
  

A Video-Based Rendering Acceleration Algorithm for 
Interactive Walkthroughs 

 
Andrew Wilson, Ming C. Lin,  

Dinesh Manocha 
Department of Computer Science 

CB 3175, Sitterson Hall 
University of North Carolina at Chapel Hill 

Chapel Hill, NC 27599 
{awilson,lin,dm}@cs.unc.edu 

 

 
Boon-Lock Yeo,  Minerva Yeung 

Intel Corporation 
Microcomputer Research Labs 

2200 Mission College Blvd. 
Santa Clara, CA 95052 

minerva.yeung@intel.com 
  

 
  

http://www.cs.unc.edu/~geom/Video 
 
Abstract 
We present a new approach for faster rendering of large 
synthetic environments using video-based representations. We 
decompose the large environment into cells and pre-compute 
video based impostors using MPEG compression to represent 
sets of objects that are far from each cell.  At runtime, we 
decode the MPEG streams and use rendering algorithms that 
provide nearly constant-time random access to any frame.  The 
resulting system has been implemented and used for an 
interactive walkthrough of a model of a house with 260,000 
polygons and realistic lighting and textures.  It is able to render 
this model at 16 frames per second (an eightfold improvement 
over simpler algorithms) on average on a Pentium II PC with an 
off-the-shelf graphics card. 
 
Keywords 
Massive models, architectural walkthrough, MPEG video 
compression, virtual cells, video-based impostors 

 
1 Introduction 

 
One of the fundamental problems in computer graphics and 
virtual environments is interactive display of complex 
environments on current graphics systems. Large environments 
composed of tens of millions of primitives are frequently used in 
computer-aided design, scientific visualization, 3D audio-visual 
and other sensory exploration of remote places, tele-presence 
applications, visualization of medical datasets, etc. The set of 
primitives in such environments includes geometric primitives 
like polygonal models or spline surfaces, samples of real-world 
objects acquired using cameras or scanners, volumetric datasets, 
etc. It is a major challenge to render these complex 

environments at interactive rates, i.e. 30 frames a second, on 
current graphics systems.  Furthermore, the sizes of these data 
sets appear to be increasing at a faster rate than the performance 
of graphics systems.  
 
One of the driving applications for interactive display of large 
datasets is interactive walkthroughs. The main goal is to create 
an interactive computer graphics system that enables a viewer to 
experience a virtual environment by simulating a walkthrough of 
the model. Possible applications of such a system include design 
evaluation of architectural models [Brooks86,Funkhouser93], 
simulation-based design of large CAD datasets [Aliaga99], 
virtual museums and places [Mannoni97], etc. The development 
of a complete walkthrough system involves providing different 
kinds of feedback to a user, including visual, haptic, 
proprioceptive and auditory feedback, at interactive rates 
[Brooks86]. Real-time feedback as the user moves is perhaps the 
most important component of a satisfying walkthrough system. 
This faithful response to user spontaneity is what distinguishes a 
synthetic environment from precomputed images or frames, 
which can take minutes or even hours per frame to calculate, and 
from pre-recorded video.  In this paper, we focus on the problem 
of generating visual updates at interactive rates for complex 
environments. 

 

 

Figure 1:  CAD database of a house with realistic lighting and 
texture.  The model has over 260,000 polygons and 19 megabytes of 
high-resolution texture maps.  This model is too large to be naively 
rendered at interactive rates.



  

There is considerable research on rendering acceleration 
algorithms to display large datasets at interactive frame rates on 
current graphics system. These algorithms can be classified into 
three major categories: visibility culling, multi-resolution 
modeling, and image-based representations. However, no single 
algorithm or approach can successfully display large datasets at 
interactive rates from all viewpoints. Some hybrid approaches 
that have been investigated use image-based representations to 
render “far” objects [Maciel95,Shade96,Aliaga96,Aliaga99] and 
geometric representations for “near” objects 
[Cohen97,Erikson99,Garland97,Hoppe96]. Commonly used 
image-based representations include texture maps, textured 
depth meshes, layered depth images [Aliaga99] etc. However, in 
terms of application to large models, these image-based 
representations have the following drawbacks: 
 
• = Sampling: Most of the algorithms take a few finite samples 

of a large data set. No good algorithms are known for 
automatic generation of samples for a large environment. 

• = Reconstruction: Different reconstruction techniques have 
been proposed to reconstruct an image from a new 
viewpoint. While some of them do not result in high 
fidelity images, others require special purpose hardware for 
interactive updates.  

