
1

Memory Management

CS 217

Memory Management
• Problem 1:

� Two programs can’t control all of memory simultaneously

• Problem 2:
� One program shouldn’t be allowed to access/change

the memory of another program

• Problem 3:
� Machine may have only 256MB of memory,

while virtual address space is 4GB

0

0xf f f f f f f f

Text

Data

BSS

Stack

Heap

0x2000
OS

Operating system must manage
sharing of physical memory

between many processes

Operating system must manage
sharing of physical memory

between many processes

2

Virtual Memory
• Basic idea

� Programs don’t (and can’t) name physical addresses
� Instead, they name virtual addresses

(each process has own address space)
� The kernel translates each virtual address into a physical address

before the operation is carried out

• Advantages
� Can run many programs at once,

without them worrying that they will use the same physical memory
� Kernel controls access to physical memory, so one program can’t

access or modify the memory of another
� Can run a program that uses more virtual memory than the

computer has available in physical memory

Segmentation
• Allocate memory for segments

� Provide mapping from addresses in segments to physical memory

• Use base and limit registers to translate virtual addresses
to physical addresses

1

2

Physical
Memory

Base register

Limit register

cpu <

limit base

+

Virtual
Address

Physical
Address

3

1

2

Physical
Memory

Segmentation
• Allocate memory for segments

� Provide mapping from addresses in segments to physical memory

• Problems:
� Segments may grow
� Fragmentation
� Large processes
� Swapping efficiency

Base register

Limit register

Disk
Storage

3

Paging
• Motivation

� Mapping entire segments is too coarse granularity
� Mapping individual bytes is too fine granularity

• Pages
� Divide up memory into blocks, called pages (~4KB)
� Each virtual page can be mapped to any physical page
� Each translation involves two steps:

– Decide which physical page holds the virtual address
– Decide a what offset the virtual address is inside the page

� The physical address is formed by gluing together
the physical page number and the offset within the page

4

Paging
• Page table maps virtual addresses to physical addresses

Silberschatz
& Peterson

Paging (cont)

Silberschatz
& Peterson

5

Paged Segmentation

Silberschatz
& Peterson

Swapping
• What happens if cumulative sizes of segments

exceeds virtual memory?

6

Swapping to Disk
• If all the virtual memory can’t fit in physical memory,

the OS can temporarily stash some pages on disk
� Can support virtual memory bigger than physical memory

Silberschatz
& Peterson

Page Table
• The OS stores for each page ...

� Physical page number (24 bits)
� Cacheable bit (C)
� Modified bit (M)
� Referenced bit (R)
� Access permissions (Read only, Read/write)
� Valid/invalid (V)

7

Page Faults
• If process accesses

virtual address that
maps to a page
not in memory,
then the OS must
fetch that page
from disk

• Since most
references follow
others on same
page, the cost of
reading from disk
is amortized across
many references

Silberschatz
& Peterson

Page Replacement
• When read one page from disk,

another page must be evicted?

• Which page should be replaced?
� Ideal:

– One that will be accessed furthest in future
� Practical heuristics:

– Least recently used
– Least frequently used
– Etc.

voi d St r i ngAr r ay_r ead(St r i ngAr r ay_T s, FI LE * f p)
{

char st r i ng[MAX_STRI NG_LENGTH] ;

s- >nst r i ngs = 0;
whi l e (f get s(st r i ng, MAX_STRI NG_LENGTH, f p)) {

St r i ngAr r ay_gr ow(nst r i ngs+1) ;
s- >st r i ngs[(s- >nst r i ngs) ++] = st r dup(st r i ng) ;

}
}

8

Page Replacement (cont)

Silberschatz
& Peterson

Working Sets
• Locality of reference

� Most memory references are nearby previous ones

• Working set
� At any point in a program’s execution, usually

a small region of memory is accessed frequently
� The region of memory (working set) changes during

the course of execution

i nt mai n()
{

Ar r ay_T * st r i ngs;
s t r i ngs = ReadSt r i ngs(s t di n) ;
Sor t St r i ngs(s t r i ngs) ;
Wr i t eSt r i ngs(s t r i ngs, s t dout) ;

r et ur n 0;
}

9

Thrashing
• What happens when cumulative size of working sets

exceeds capacity of physical memory?

Storage Hierarchy
• Registers

~128, 1-5ns access time (CPU cycle time)

• Cache
1KB – 4MB, 20-100ns (multiple levels)

• Memory
64MB – 2GB, 200ns

• Disk
1GB – 100GB, 10ms

• Long-term Storage
1TB, 1-10s

10

Storage Hierarchy Latency

Jim
Gray

Summary
• Memory management

� Important function of operating system
� Understanding how it works is critical to

effective system development

• Virtual memory
� OS & Hardware support for mapping

virtual addresses to physical addresses
� Mapping is usually at page granularity, which facilitates ...

– Relocation
– Swapping to disk
– Protection
– Fragmentation
– Sharing

