2
1-4 1
2-3 1
2-4 1
 5-3 2
4-5 3

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap flow
0-1 2 2
0-2 3 1
1-3 3 2
1-4 1 0
2-3 1 0
2-4 1 1
3-5 2 2
4-5 3 1

 1-0 2
0-2 2 2-0 1
1-3 1 3-1 2
1-4 1
2-3 1
 4-2 1
 5-3 2
4-5 2 5-4 1

00

11 22

33 44

55

00

11 22

33 44

55

00

11 22

33 44

55

 cap flow
0-1 2 2
0-2 3 2
1-3 3 1
1-4 1 1
2-3 1 1
2-4 1 1
3-5 2 2
4-5 3 2

 1-0 2
0-2 2 2-0 1
1-3 2 3-1 1
 4-1 1
 3-2 1
 4-2 1
 5-3 2
4-5 1 5-4 2

0

1 2

3 4

5

0

1 2

3 4

5

0

1 2

3 4

5

0

1 2

3 4

5

21.9

Network flow implementation

Tricky code for sparse graphs

 TWO edge representations with links to each other

 st array has links to edge representations

 void GRAPHmaxflow(Graph G, int s, int t)

 { int x, d;

 link st[maxV];

 while ((d = GRAPHpfs(G, s, t, st)) != 0)

 for (x = t; x != s; x = st[x]->dup->v)

 { st[x]->flow += d; st[x]->dup->flow -= d; }

 }

To make GRAPHsearch find shortest aug path

#define P G->V - cnt

To make GRAPHsearch find max capacity aug path

#define P (Q > wt[v] ? wt[v] : Q)
21.10

Shortest augmenting paths example

Path lengths increase

21.11

Max capacity augmenting paths example

Path capacities decrease

Fewer iterations, lower cost per iteration

21.12

Shortest augmenting paths (larger example)

21.13

Max capacity augmenting paths (larger example)

21.14

Analysis of network flow algorithms

THM: ANY FF alg takes O(VEM) time

Proof:

 mincut capacity less than VM

 aug path increases flow through cut by at least 1

 graph search takes O(E) time

THM: Shortest aug-path alg takes O(VE^2) time

Proof:

 aug paths increase in length

 at most E paths for each of V lengths

 total of at most VE aug paths

 graph search takes O(E) time

THM: Max-capacity aug-path alg takes

 O(E^2 lg V lg M) time

Proof: [see text]
21.15

Network-flow algorithms

best known worst-case running times

 1970 V^2 E

 1977 V^2 E^(1/2)

 1978 V^3

 1978 V^(5/3) E^(2/3)

 1980 V E log V

 1986 V E log(V^2/E)

generally NOT relevant in practice

 most improvements are for dense graphs (rare in practice)

 worst-case bounds are overly pessimistic

 simple (but not dumb) algorithms may be preferred in practic

SPARSE GRAPHS

 shortest: O(V^3)

 max capacity: O(V^2 lg V lg M)

BUT research is justified:

 simple O(E) algorithm could still exist! 21.16

Random augmenting paths example

21.17

Matching

MATCHING: set of edges with no vertex included twice

MAXIMUM MATCHING: no matching contains more edges

BIPARTITE GRAPH

 two sets of vertices

 all edges connect vertex in one set to vertex in the other

BIPARTITE MATCHING: maximum matching in bipartite graph

What does matching have to do with maxflow??

 bipartite matching REDUCES to maxflow

 we can use maxflow to solve it!

21.18

Bipartite matching example

Job Placement

 companies make job offers

 students have job choices

BIPARTITE MATCHING

 can we fill every job?

 can we employ every student?

Alice
 Adobe
 Apple
 HP
Bob
 Adobe
 Apple
 Yahoo
Carol
 HP
 IBM
 Sun
Dave
 Adobe
 Apple
Eliza
 IBM
 Sun
 Yahoo
Frank
 HP
 Sun
 Yahoo

Adobe
 Alice
 Bob
 Dave
Apple
 Alice
 Bob
 Dave
HP
 Alice
 Carol
 Frank
IBM
 Carol
 Eliza
Sun
 Carol
 Eliza
 Frank
Yahoo
 Bob
 Eliza
 Frank

1 2 3 4 5 6

A B C D E F

Equivalent: Find maximal subset with no dups in

 1A 1B 1C 2A 2B 2E 3C 3D 3E 4A 4B 5D 5E 5F 6C 6E 6F 21.19

Bipartite matching reduction to maxflow

Standard reduction (see lecture 20)

 given an instance of bipartite matching

 transform it to a maxflow problem

 solve the maxflow problem

 transform maxflow solution to bipartite matching solution

Transformation:

 keep all edges and vertices

 add SOURCE connected to all vertices in one set

 add SINK connected to all nodes of second type

 set all capacities to 1

full edges in maxflow solution give matching solution

NOTE: maxflow easier in unit-capacity networks

21.20

Bipartite matching reduction example

1 2 3 4 5 6

A B C D E F

1 2 3 4 5 6

A B C D E F

1 2 3 4 5 6

A B C D E F

1 2 3 4 5 6

A B C D E F

1 2 3 4 5 6

A B C D E F

1 2 3 4 5 6

A B C D E F

SOLUTION: 1-A 2-F 3-C 4-B 5-D 6-E

Alice-Adobe Bob-Yahoo Carol-HP Dave-Apple Eliza-IBM Frank-Sun
21.21

Maxflow problem-solving model

Many practical problems reduce to maxflow problems

 merchandise distribution

 matching

 scheduling

 communications networks

Maxflow algorithms provide effective solutions

NEXT STEP: add OPTIMIZATION

 multiple maxflows, in general

 which one is best??

MINCOST FLOW

 generalizes maxflow and shortest paths

 large number of practical applications

 challenge to develop efficient alg/implementation

[stay tuned] 21.22

