COS 226 Lecture 18: Digraphs and DAGs

DFS in a digraph (adjacency lists)

DIGRAPH: directed graph
 - edge s-t from s to t
 - edge t-s from t to s

Can you get there from here?

Basic definitions

CONNECTIVITY

- path from s to t in undirected graph

REACHABILITY

- directed path from s to t in digraph

STRONG CONNECTIVITY

- directed paths from s to t AND from + to s

Connectivity ADT implementation (last lecture)

- query: O(1)
- preprocessing: $O(E)$
- space: O(V)

Can we do as well for reachability and strong connectivity?

```
void dfsR(Graph G, Edge e, int pre[], int post[])
    { link t; int i, v, w = e.w; Edge x;
        pre[w] = cnt0++;
        for (t = G->adj[w]; t != NULL; t = t->>next)
            if (pre[t->v] == -1)
                dfsR(G, EDGE(w, t->v), pre, post);
        post[w] = cnt1++;
    }
void GRAPHsearch(Graph G, int pre[], int post[])
    { int v;
        cnt0 = 0; cnt1 = 0; depth = 0;
        for (v = 0; v < G->V; v++)
            { pre[v] = -1; post[v] = -1; }
        for (v = 0; v < G->V; v++)
            if (pre[v] == -1)
                search(G, EDGE(v, v), pre, post);
    }
```

Need both PREORDER and POSTORDER numbering

DFS forests

Structure determined by digraph AND search dynamics

- use pre- and post- numbering to distinguish edge types

Edge types

- TREE
- BACK
- DOWN
- CROSS

ONLY the FIRST tree
has the set of nodes reachable from its root 18.4

Digraph G

Transitive closure $G *$ has edge from s to iff there is a directed path from s to t in G

	0	1	2	3	4	5
0	1	1	1	0	1	1
1	1	1	1	0	1	1
2	1	1	1	0	1	1
3	1	1	1	1	1	1
4	0	0	0	0	1	1
5	0	0	0	0	1	1

NOT symmetric
supports $O(1)$ reachability queries with $O\left(V^{\wedge}\right)_{2}$ space
Method of choice for transitive closure of a dense graph - running time proportional to V^3

```
for (k = 0; k < G->V; k++)
    for (s = 0; s < G->V; s++)
        if (G->tc[s][k] == 1)
            for (t = 0; t < G->V; t++)
            if (G->tc[k][t] == 1) G->tc[s][t] = 1;
```

Proof of correctness (induction on k)

- there is a path from s to t (with no nodes $>k$) if EITHER
there is path from s to k (with no nodes $>k-1$)
AND a path from k to t (with no nodes $>k-1$) $O R$ there is a path from s to t (with no nodes $>k-1$)

Boolean matrices and paths in graphs

Warshall's algorithm (example)

Adjacency matrix A

- $A[s][t]$ is 1 iff path from s to t
square $A * A=A \wedge_{2}$
- $A[s][t]$ is 1 iff path from s to t of length 2 in $A[s-k-t]$ Reflexive square $A+A \wedge_{2}$
- $A[s][t]$ is 1 iff path from s to t of length <2 in A

Transitive closure: $A+A \wedge_{2}+A^{\wedge} 3+A^{\wedge} 4+A^{\wedge} 5+\ldots$

- same as lg V reflexive squares
- $\left[A+\left(A+A^{\wedge}\right)^{\prime} \wedge_{2}=A+\wedge^{\wedge} 2+A^{\wedge} 3+A^{\wedge} 4\right]$
leads to casy $V^{\wedge} 3 \lg V$ transitive closure algorithm

Abstract transitive closure

ADT function for reachability in digraphs

THM: DFs-based transtive closure provides

- VE preprocessing time
- Var space
- constant query time

GOAL:

- Va2 (or VE) preprocessing time
- V space
- constant query time

Va2 preprocessing guarantee not likely by TC lower bound Next attempt:

- is the problem easier if there are no cycles (DAG)??

