vvvv

Memory Management

CS 217

[

Memory Management

* Problem 1:
o Two programs can't control all of memory simultaneously

* Problem 2:

o One program shouldn’t be allowed to access/change

the memory of another program o

* Problem 3: 0x2000
o Machine may have only 256MB of memory,
while virtual address space is 4GB

Operating system must manage
sharing of physical memory
between many processes

Oxffffffff

oS

Text

Data

BSS

Heap

Stack

K

Virtual Memory Q}

vvvv

* Basic idea
o Programs don’t (and can’t) name physical addresses
o Instead, they name virtual addresses
(each process has own address space)

o The kernel translates each virtual address into a physical address
before the operation is carried out

» Advantages
o Can run many programs at once,
without them worrying that they will use the same physical memory
o Kernel controls access to physical memory, so one program can’t
access or modify the memory of another

o Can run a program that uses more virtual memory than the
computer has available in physical memory

K

Segmentation

* Allocate memory for segments
o Provide mapping from addresses in segments to physical memory

» Use base and limit registers to translate virtual addresses
to physical addresses

1
limit base
Base register »
Virtual l i Phvsi
ysical
Address Address 2
oo | TS O =
Limit register »
Physical

Memory

4 - N
Segmentation
* Allocate memory for segments
o Provide mapping from addresses in segments to physical memory
* Problems: «
o Physical Di
Segments may grow Memory Storage
o Fragmentation
o Large processes
o Swapping efficiency 1
Base register » 3
2
Limit register »
J

/

Paging

* Motivation
o Mapping entire segments is too coarse granularity
o Mapping individual bytes is too fine granularity

» Pages
Divide up memory into blocks, called pages (~4KB)
Each virtual page can be mapped to any physical page
Each translation involves two steps:
— Decide which physical page holds the virtual address
— Decide a what offset the virtual address is inside the page
The physical address is formed by gluing together
the physical page number and the offset within the page

o}

[]

Q

[o}

-

Paging

logical
address

physical
address

P
i f —
page table
()
. EE
Paging (cont) '
e Paging Example D
2 ; physigal mgmory
: e [¥ Each process has its own page table J al i
il f i J
6|2 k
i ..o 12 B
1iE of 3| s
91 j “
10| k] n i
11 1 3l 1 L
12| m 12
131 n 1| 2
14| 0
15
page table 16
logical memory
* 4-byte pages
* Consider the virtual address 11,4=1011, 20 a
* Chop it into two parts b
= Virtual page number 2;=10, ¢
- Offset within page 3,y=11, d
* Look up the page table and find tha 24 ¢]
2 is stored at physical page 1 ; Silberschatz
. . :
The physical address is 779=0111, R & Peterson

J

-

Paged Segmentation

logical address

B
=
éz, P \/jjmn

s d

% SEgMent [page table]
t length base

segment table

memory |
|
|

L Silberschatz
page table for & Pet
segment s er&)n
4

-

Swapping

* What happens if cumulative sizes of segments
exceeds virtual memory?

[b
Swapping to Disk

« If all the virtual memory can’t fit in physical memory,
the OS can temporarily stash some pages on disk
o Can support virtual memory bigger than physical memory

page 2 | P — 1
= 1

000 |
- — 1o |
B == Sl
| B e

memory —
map } ‘ u [—‘ B ‘
. S o

E physical
page n . .
o Silberschatz

& Peterson
J

[

Page Table

* The OS stores for each page ...
o Physical page number (24 bits)
Cacheable bit (C)
Modified bit (M)
Referenced bit (R)
Access permissions (Read only, Read/write)
Valid/invalid (V)

[o}

[o}

o}

o}

o}

/

Page Faults &»

vvvv

* If process accesses — O
virtual address that :
maps to a page
not in memory,
then the OS must g
fetch that page — f\

from disk 8

~/ restart

* Since most ‘ o Y
references follow | I
others on same e [© e

page, the cost of | —

reading from disk —
is amortized across I et Silberschatz

many references & Peterson

J

/

Page Replacement

* When read one page from disk,
another page must be evicted?

* Which page should be replaced?
o Ideal:
— One that will be accessed furthest in future
o Practical heuristics:
— Least recently used
— Least frequently used
— Etc.

void StringArray_read(StringArray_T s, FILE *fp)
{
char string[MAX_STRI NG_LENGTH];

s->nstrings = 0;
while (fgets(string, MAX_STRING LENGTH, fp)) {
StringArray_grow(nstrings+l);
s->strings[(s->nstrings)++] = strdup(string);
}
}

[

\
B
Page Replacement (cont)
C—
frame valid/invalid C_{ \/\1
\ / bit ‘ O T — — |
*JP
[] out
victim ‘
| '
[|
i-ri“ |y (;)\.hd“p\.’ll' : — ‘
L invalid ’ G)
H PH® e page desived L]
I.'.,‘!T(‘_ table for page n ‘
table W vas |
:)
‘ b e
L' | Silberschatz
hysica
xr;u-nml\ & Peterson/

-
Working Sets

* Locality of reference
o Most memory references are nearby previous ones

* Working set

o At any point in a program’s execution, usually
a small region of memory is accessed frequently

o The region of memory (working set) changes during
the course of execution

int main()
{
Array_T *strings;
strings =

return O;

ReadSt ri ngs(stdin);
SortStrings(strings);
WiteStrings(strings,

stdout);

[

Thrashing

* What happens when cumulative size of working sets
exceeds capacity of physical memory?

[

Storage Hierarchy

* Registers
~128, 1-5ns access time (CPU cycle time)

» Cache
1KB - 4MB, 20-100ns (multiple levels)

* Memory

64MB — 2GB, 200ns
* Disk

1GB - 100GB, 10ms

* Long-term Storage
1TB, 1-10s

[
b
Storage Hierarchy Latency
Andromdeda
10° Tape /Optical %= 2,000 Years
Rabat
. A Vo,
ﬁ 107 Disk 2 Years
$
o
O
100 Memory ; A
10 On Board Cache WLLKSEIIIT 10 min
2 On Chip Cache E—]
1 Registers My Head 1 min
*® And the “universe” is expanding -- farther things are getting farther faster! Jm
Gray
J

p
Summary

* Memory management
o Important function of operating system
o Understanding how it works is critical to
effective system development

* Virtual memory

o OS & Hardware support for mapping
virtual addresses to physical addresses

o Mapping is usually at page granularity, which facilitates ...
— Relocation
— Swapping to disk
— Protection
— Fragmentation
— Sharing

10