• = Representation and Storage: A large set of samples takes 
considerable storage. No good algorithms are known for 
automatic management of host and texture memory 
devoted to these samples. 

1.1 Main Contribution 
In this paper, we present a method for accelerating the rendering 
of large synthetic environments using video-based 
representations. Video-based techniques have been widely used 
for capture, representation and display of real-world datasets. 
We propose the use of video based impostors for representing 
synthetic environments and rendering these scenes at interactive 
rates on current high-end and low-end graphics systems. We use 
a cell-based decomposition of a synthetic environment and 
associate a far field representation with each cell. For each cell, 
we generate a sequence of far-field images and MPEG compress 
them using offline encoding. At runtime, we decode the MPEG 
streams and utilize algorithms that provide nearly constant time 
random access to any frame, for displaying them. The frames are 
selected as a function of the viewpoint. We address a number of 
issues in cell generation and the use of encoding and decoding 
algorithms, then demonstrate how to combine these algorithms 
with multi-resolution representation and visibility culling for 
interactive display. The resulting system has been implemented 
and used for an interactive walkthrough of a model of a house 
with realistic lighting and textures.  We have tested our system 
on a PC using off-the-shelf graphics hardware and achieve an 
average update rate of 16 frames per second in a 260,000-
polygon model of a house 31 meters wide by 18 meters deep and 
5 meters tall.  This update rate represents a significant 
improvement over simpler rendering algorithms. 
 
Organization:  The rest of the paper is organized in the 
following manner. We survey related work in Section 2 and 
present our approach in Section 3. Section 4 highlights a number 
of implementation issues.  We describe our system’s 

performance in Section 5. Finally, we highlight areas for future 
work in Section 6. 

2 Related Work 
 
In this section, we briefly survey related work on rendering 
acceleration techniques and the use of image-based and video-
based representations for rendering real and synthetic 
environments. 

2.1 Interactive Display of Large Datasets 
There are two basic types of models commonly used for 
rendering large data sets: geometric representations (based on a 
description of the surfaces in the model) and image-based 
representations.  Many hybrid combinations have also been 
proposed.  Based on these representations, different rendering 
acceleration techniques have been proposed; examples include 
multi-resolution modeling, visibility culling, and use of image-
based representations. 

 
2.1.1 Geometric Models 
By far the most common class of model representations is 
geometric, where surfaces in the model are described using 
polygons or curved primitives.  This representation is used for 
CAD, visual simulation, and most scientific applications. The 
basic geometric representation, as it is commonly used, stores 
each surface only once. There is no notion of appropriate 
resolution, except for textures, which are commonly pre-
filtered. More advanced representations keep several levels of 
detail for objects and select the correct level at run time 
[Funkhouser93]. Originally, these levels of detail were 
created manually. In recent years, the problem of automatic 
generation of levels-of-detail has received considerable 
attention in computer graphics, vision, and computational 
geometry. [Cohen97, Erikson99, Garland97, Hoppe96].  
 
2.1.2 Image-Based Representations 
There has also been work on the use of images to represent 
complex, but distant, portions of models at an appropriate 
resolution [Maciel95,Shade96,Aliaga96].  These algorithms use 
a surface-centric representation and use image-based impostors 
for distant geometry. These images have been used for rendering 
acceleration.  However, the use of images introduces a sampling 
problem: how many samples are needed for high-fidelity 
rendering? Other image-based representations include camera-
centric forms  [Chen93,McMillan95,Gortler96,Levoy96]. In 

Figure 2:  Continuum of representations of an environment, from 
purely geometric to purely image-based [Lastra99] 
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Figure 2, we show these on an axis representing how much 
geometric information is used in these representations. 
 
The image-based representations store a measure of the amount 
of light arriving at a point in space, with perhaps some 
information about the surface. The commercial Quicktime VR 
representation [Chen95] relies on panoramic images. A user 
cannot move freely around the space, but can only rotate. The 
Light Field representation [Levoy96] stores images in a four 
dimensional data structure representing rays between two finite 
planes. The Lumigraph [Gortler96] is similar to the Light Field, 
but can use some geometric information. Images with per-pixel 
depth [Chen93,McMillan95] organize information as images, 
but locate the samples in 3D space.  
 
