

CONNECTIVITY

path from s to t in undirected graph

REACHABILITY

• directed path from s to t in digraph

STRONG CONNECTIVITY

• directed paths from s to t AND from t to s

Connectivity ADT implementation (last lecture)

- query: O(1)
- preprocessing: O(E)
- space: O(V)

Can we do as well for reachability and strong connectivity?

DFS in a digraph (adjacency lists)

```
void dfsR(Graph G, Edge e, int pre[], int post[])
  { link t; int i, v, w = e.w; Edge x;
    pre[w] = cnt0++;
     for (t = G->adj[w]; t != NULL; t = t->next)
       if (pre[t->v] == -1)
          dfsR(G, EDGE(w, t->v), pre, post);
    post[w] = cnt1++;
void GRAPHsearch(Graph G, int pre[], int post[])
  { int v;
     cnt0 = 0; cnt1 = 0; depth = 0;
     for (v = 0; v < G ->V; v++)
       { pre[v] = -1; post[v] = -1; }
     for (v = 0; v < G ->V; v++)
       if (pre[v] == -1)
          search(G, EDGE(v, v), pre, post);
  }
```

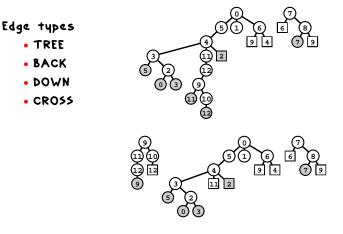
Need both PREORDER and POSTORDER numbering

18.3

DFS forests

Structure determined by digraph AND search dynamics

• use pre- and post- numbering to distinguish edge types

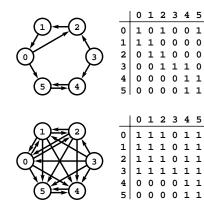


ONLY the FIRST tree

has the set of nodes reachable from its root 18.4

Digraph G

Transitive closure G* has edge from s to iff there is a directed path from s to t in G



NOT symmetric

supports O(1) reachability queries with O(V^2) space $_{18.c}$

Warshall's algorithm

Method of choice for transitive closure of a dense graph

running time proportional to V^3

for (k = 0; k < G->V; k++)
for (s = 0; s < G->V; s++)
if (G->tc[s][k] == 1)
for (t = 0; t < G->V; t++)
if (G->tc[k][t] == 1) G->tc[s][t] = 1;

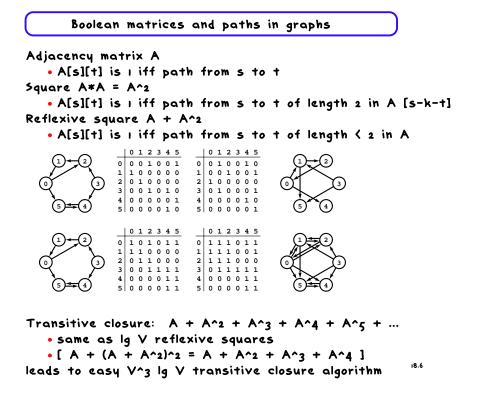
Proof of correctness (induction on k)

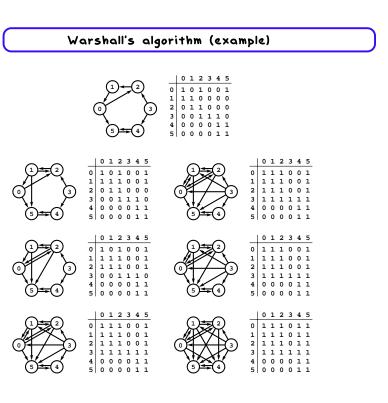
```
    there is a path from s to t (with no nodes > k) if
EITHER
```

there is path from s to k (with no nodes > k-1) AND a path from k to t (with no nodes > k-1)

OR there is a path from s to t (with no nodes > k-1)

18.7





Consider Boolean (o-1) matrices

Premise: Matrix multiplication is not easy

- grade-school algorithm: V^3
- best known: V^c , $c \ge [practical?]$

THM: Transitive closure is no easier than matrix multiplication

Proof:

- Given a matrix multiplication problem
- can solve it with a TC algorithm

I	A	0		I	A	AB
0	I	в	=	0	I	в
0	0	I		0	0	I

 $O(V_2)$ TC would yield $O(V_2)$ matrix multiply (not likely)

```
DFS-based transitive closure
```

Package DFS to implement reachability ADT • run new DFS for each vertex

```
void TCdfsR(Graph G, int v, int w)
  { link t;
     G \to tc[v][w] = 1;
     for (t = G->adj[w]; t != NULL; t = t->next)
        if (G \to tc[v][t \to v] == 0)
           TCdfsR(G, v, t->v);
  }
void GRAPHtc(Graph G, Edge e)
  { int v, w;
     G \rightarrow tc = malloc2d(G \rightarrow V, G \rightarrow V);
     for (v = 0; v < G ->V; v++)
        for (w = 0; w < G ->V; w++)
           G \to tc[v][w] = 0;
     for (v = 0; v < G ->V; v++) TCdfsR(G, v, v);
  3
int GRAPHreach(Graph G, int s, int t)
   { return G->tc[s][t]; }
```

Running time? less than VE (V^2 for sparse graphs) Violates lower bound? NO (worst case still V^3)

ADT function for reachability in digraphs

THM: DFS-based transtive closure provides

- VE preprocessing time
- V^2 space
- constant query time

GOAL:

- V^2 (or VE) preprocessing time
- V space
- constant query time

V^2 preprocessing guarantee not likely by TC lower bound

Next attempt:

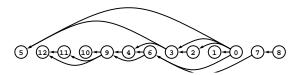
• is the problem easier if there are no cycles (DAG)??