DAG: directed acyclic graph

Topological sort: all edges point left to right

Reverse TS: all edges point right to left

DAG transitive closure (code)

Easy alg for reverse TS: DFS! (postorder visit is reverse $T S$)

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```
void TSdfsR(Graph G, int v, int ts[])
    { int w;
        pre[v] = 0;
        for (w = 0; w < G->V; w++)
            if (G->adj[w][v] != 0)
                if (pre[w] == -1) TSdfsR(G, w, ts);
        ts[cnt0++] = v;
    }
```

Quick hack for arrays:

- switch rows and cols to process reverse

DAG Transitive closure

Compute TC row vectors (in postorder) during reverse TS

5: 0000010000000
12: 0000000000001
11: 000000000000011
10: 0000000000100
9: 0000000001111 4: 0000100001111 : 0000101001111 3: 0001110001111 2: 0011110001111 1: 0100000000000 : 1111111100111 7: 0000101101111 8: 0000101111111

```
void TCdfsR(Dag D, int w, int v)
    { int u, i;
        pre[v] = cnt0++;
    for (u = 0; u < D->V; u++)
        if (D->adj[v][u])
            {
                D->tc[v][u] = 1;
                if (pre[u] > pre[v]) continue;
                if (pre[u] == -1) TCdfsR(D, v, u);
            for (i = 0; i < D->V; i++)
                    if (D->tc[u][i] == 1)
                D->>tc[v][i] = 1;
            }
    }
```

worst-case cost bound: VE (no help!)
actual cost is $V(V+$ no. of down edges)
V^2 algorithm? lower bound?

Progress report on reachability ADT

Classical TC algs (Warshall) give

- query: $O(1)$
- preprocessing: $O\left(V^{\wedge} 3\right)$
- space: $O\left(V^{\wedge} 2\right)$

Reducing preprocessing to O (VE) is casy DFs application

NO PROGRESS on reducing space to $O(V)$

NO PROGRESS on better guarantees EVEN FOR DAGS (!!)

Next attempt:

- Is the STRONG reachability problem easier??

Good news: can skip down edges
Bad news: there may not be any down edges

STRONG COMPONENTS: mutually reachable vertices

$\left.\begin{array}{lllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \mathbf{s c}\end{array} \begin{array}{llllllllllll}2 & 1 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 0 & 0 & 0\end{array}\right)$

KERNEL DAG

- reachability among strong components
- collapse each strong component to a single vertex ${ }^{18.17}$

Kosaraju's SC algorithm

- Run DFs on reverse digraph
- Run DFS on digraph, using reverse postorder from first DFS to seek unvisited vertices at top level

THM:

- Trees in (second) DFS forest are strong components ${ }^{18.18}$ (!)

```
Add vertex-indexed array se to graph representation
Use standard recursive DFS, with postorder numbering
    void SCdfsR(Graph G, int w)
        { link t;
        G->sc[w] = cnt1;
        for (t = G->adj[w]; t != NULL; t = t->next)
        if (G->sc[t->v] == -1) SCdfsR(G, t->v);
        post[cnt0++] = w;
    }
```

ADT function for constant-time strong reach queries
int GRAPHstrongreach (Graph G, int s, int t)
\{ return G->sc[s] == G->sc[t]; \}

Kosaraju's algorithm implementation (continued)

```
int GRAPHsc(Graph G)
    { int i, v; Graph R;
        R = GRAPHreverse(G);
        cnt0 = 0; cnt1 = 0;
        for (v = 0; v < G->v; v++) R->sc[v] = -1;
        for (v = 0; v < G->V; v++)
        if (R->sc[v] == -1) SCdfsR(R, v);
    cnt0 = 0; cnt1 = 0;
    for (v = 0; v < G->V; v++) G->sc[v] = -1;
    for (v = 0; v < G->v; v++) postR[v] = post[v];
    for (i = G->V-1; i >=0; i--)
        if (G->sc[postR[i]] == -1)
            { SCdfsR(G, postR[i]); cnt1++; }
        return cnt1;
    }
```

1. Find strong components and build kernel DAG
2. Compute TC of kernel DAG
3. Reachability query
IF in same strong component, YES
ELSE check reachability in kernel DAG
Running time depends on graph structure

- density (fast if sparse)
- size of kernel DAG (fast if small)
- cross edges in kernel DAG (fast if few)
Meets performance goals for many graphs
Huge sparse DAG? STILL OPEN

Fast transitive closure implementation

Testimony to benefits of careful ADT design

```
Dag K;
void GRAPHtc(Graph G)
    { int v, w; link t; int *sc = G->sc;
        K = DAGinit(GRAPHsc(G));
        for (v = 0; v < G->V; v++)
            for (t = G->adj[v]; t != NULL; t = t->next)
                DAGinsertE(K, dagEDGE(sc[v], sc[t->v]));
        DAGtC(K);
    }
```

int GRAPHreach (Graph G, int s, int t)
\{ return DAGreach (K, G->sc[s], G->sc[t]); \}