2.1.4 Visibility Culling 
Besides multi-resolution models and image-based 
representations, other rendering acceleration algorithms are 
based on visibility culling. A particularly fruitful case has been 
in the architectural model domain because of the partitioning of 
space into rooms and doors (referred to in the literature as cells 
and portals) [Airey90,Teller91]. For general environments, 
[Greene93,Zhang97] have presented algorithms that use a 
combination of object space and image space hierarchies. 
[Aliaga99] have presented an approach that combines image-
based representations, levels of detail, and occlusion culling for 
large geometric environments.  

2.2 Combining Graphics with Video 
In addition to the use of image-based representations, many 
researchers have proposed techniques to use video for rendering 
real and synthetic environments. There is considerable work on 
techniques using interpolations among images to create visual 
continuity during motion or other changes within three-
dimensional virtual spaces [Chen93,Boyd98]. Other 
combinations of graphics and video include virtual sets, where 
live actors can move within computer-generated settings 
[Katkere97]. Carraro et al. [Carraro98] have highlighted 
techniques to incorporate video displays into virtual 
environments in the context of a multi-user simulator.  The 
MPEG-4 proposal [MPEG4] allows specification of data 
displays as compositions of video and graphical objects. 

2.3 Video for Multimedia Applications 
There is extensive work on the use of video for multimedia 
applications. These include video conferencing, video-on-
demand systems, internet video [Patel98], visual effects 
[Millerson90], etc. Most of these applications involve capturing 
videos of real-world scenes, then storing and organizing them 
efficiently using a combination of encoding and decoding 
algorithms [MPEG2, Kender97,  Zhang93, Shen95, Yeung97, 
MPEG4].   

 
 3  Overview 
 
In this section we give a brief overview of our approach.  We 
describe an algorithm for rendering acceleration using virtual 
cells, which allows us to guarantee a minimum frame rate for an 
interactive walkthrough by rendering nearby objects as 

geometry and replacing distant ones with a simple video-based 
impostor.  Finally, we explain the application of MPEG 
compression to these impostors. 

3.1  Cell-Based Walkthrough 
Architectural models of complex environments such as power 
plants, naval vessels, aircraft, and high-rise buildings are 
typically too large to render naively at interactive rates on 
current graphics hardware. Such models often contain anywhere 
from a few hundred thousand to a few hundred million 
polygons, divided into objects numbering in the hundreds or 
thousands (at least).   We must reduce the number of primitives 
rendered at each frame in order to bring a system’s performance 
up to an interactive frame rate of between 20 and 30 frames per 
second.  In complex environments with large open spaces, the 
rendering acceleration techniques highlighted in Section 2 are 
not sufficient.  We perform interactive walkthroughs of such 
environments by partitioning the model into regions that contain 
a bounded number of primitives, then rendering only those 
primitives contained in the user’s current region at runtime.  
These regions are called cells within the model.  Cell-based 
walkthrough originated with the method of cells and portals in 
architectural models and was generalized to virtual cells by 
[Aliaga99]. 

3.2 Cells and Portals 
Architectural models often exhibit an intrinsic spatial 
subdivision: individual rooms (cells) connected by doorways or 
windows (portals) in otherwise opaque walls.  Many 
architectural environments contain large, crowded spaces where 
the potentially visible set within a single cell is larger than the 
rendering budget.  In these environments as well as outdoor 
scenes, we can apply the method of virtual cells to achieve 
rendering acceleration.  

3.3 Virtual Cells 
We generalize the concept of cells and portals to yield virtual 
cells.  The space within an environment where the user might 
wish to travel is partitioned into cells using some convenient 
subdivision (regular grid, octree, etc.). Each cell is assigned a 
large cull box which is concentric with the cell itself.  The 
purpose of the cull box is to divide the model into a near field, 
whose contents will not exceed the per-frame rendering budget, 
and a far field consisting of the rest of the model.  The walls of 
the cull box correspond loosely to the walls of a room in 
traditional cells-and-portals. Thus, the potentially visible set for 
a particular cell consists of only those objects that intersect the 
cull box.  We replace the far field with an inexpensive video-
based impostor created as part of an offline process of cell 
generation. By varying the sizes of the cull boxes for different 
cells, we can enforce an upper bound on the number of 
primitives that must be rendered for any viewpoint in any cell.   
 
