
COS 226 Lecture 21: Network Flow   

Classical problem-solving model (1940s)

OPERATIONS RESEARCH      

Modern implementations benefit from

  Graph algorithm technology

  PQ and data structure design

Researchers still seek efficient algorithms

  many variations

  many practical applications

Optimal solutions still not known

21.1

Network flow       

NETWORK: weighted digraph

Abstraction for material FLOWING through the edges

  interpret edge weights as CAPACITIES

Ex: oil flowing in pipes    

Ex: commodities flowing on roads and rails  

Ex: bits flowing in Internet    

SOURCE: node where all material originates  

SINK: node where all material goes  

MAXFLOW PROBLEM: assign flows to edges that 

  equalize inflow and outflow at every vertex

  maximize total flow through the network

21.2

Flow network example      
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Increasing flow in a network    

AUGMENTING PATH: source-sink path for increasing flow 

Easy case:

  ADD flow to each

    edge on the path 

Ex: 0-1-3-5, then 0-2-4-5     

More complicated case:

  REMOVE flow from

    one or more edges

Ex: 0-2-3-1-4-5       
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Ford-Fulkerson algorithm       

GENERIC method for solving maxflow problems

start with 0 flow everywhere

REPEAT until no augmenting paths are left

  increase the flow along ANY augmenting path

Problem 0:      

  Does this process lead to the maximum flow?

Problem 1: fill in unspecified details  

  How do we find an augmenting path?

Problem 2:      

  Cost can be proportional to max capacity

21.5

Bad case for generic FF    

BAD NEWS

  number of augmenting paths could be huge

  proportional to max edge capacity!
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GOOD NEWS

  always possible to avoid this case 
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Maxflow-mincut theorem       

CUT: set of edges separating source from sink

THM: maxflow is equivalent to mincut  

Proof: [see text]

THM: Ford-Fulkerson method gives maximum flow  

Proof sketch:

  if there is no augmenting path,

    identify the first full forward 

    or empty backward edge on every path

  that set of edges defines a min cut

AUGMENTING-PATH ALG: specific method for finding a path

Design goals:

  find paths quickly

  use as few iterations as possible 21.7

Edmonds-Karp algorithms       

Idea 1: use BFS to find augmenting path

Idea 2: find path that increases the flow

BOTH easy to implement with standard PFS (!)

RESIDUAL NETWORK      

for each edge in original network

  flow x in edge u-v with capacity c

define TWO edges in residual network

  FORWARD edge: flow c-x in edge u-v

  BACKWARD edge: flow -x in edge v-u 

easy implicit implementation:

#define Q (u->cap < 0 ? -u->flow : u->cap - u->flow)

 

Graph search in residual network finds augmenting path
21.8



Residual networks       
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Network flow implementation      

Tricky code for sparse graphs

  TWO edge representations with links to each other

  st array has links to edge representations

  void GRAPHmaxflow(Graph G, int s, int t)

  { int x, d;

    link st[maxV]; 

    while ((d = GRAPHpfs(G, s, t, st)) != 0) 

      for (x = t; x != s; x = st[x]->dup->v)

      { st[x]->flow += d; st[x]->dup->flow -= d; }

  }

To make GRAPHsearch find shortest aug path

#define P G->V - cnt

To make GRAPHsearch find max capacity aug path

#define P ( Q > wt[v] ? wt[v] : Q )
21.10

Shortest augmenting paths example     

Path lengths increase

21.11

Max capacity augmenting paths example    

Path capacities decrease

Fewer iterations, lower cost per iteration
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Shortest augmenting paths (larger example)    

21.13

Max capacity augmenting paths (larger example)   

21.14

Analysis of network flow algorithms    

THM: ANY FF alg takes O(VEM) time 

Proof:

  mincut capacity less than VM

  aug path increases flow through cut by at least 1

  graph search takes O(E) time

THM: Shortest aug-path alg takes O(VE^2) time 

Proof:

  aug paths increase in length

  at most E paths for each of V lengths

  total of at most VE aug paths

  graph search takes O(E) time

THM: Max-capacity aug-path alg takes   

      O(E^2 lg V lg M) time

Proof: [see text]
21.15

Network-flow algorithms       

best known worst-case running times

  1970  V^2 E

  1977  V^2 E^(1/2)

  1978  V^3

  1978  V^(5/3) E^(2/3)

  1980  V E log V

  1986  V E log(V^2/E)

generally NOT relevant in practice

  most improvements are for dense graphs (rare in practice)

  worst-case bounds are overly pessimistic

  simple (but not dumb) algorithms may be preferred in practic

SPARSE GRAPHS      

  shortest: O(V^3)

  max capacity: O(V^2 lg V lg M)

BUT research is justified:

  simple O(E) algorithm could still exist! 21.16



Random augmenting paths example     

21.17

Matching        

MATCHING: set of edges with no vertex included twice

MAXIMUM MATCHING: no matching contains more edges

BIPARTITE GRAPH

  two sets of vertices

  all edges connect vertex in one set to vertex in the other

BIPARTITE MATCHING: maximum matching in bipartite graph 

What does matching have to do with maxflow??

  bipartite matching REDUCES to maxflow

  we can use maxflow to solve it!

21.18

Bipartite matching example      

Job Placement

  companies make job offers

  students have job choices

BIPARTITE MATCHING      

  can we fill every job?

  can we employ every student?

Alice
     Adobe
     Apple
     HP
Bob
     Adobe
     Apple
     Yahoo
Carol
     HP
     IBM
     Sun
Dave
     Adobe
     Apple
Eliza
     IBM
     Sun
     Yahoo
Frank
     HP
     Sun
     Yahoo

Adobe
     Alice
     Bob
     Dave
Apple
     Alice
     Bob
     Dave
HP
     Alice
     Carol
     Frank
IBM
     Carol
     Eliza
Sun
     Carol
     Eliza
     Frank
Yahoo
     Bob
     Eliza
     Frank

1 2 3 4 5 6

A B C D E F

Equivalent: Find maximal subset with no dups in 

  1A 1B 1C 2A 2B 2E 3C 3D 3E 4A 4B 5D 5E 5F 6C 6E 6F 21.19

Bipartite matching reduction to maxflow    

Standard reduction (see lecture 20)

  given an instance of bipartite matching

  transform it to a maxflow problem

  solve the maxflow problem

  transform maxflow solution to bipartite matching solution

Transformation:

  keep all edges and vertices

  add SOURCE connected to all vertices in one set

  add SINK connected to all nodes of second type

  set all capacities to 1

full edges in maxflow solution give matching solution

NOTE: maxflow easier in unit-capacity networks
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Bipartite matching reduction example     

1 2 3 4 5 6

A B C D E F

1 2 3 4 5 6

A B C D E F

1 2 3 4 5 6

A B C D E F

1 2 3 4 5 6

A B C D E F

1 2 3 4 5 6

A B C D E F

1 2 3 4 5 6

A B C D E F

SOLUTION: 1-A 2-F 3-C 4-B 5-D 6-E 

Alice-Adobe Bob-Yahoo Carol-HP Dave-Apple Eliza-IBM Frank-Sun
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Maxflow problem-solving model      

Many practical problems reduce to maxflow problems

  merchandise distribution

  matching

  scheduling

  communications networks

Maxflow algorithms provide effective solutions

NEXT STEP: add OPTIMIZATION    

  multiple maxflows, in general

  which one is best??

MINCOST FLOW      

  generalizes maxflow and shortest paths

  large number of practical applications

  challenge to develop efficient alg/implementation

[stay tuned] 21.22