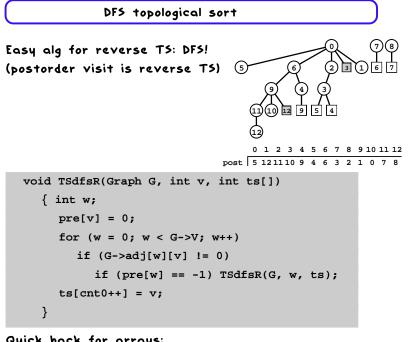
```
Topological sort (DAG)
DAG: directed acyclic graph
1 2 6+7+8
3 4 9+10
5 4 11+12
```

Topological sort: all edges point left to right



Reverse TS: all edges point right to left





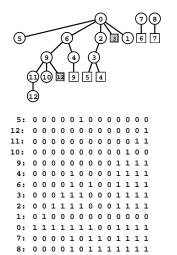
Quick hack for arrays:

18.13

switch rows and cols to process reverse

DAG Transitive closure

Compute TC row vectors (in postorder) during reverse TS



DAG transitive closure (code)

```
void TCdfsR(Dag D, int w, int v)
  { int u, i;
     pre[v] = cnt0++;
     for (u = 0; u < D->V; u++)
        if (D \rightarrow adj[v][u])
             D \to tc[v][u] = 1;
             if (pre[u] > pre[v]) continue;
             if (pre[u] == -1) TCdfsR(D, v, u);
             for (i = 0; i < D->V; i++)
               if (D->tc[u][i] == 1)
                 D \to tc[v][i] = 1;
          }
  }
```

worst-case cost bound: VE (no help!) actual cost is V(V+ no. of down edges)V^2 algorithm? lower bound?

Progress report on reachability ADT

Classical TC algs (Warshall) give

- query: O(1)
- preprocessing: O(V^3)
- space: O(V^2)

Reducing preprocessing to O(VE) is easy DFS application

NO PROGRESS on reducing space to O(V)

NO PROGRESS on better guarantees EVEN FOR DAGS (!!)

Next attempt:

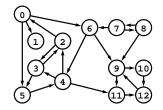
Is the STRONG reachability problem easier??

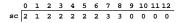
Good news: can skip down edges

Bad news: there may not be any down edges

Strong components

STRONG COMPONENTS: mutually reachable vertices





KERNEL DAG

- reachability among strong components
- collapse each strong component to a single vertex ^{18.17}

Add vertex-indexed array sc to graph representation

Use standard recursive DFS, with postorder numbering

```
void SCdfsR(Graph G, int w)
{ link t;
   G->sc[w] = cnt1;
   for (t = G->adj[w]; t != NULL; t = t->next)
        if (G->sc[t->v] == -1) SCdfsR(G, t->v);
        post[cnt0++] = w;
}
```

ADT function for constant-time strong reach queries

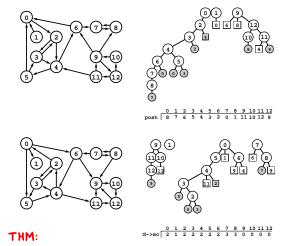
```
int GRAPHstrongreach(Graph G, int s, int t)
```

```
{ return G->sc[s] == G->sc[t]; }
```

```
18.19
```

Kosaraju's SC algorithm

- Run DFS on reverse digraph
- Run DFS on digraph, using reverse postorder from first DFS to seek unvisited vertices at top level



Kosaraju's algorithm implementation (continued)

```
int GRAPHsc(Graph G)
{ int i, v; Graph R;
    R = GRAPHreverse(G);
    cnt0 = 0; cnt1 = 0;
    for (v = 0; v < G->V; v++) R->sc[v] = -1;
    for (v = 0; v < G->V; v++)
        if (R->sc[v] == -1) SCdfsR(R, v);
    cnt0 = 0; cnt1 = 0;
    for (v = 0; v < G->V; v++) G->sc[v] = -1;
    for (v = 0; v < G->V; v++) postR[v] = post[v];
    for (i = G->V-1; i >=0; i--)
        if (G->sc[postR[i]] == -1)
            { SCdfsR(G, postR[i]); cnt1++; }
    return cnt1;
    }
}
```

• Trees in (second) DFS forest are strong components^{8,18}(!)

Fast abstract transitive closure

- 1. Find strong components and build kernel DAG
- 2. Compute TC of kernel DAG
- 3. Reachability query:
 - IF in same strong component, YES
 - ELSE check reachability in kernel DAG

Running time depends on graph structure

- density (fast if sparse)
- size of kernel DAG (fast if small)
- cross edges in kernel DAG (fast if few)

Meets performance goals for many graphs

Huge sparse DAG? STILL OPEN

18.21

Fast transitive closure implementation

Testimony to benefits of careful ADT design

```
Dag K;
void GRAPHtc(Graph G)
{ int v, w; link t; int *sc = G->sc;
    K = DAGinit(GRAPHsc(G));
    for (v = 0; v < G->V; v++)
        for (t = G->adj[v]; t != NULL; t = t->next)
        DAGinsertE(K, dagEDGE(sc[v], sc[t->v]));
        DAGtc(K);
    }
int GRAPHreach(Graph G, int s, int t)
    { return DAGreach(K, G->sc[s], G->sc[t]); }
```