Virtual cells are generated by first determining which parts of 
the environment will be explored by the user, choosing sample 
points within that region of exploration, and finally constructing 
a rectangular cell around each sample point.  Increasing the 
sampling density generally yields increased fidelity at runtime at 
the expense of increased storage requirements and preprocessing 
time.  The  “volume of interest” is computed by subdividing 
regions indicated by the user. Another possible approach is to 



  

use a Delaunay triangulation of the free space and use it to 
generate the virtual cells. Figure 4 shows the relationship 
between a cell and a cull box in our system. 

3.4  Video-Based Impostors 
To avoid having to render geometry for more than one cell at a 
time, we replace the far field with an opaque, image-based 
impostor at runtime.  This impostor should have the following 
properties: 
 
• = It should be easy and fast to create. 
• = It should have a compact representation. 
• = It should closely approximate the appearance of the 

replaced objects. 
• = It should be inexpensive to render. 
 
Several different kinds of impostors have been explored, 
including flat, textured quadrilaterals, textured depth meshes, 
layered depth images, and light fields [Aliaga99].  Each has its 
own tradeoffs in terms of fidelity vs. storage space and the cost 
of reconstruction.  For simplicity, we can use flat, textured 
quadrilaterals.  While they exhibit undesirable perspective 
artifacts when a piece of geometry may cross between the near 
and far field, they are easy to generate and impose little 
rendering or reconstruction load on the system at runtime. 
 
The fidelity of the impostor to the geometry being replaced is 
similar to the problem of sampling and reconstruction in the 
context of image-based representations.  The algorithm takes a 
finite number of samples of the environment from locations 
fixed during preprocessing.  At runtime, these samples are used 
to reconstruct the appearance of the portion of the model 
captured by impostors.  The performance of the algorithm varies 
considerably as a choice of these samples. 
 

3.4.1 Creating Impostors 
Image-based impostors are constructed as an offline preprocess.  
Once cells have been generated for a particular model, we 
employ the algorithm in Figure 3 to acquire six images of the far 
field for each cell. These images will be used at runtime as 
texture maps for the faces of the cull box. The OpenGL near 
clipping plane is used to remove portions of the model that fall 
inside the cull box.  A typical resolution for the far-field images 
is 512x512 in 24-bit color, which requires 4.5 megabytes of 
storage for each cell during preprocessing.  Since a typical 
environment will have hundreds or thousands of cells, these 
images must be compressed as part of preprocessing and 
decompressed on demand at runtime.  We apply MPEG 

compression to exploit coherence between the far field images 
for adjacent cells. 

3.4.2  Video Compression of Impostors 
The images used to compute impostors exhibit considerable 
coherence from cell to cell.  By arranging the 3-dimensional cell 
structure into a one-dimensional list, we can impose an ordering 
on the cells and arrange their far-field images into a linear 
stream.  This stream is amenable to compression using video 
techniques. As an example, consider a path through the model as 
shown in Figure 10.  If the impostors from the north face of each 
cull box are arranged in a stream, they depict a constant-velocity 
pan through the environment.  Furthermore, all of the objects 
represented in each image are some minimum distance away 
from the camera (typically a few meters in models between 20 
and 80 meters on a side) due to the size of the cull box. This 
ensures that object motion due to depth parallax is small enough 
to be easily handled with motion prediction.   
 

3.5  Offline encoding 
Once all the images of the far field are available, we arrange 
them into linear streams for encoding using video techniques.  
The result of this encoding is the video-based representations we 
use to replace distant portions of the model at runtime. 
 
3.5.1 Mapping Cells to Streams 
There are many possible ways to arrange a 3-dimensional array 
as a 1-dimensional list.  To maximize the benefits of video 
compression, we choose a mapping with the following 
properties: 
 
• = Consecutive entries in the list exhibit coherence. 
• = Changes from one image to the next can be accurately 

estimated using motion prediction. 
• = Adjacent cells in space often map to adjacent entries in the 

list. 
 

Figure 4:  A sample cell grid.  The cull box for the cell containing the
viewpoint is shown.  At runtime, all objects outside the cull box will be
replaced with video impostors. 

 

current cell 

other cells 

viewpoint 

cull box 
Figure 3: Algorithm for generating far-field images once cells have
been generated.  The resulting images are MPEG-compressed for fast
runtime access. 

for each cell:
place viewpoint at center of cell
set field of view so view frustum intersects cell edges
for each direction (up, down, north, south, east, west):

set view dir = $direction
clip away portions of model in front of cull-box wall
render remaining geometry
read back frame buffer and save as image

end
end



  

In our initial implementation, we have chosen to treat our cell 
grid as an array.  Rows of cells are aligned with the X axis in the 
model’s space, and columns with the Y axis.  We map between 
our cell structure and a 1D stream by arranging the two-
dimensional array of cells in row-major order.  Each of the six 
faces of the cull box is used to generate a separate stream of 
images. 
   
