( COS 226 Lecture 211 Network Flow )

Classical problem-solving model (1940s)
OPERATIONS RESEARCH
Modern implementations benefit from
e Graph algorithm technology
e PQ and data structure design
Researchers still seek efficient algorithms
°e many variations

e many practical applications

Optimal solutions still not known

( Network flow )

NETWORK: weighted digraph

Abstraction for material FLOWING through the edges
e interpret edge weights as CAPACITIES

Ex: oil flowing in pipes
Ex: commodities flowing on roads and rails
Ex: bits flowing in Internet

SOURCE: node where all material originates
SINK: node where all material goes

MAXFLOW PROBLEM: assign flows to edges that
* equalize inflow and outflow at every vertex
e maximize total flow through the network
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( Flow network example )
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( Increasing flow in a network )

AUGMENTING PATH: source-sink path for increasing flow

Easy case: 0-1

* ADD flow to ecach 13
edge on the path

Ex: o=1-3-5, then o-2-4-5 35
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More complicated case:
* REMOVE flow from
one or more edges
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Ex: o=2-3-1-4-5
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( Ford-Fulkerson algorithm ) ( Maxflow-mincut theorem )

GENERIC method for solving maxflow problems CUT: set of edges separating source from sink
start with o flow everywhere THM: maxflow is equivalent to mincut
REPEAT until no augmenting paths are left Proof: [see text]

e increase the flow along ANY augmenting path

THM: Ford-Fulkerson method gives maximum flow

Problem o: Proof sketch:
e Does this process lead to the maximum flow? o if there is no augmenting path,
identify the first full forward
Problem 1: fill in unspecified details or empty backward edge on every path
e How do we find an augmenting path? e that set of edges defines a min cut
Problem 2: AUGMENTING-PATH ALG: specific method for finding a path

¢ Cost can be proportional to max capacity
Design goals:
* find paths quickly

s °use as few iterations as possible

( Bad case for generic FF ) ( Edmonds-Karp algorithms )
BAD NEWs Idea 11 use BFS to find augmenting path
e number of augmenting paths could be huge Idea 2: find path that increases the flow

e proportional to max edge capacity!
BOTH casy to implement with standard PFS (!)

cap flow flow flow flow RESIDUAL NETWORK

0-1 X 1 0-1 2
0-2 1 0-2 2 for ecach edge in original network
1-2 1 1 1-2 0 1-2 1 1-2 0
va % 1 s sa 2 s 2 o flow x in edge u-v with capacity ¢
0 0 define TWO edges in residual network

cap ow ow
-1 x x s e FORWARD edge: flow c-x in edge u-v
L3 X x e BACKWARD edge: flow -x in edge v-u

ecasy implicit implementation:
GOOD NEWwWs #define Q (u->cap < 0 ? -u->flow : u->cap - u->flow)
* always possible to avoid this case

Graph scarch in residual network finds augmenting path
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Residual networks )
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Network flow implementation )

Tricky code for sparse graphs

e TWO edge representations with links to ecach other
* st array has links to edge representations

voi d GRAPHmaxflow Graph G int s, int t)

{

}

To

int x, d;
i nk st[maxV];
while ((d = GRAPHpfs(G s, t, st)) !'=0)
for (x =t; x !=s; x = st[x]->dup->v)
{ st[x]->flow += d; st[x]->dup->flow -= d; }

make GRAPHscarch find shortest aug path

#define P G>V - cnt

To

make GRAPHsecarch find max capacity aug path

#define P ( Q> wt[v] 2 wi[v] : Q)
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( Shortest augmenting paths example

Path lengths increase
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( Max capacity augmenting paths example

Path capacities decrease
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Fewer iterations, lower cost per iteration
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( Shortest augmenting paths (larger example)
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(qu capacity augmenting paths (larger example)
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( Analysis of network flow algorithms )

THM: ANY FF alg takes O(VEM) time

Proof:
° mincut capacity less than VM
e aug path increases flow through cut by at least |
» graph search takes O(E) time

THM: Shortest aug-path alg takes O(VE~2) time
Proof:

° aug paths increase in length

e at most E paths for ecach of V lengths

e total of at most VE aug paths

» graph secarch takes O(E) time

THM: Max-capacity aug-path alg takes
O(E~2 Ig V Ig M) time
Proof: [see text]
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( Network-flow algorithms )

best known worst-case running times

eig70c V~2 E
°1977 V~2 E~(/2)
©1978 V~3

°1978 V~(5/3) E~(2/3)

1980 V E log V

©1986 V E log(V+2/E)
generally NOT relevant in practice

* most improvements are for dense graphs (rare in practice)

* worst-case bounds are overly pessimistic

» simple (but not dumb) algorithms may be preferred in practic
SPARSE GRAPHS

e shortest: O(V~+3)

* max capacity: O(V+2 Ig V Ig M)

BUT research is justified:
» simple O(E) algorithm could still exist!
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( Random augmenting paths example )
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( Matching )

MATCHING: set of edges with no vertex included twice
MAXIMUM MATCHING: no matching contains more edges
BIPARTITE GRAPH

* two sets of vertices

 all edges connect vertex in one set to vertex in the other
BIPARTITE MATCHING: maximum matching in bipartite graph
What does matching have to do with maxflow??

e bipartite matching REDUCES to maxflow
e we can use maxflow to solve it!
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( Bipartite matching example )
Job Placement AII(':A\%Obe Ad%ﬁiie
« companies make job offers Apple Bob
HP Dave
e students have job choices Bob Apple
Adobe Alice
Apple Bob
BIPARTITE MATCHING Yahoo Dave
. . Carol HP
e can we fill every job? HP Alice
2 IBM Carol
e can we employ every student? sun Frank
Dave IBM
Adobe Carol
Apple Eliza
Eliza Sun
IBM Carol
Sun Eliza
Yahoo Frank
Frank Yahoo
HP Bob
Sun Eliza
Yahoo Frank

Equivalent: Find maximal subset with no dups in
*1A 1B 1C 2A 2B 2F 3C 3D 3E 4A 4B 5D gE gF 6C 6E 6F
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( Bipartite matching reduction to maxflow )

Standard reduction (see lecture 20)
e given an instance of bipartite matching
* transform it to a maxflow problem
e solve the maxflow problem
e transform maxflow solution to bipartite matching solution

Transformation:
e keep all edges and vertices
* add SOURCE connected to all vertices in one set
* add SINK connected to all nodes of second type
e set all capacities to |

full edges in maxflow solution give matching solution

NOTE: maxflow ecasier in unit-capacity networks
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( Bipartite matching reduction example )

( Maxflow problem-solving model )

Many practical problems reduce to maxflow problems
e merchandise distribution
e matching
e scheduling
e communications networks

Maxflow algorithms provide effective solutions

NEXT STEP: add OPTIMIZATION
e multiple maxflows, in general
e which one is best??

MINCOST FLOW

e generalizes maxflow and shortest paths

e large number of practical applications

e challenge to develop efficient alg/implementation
[stay tuned]
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