3.5.2 Choice of Encoding Algorithm 
In order to achieve maximum efficiency from our video 
impostors, we chose an encoding scheme that exploits the 
temporal coherence present in its input stream and is easily and 
cheaply accessible at runtime.  We have chosen MPEG-2 
compression, as it provides a satisfactory balance between these 
constraints.  Moreover, hardware and software tools for fast 
access and manipulation are easily available. 
 

3.5.3 Encoding Parameters 
There are three parameters in the MPEG encoding process that 
govern the performance of the algorithm [MSSG].  First, the 
encoder allows us to request a particular bit rate for the encoded 
stream.  Since the data is retrieved from a disk at runtime, we set 
this parameter to be no greater than the bandwidth available 
from disk to host memory.  Secondly, we can constrain the 
search space for motion vectors in adjacent frames.  Since the 
source images are of a static environment, the only motion is 
due to camera parallax.  Third, we choose the structure of a 
group of pictures so that the discontinuities when the 1D stream 
“wraps around” the 2D model are encoded as intra frames.  This 
same technique could be applied to other discontinuities, such as 
when the 1D stream passes through a wall inside the model. 
 

4  Implementation 
 
In this section, we describe an implementation of our algorithm.  
Our system assumes that the environment is given as a 
collection of (possibly texture-mapped) polygons, and that the 
user has specified a method for constructing cells.  We divide 
our system into two phases: preprocessing, during which cells 
are created and video-based impostors are generated and 
compressed, and runtime, during which the user is allowed to 
walk through the environment.  At runtime, MPEG manipulation 
tools are used to decompress the impostors on demand.    

We use a model of a house with realistic lighting and texture for 
our architectural environment.  The house model was 
constructed from the blueprints of a real house in Chapel Hill, 
contains some 260,000 polygons, and uses approximately 19 
megabytes of textures acquired from the real house using a 
digital camera.  Our system is implemented in C++, uses 
OpenGL for rendering, and runs under Windows NT. 

4.1 Tools for MPEG manipulation 
In this section, we give a brief overview of tools used for 
encoding and decoding. 
 

4.1.1 Offline encoding 
We use the freely available MPEG Software Systems Group 
encoder [MSSG] to generate MPEG-2 streams from the source 
images of each cell’s far field.  The encoding parameters are 
modified according to the cell structure we impose upon the 
model.  In particular, we attempt to place intra frames wherever 
the viewpoint moves through a wall or “wraps around” to the 
other side of the model as a result of the 2D-to-1D cell mapping.   
 
4.1.2   Runtime decoding 
To decode the MPEG streams containing far-field images at 
runtime, we use MPL (MPEG Processing Library), a software 
library developed at Intel Microcomputer Research Labs 
[Yeo00].  It provides general-purpose, high performance 
software APIs for MPEG decoding and processing.  It is 
targeted at applications beyond standard decoding and display.  
MPL offers convenient random access to different levels of an 
MPEG bitstream, from bits and motion vectors to full frames. 
 
MPL supports both MPEG-1 and MPEG-2 at resolutions up to 
HDTV (1920x1280) and is optimized with MMXTM  and SSETM 
technology.  Some of its advanced features include random 
access to any frames with near constant-time access, fast 
extraction of encoded frames, simultaneous decoding of multiple 
MPEG sequences, flexible input plug-ins, SMP support and 
access via callbacks to non-frame-level information in the 
MPEG bitstream (e.g. raw bits, blocks, macroblocks, GOP and 
slice, etc.).  We used MPL due to its high-speed random-access 
capability and its ability to handle multiple streams 
simultaneously. 
 
MPL’s random access and backward playback capabilities are 
enabled by the use of index tables. After a video is created, an 
index table is created that maps out the frame dependencies and 
byte offsets of the I, P, and B frames. For instance, to access 
frame number N, the index table is used to identify the closest I-
frame numbered N or smaller; thereafter, MPL decodes from 
that I-frame to retrieve frame N. The size of the index table is 
typically less than 1% of the entire MPEG file size. Backward 
playback is handled as a special case of random access.  
 
Table 1 shows the forward, backward and random access 
decoding speed on a low-cost Pentium® III 400 MHz PC. As 
shown in the table, backward decode and random access speed 
of MPEG1 video at 352x240 resolutions and bit rate of 1.5 
Mbps is at about 60 frames/sec, which is more than sufficient for 
displaying video typically captured at 30 frames/sec.  
 

Table 1:  Performance of MPL on a PIII 400MHz PC.  Playback rates are
given in frames per second. 

Video 
Type 

Width Height Forward Backward Random 
Access 

MPEG1 
 1.5 Mbps 

352 240 272.9 58.6 57.2 

MPEG2 
5.0 Mbps 

704 480 53.7 11.8 11.7 

MPEG2 
10 Mbps 

1280 720 22.0 4.9 4.8 



  

Using MPL, we are able to support the following interactions: 
stop (at any frame), start or resume (from any frame), constant-
speed backward playing, constant-speed forward playing and 
jump to any other video stream at any specified frame.   

4.3  Cell structure 
We construct a cell grid for the house environment by dividing 
its two-dimensional bounding box into squares 1 meter on a 
side. Each of these squares corresponds to a single cell 
extending from the floor of the model up through the ceiling. 
The cull box for these cells is 3 meters on a side.  This 
implementation uses only a single layer of cells. However, there 
is nothing in our method or our system preventing us from using 
a truly 3-dimensional cell structure.  Figure 9 shows an overhead 
view of the house model with cell boundaries drawn in red.  The 
house model is 31 meters by 18 meters and is 5 meters tall.  
Rows of cells are aligned with the X axis in model space, and 
columns with the Y axis.   The cell grid contains 558 cells 
arranged in 18 rows of 31 cells each.  
 
4.4 Preprocessing 
Our preprocessing phase, shown in Figure 5, consists of cell 
generation, far-field rendering, and creation of the MPEG 
streams that contain the compressed impostor textures.  We 
render and store the video impostors at a resolution of 512x512 
in 24-bit color.  After all of the impostors have been generated, 
we compress them as MPEG streams, as described in sections 
3.4.2 and 3.5.  One stream is generated for each of the six faces 
of the cull box.  Each video stream contains 558 frames (one for 
each cell in the model).    

4.5 System Pipeline 
The architecture of the runtime portion of our system is shown 
in figure 6.  We have divided the system’s function into two 
separate tasks, view management and prefetching.  View 
management consists of the actual rendering as well as user 

interaction and object and texture preparation.  The prefetching 
task is responsible for decompressing the video impostors for 
nearby cells.  We describe each of these tasks in more detail 
below.   
 
4.5.1 View Management Task 
The view management task, implemented as a single thread, is 
responsible for generating the image the user sees each frame.  It 
performs four functions:  
 
• = Manage user input, including rendering state, navigation 

mode, and motion of the viewpoint through the model. 
• = Request far-field textures for nearby cells from the 

prefetching task. 
• = Retrieve texture data from the prefetching task and bind it 

to OpenGL texture memory for rendering. 
• = Render the model from the user’s viewpoint, including the 

far-field impostors. 
 
The user can switch at will between four navigation modes: 
trackball (rotate the entire model), drive (move forward and 

CAD 
Model

Subdivide 
Free Space Cells 

Render from 
cell centers 

MPEG 
Streams 

MPEG 
Encoding

Far 
Field

Figure 5: Preprocessing pipeline for generating cells and video streams from
a CAD model.   

Move 
Viewpoint 

Find  
Current Cell 

Enqueue 
Neighbors 

Prepare Near 
Field 

Prepare Far 
Field 

 
Render 

Prefetching MPEG 
decoder 

Cell 
Queue 

Texture 
Cache 

Disk 

User Input 

Figure 6: Runtime architecture for interactive walkthrough system.  The view-management task communicates with the 
prefetch task through the cell queue and the texture cache. 



  

backward, turn left and right), translate (move up and down and 
side-to-side), and look (remain stationary and change the view 
direction).  Navigation input is collected and applied at the 
beginning of each frame to minimize latency between user input 
and program response. 
 
The view management task is also responsible for informing the 
prefetching task of nearby cells that the user might visit soon.  
This is accomplished by updating a nearby-cell queue whenever 
the user crosses a cell boundary.  When this happens, the 
identifiers of the four cells that share a face with the (new) 
current cell are placed into the queue.  
 
We have implemented the view management task within a 
single thread in order to avoid costly OpenGL context switches 
and maintain synchronization with user input.  If the far-field 
textures for the current cell are not yet available when the view 
management task is ready to render a frame, it pauses and places 
requests for those textures at the head of the prefetching queue.  
The alternative, which some users may prefer, is to render a 
frame with an incomplete far field. 
 
4.5.2 Prefetching Task 
The prefetching task is responsible for making sure that the 
video impostors for both the current and nearby cells are 
available in memory.  We implement it as a free-running process 
that takes as its input the cell identifiers in the nearby-cells 
queue.  As each cell identifier is dequeued, it is checked against 
the texture cache.  If the video impostors for that cell are already 
resident, no further work needs to be performed.  If not, the 
relevant frames are decoded from each of the six MPEG streams 
and placed into the texture cache.  The prefetching task does not 
actually bind these textures in OpenGL.  Since this is a time-
consuming operation, it is not performed as part of prediction.  
The view management task is left to bind textures on demand.  
We have implemented the prefetching task as a single thread on 
a uniprocessor machine, and multiple threads (to permit multiple 
MPEG frames to be decoded simultaneously) on multiprocessor 
machines. 

4.6 Memory Management 
When working with massive models, host memory is often a 
scarce resource.  It is quite common for the model itself to 
occupy anywhere from tens of megabytes to tens of gigabytes of 
storage space, and for the image-based representation to be 
several times that size.  The problem is even worse when the 
video-based impostor incorporates texture maps, as texture 
memory on current PC graphics cards is often limited in size and 
slow to access. 
 
We address this problem by treating the different storage areas 
as caches for model and texture data.  Main memory is divided 
into two areas: one for the model geometry and associated 
texture maps, and one for the decompressed far-field 
representations.  We manage the texture cache using a least-
recently-used (LRU) replacement policy.  OpenGL texture 
memory is handled in a similar fashion, but is a much more 
limited resource: a typical PC graphics card may have 32MB of 
texture memory, more than half of which is occupied by the 
texture data for the model itself. It is possible to lower this 
memory requirement by separating textured objects from the rest 

of the model and binding the appropriate texture maps only 
when those objects are present in nearby cells. 
 

5 Performance and Results 
 
In this section, we describe the performance of an architectural 
walkthrough system implementing our algorithms.  We have 
tested our system on a PC running Windows NT with 256MB of 
memory, a Pentium II™ processor running at 400 MHz, and an 
Intergraph Intense3D graphics card.  Our geometric environment 
consists of a realistic model of a house containing some 45 
megabytes of geometry and 19 megabytes of high-resolution 
texture data.   

5.1 Overall Rendering Acceleration 
We demonstrate the speedup achieved by our method by 
showing the polygon count and frame rate for a fixed path 
through the house model both with and without cell-based 
culling.  Our method is able to maintain a frame rate between 10 
and 20 frames/second in the house model.  Naïve rendering is 
consistently slower than 5 fps for most views inside the house. 

5.2 Breakdown of Time Per Frame 
In Table 3, we show the amount of time our system spends on 
various tasks during each frame.  These times are averaged over 
the duration of the same sample path through the model as in 
section 5.1. 

5.3 Preprocessing  
Table 2 shows a breakdown of time and resources spent on our 
preprocessing phase.  Both the acquisition of far-field images 
and subsequent MPEG encoding to form video impostors can be 
easily parallelized. The encoding process can make use of as 
many graphics pipelines as are available. Runtime decoding is 
generally CPU-bound and benefits from a multiprocessor 
machine. 

 

Task Avg. time per frame 

Cell update <1ms 
Texture binding 32ms 

Rendering 40ms 
Total Frame Time 73ms 

Table 3: Breakdown of average frame time by task.  Prefetching of
textures happens in a separate thread and is not included. 

Table 2: Time and space requirements for each stage of
preprocessing.  These vary in direct proportion to the number of
virtual cells in the model. 

Preprocessing Stage Time Disk Space 

Cell creation <1 minute 30Kb 
Impostor generation 21 min 2511MB 

MPEG encoding 123 min 61 MB 



  

5.4 Analysis of Results 
Our system is able to maintain an upper bound on the number of 
polygons rendered in any particular view of the model, as shown 
in Figure 7.  This is a major step toward guaranteeing a 
minimum frame rate.  However, we found that binding texture 
data in OpenGL is unexpectedly expensive on our PC graphics 
card.  The regular downward spikes in Figure 8 are pauses 
between cells while the system binds the texture data for a new 
cell’s video impostors.  By comparison, the actual decoding of 
video impostors using MPL involves negligible computational 
overhead. 
 
We also encountered problems at times matching colors between 
the model and the decoded video impostors, as can be seen in 
Figure 13.  These appear to be due to the fact that different 
color-conversion formulae were used to convert from RGB to 
YUV space (during MPEG encoding) and from YUV back to 
RGB (during decoding).    

6  Conclusions and Future Work 
 
We have presented an algorithm for accelerating interactive 
walkthroughs of architectural environments by replacing 
portions of the model with video-based impostors.  We have 
demonstrated this algorithm on a textured, radiositized model of 
a house.  Our method achieves frame rates 8 times higher than is 
possible with naïve rendering on common hardware.  Although 
this does not fully meet our goals for interactivity, it represents a 
considerable improvement over previous methods and suggests 
that future improvements can possibly yield an update rate of at 
least 30 frames per second. In terms of implementation and 
application, we dealt with several issues, including the 
following: 
 
• = compensating for color quantization artifacts in the video 

compression process 
• = managing limited texture memory and low host-to-

graphics-pipe bandwidth 
• = choosing a sample density that gives acceptable results 

without excessive preprocessing overhead 
 
We are exploring the following issues related to the sampling 
and storage of video impostors: 
 
• = Fully automatic generation of cells based upon free space 

within the model, including higher sample density in 
regions of interest.  It may be possible to compute a 
Voronoi subdivision of free space and extract paths of 
maximum clearance to guide cell creation. Crowded areas 
of the model are natural targets for smaller cells and hence 
denser sampling of the far field. 

• = Better mappings from a 3D cell grid to a 1D stream of 
impostors.   Video compression techniques will give better 
results if there are fewer discontinuities (as when the 
viewpoint passes through a wall) in the input stream.  A 
mapping which stays within open regions of the model for 
as long as possible is more useful.  

• = Modifications to the encoding process to take advantage of 
the 3D source environment. Since we generate our video 
impostors from a synthetic environment using known 
camera parameters, it should be straightforward to estimate 
motion vectors during image generation rather than search 
for them during the encoding process.  We are also 
investigating encoding schemes based on a 3D cell 
structure instead of a 1D stream of images.  Such encodings 
could provide more efficient decoding and allow the use of 
impostors with fewer inherent artifacts. 
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Figure 9:  House model with cell grid overlaid in red.  Each cell is 1
meter on a side and extends from the floor through the ceiling of the
house. 

Figure 10:  One row of cells through the model.    These rows are 
used to map the cells into 1D streams for video encoding. 

Figure 13:  Example of perspective distortion caused by lack of 
depth parallax in impostors.  The viewpoint is near the cell boundary 
in this image.  Also note the color discontinuity between impostor 
and geometry. 

Figure 11:  Video impostor showing correct perspective effects.  The
viewpoint is near the cell center in this image.  Our system maintains
a frame rate between 12 and 30 frames per second for such views. 

Figure 12:  A view of the house with impostors disabled, for 
comparison with the artifacts below.  This view is rendered with a 
frame rate of roughly 2 frames/sec. 


	Abstract
	Keywords

	1	Introduction
	1.1	Main Contribution

	2	Related Work
	2.1	Interactive Display of Large Datasets
	2.1.1	Geometric Models
	2.1.2	Image-Based Representations
	2.1.4	Visibility Culling

	2.2	Combining Graphics with Video
	2.3	Video for Multimedia Applications

	3 	Overview
	3.1 	Cell-Based Walkthrough
	3.2	Cells and Portals
	3.3	Virtual Cells
	3.4 	Video-Based Impostors
	3.4.1	Creating Impostors

	3.4.2 	Video Compression of Impostors
	3.5 	Offline encoding
	3.5.1	Mapping Cells to Streams
	Choice of Encoding Algorithm
	3.5.3	Encoding Parameters


	4 	Implementation
	Tools for MPEG manipulation
	4.1.1	Offline encoding
	4.1.2  	Runtime decoding

	4.3 	Cell structure
	4.4	Preprocessing

	4.5	System Pipeline
	4.5.1	View Management Task
	4.5.2	Prefetching Task

	4.6	Memory Management

	5	Performance and Results
	5.1	Overall Rendering Acceleration
	5.2	Breakdown of Time Per Frame
	5.3	Preprocessing
	5.4	Analysis of Results

	6 	Conclusions and Future Work
	Acknowledgements
	8 	References

