

A Video-Based Rendering Acceleration Algorithm for
Interactive Walkthroughs

Andrew Wilson, Ming C. Lin,

Dinesh Manocha
Department of Computer Science

CB 3175, Sitterson Hall
University of North Carolina at Chapel Hill

Chapel Hill, NC 27599
{awilson,lin,dm}@cs.unc.edu

Boon-Lock Yeo, Minerva Yeung

Intel Corporation
Microcomputer Research Labs

2200 Mission College Blvd.
Santa Clara, CA 95052

minerva.yeung@intel.com

http://www.cs.unc.edu/~geom/Video

Abstract
We present a new approach for faster rendering of large
synthetic environments using video-based representations. We
decompose the large environment into cells and pre-compute
video based impostors using MPEG compression to represent
sets of objects that are far from each cell. At runtime, we
decode the MPEG streams and use rendering algorithms that
provide nearly constant-time random access to any frame. The
resulting system has been implemented and used for an
interactive walkthrough of a model of a house with 260,000
polygons and realistic lighting and textures. It is able to render
this model at 16 frames per second (an eightfold improvement
over simpler algorithms) on average on a Pentium II PC with an
off-the-shelf graphics card.

Keywords
Massive models, architectural walkthrough, MPEG video
compression, virtual cells, video-based impostors

1 Introduction

One of the fundamental problems in computer graphics and
virtual environments is interactive display of complex
environments on current graphics systems. Large environments
composed of tens of millions of primitives are frequently used in
computer-aided design, scientific visualization, 3D audio-visual
and other sensory exploration of remote places, tele-presence
applications, visualization of medical datasets, etc. The set of
primitives in such environments includes geometric primitives
like polygonal models or spline surfaces, samples of real-world
objects acquired using cameras or scanners, volumetric datasets,
etc. It is a major challenge to render these complex

environments at interactive rates, i.e. 30 frames a second, on
current graphics systems. Furthermore, the sizes of these data
sets appear to be increasing at a faster rate than the performance
of graphics systems.

One of the driving applications for interactive display of large
datasets is interactive walkthroughs. The main goal is to create
an interactive computer graphics system that enables a viewer to
experience a virtual environment by simulating a walkthrough of
the model. Possible applications of such a system include design
evaluation of architectural models [Brooks86,Funkhouser93],
simulation-based design of large CAD datasets [Aliaga99],
virtual museums and places [Mannoni97], etc. The development
of a complete walkthrough system involves providing different
kinds of feedback to a user, including visual, haptic,
proprioceptive and auditory feedback, at interactive rates
[Brooks86]. Real-time feedback as the user moves is perhaps the
most important component of a satisfying walkthrough system.
This faithful response to user spontaneity is what distinguishes a
synthetic environment from precomputed images or frames,
which can take minutes or even hours per frame to calculate, and
from pre-recorded video. In this paper, we focus on the problem
of generating visual updates at interactive rates for complex
environments.

Figure 1: CAD database of a house with realistic lighting and
texture. The model has over 260,000 polygons and 19 megabytes of
high-resolution texture maps. This model is too large to be naively
rendered at interactive rates.

There is considerable research on rendering acceleration
algorithms to display large datasets at interactive frame rates on
current graphics system. These algorithms can be classified into
three major categories: visibility culling, multi-resolution
modeling, and image-based representations. However, no single
algorithm or approach can successfully display large datasets at
interactive rates from all viewpoints. Some hybrid approaches
that have been investigated use image-based representations to
render “far” objects [Maciel95,Shade96,Aliaga96,Aliaga99] and
geometric representations for “near” objects
[Cohen97,Erikson99,Garland97,Hoppe96]. Commonly used
image-based representations include texture maps, textured
depth meshes, layered depth images [Aliaga99] etc. However, in
terms of application to large models, these image-based
representations have the following drawbacks:

• = Sampling: Most of the algorithms take a few finite samples

of a large data set. No good algorithms are known for
automatic generation of samples for a large environment.

• = Reconstruction: Different reconstruction techniques have
been proposed to reconstruct an image from a new
viewpoint. While some of them do not result in high
fidelity images, others require special purpose hardware for
interactive updates.

• = Representation and Storage: A large set of samples takes
considerable storage. No good algorithms are known for
automatic management of host and texture memory
devoted to these samples.

1.1 Main Contribution
In this paper, we present a method for accelerating the rendering
of large synthetic environments using video-based
representations. Video-based techniques have been widely used
for capture, representation and display of real-world datasets.
We propose the use of video based impostors for representing
synthetic environments and rendering these scenes at interactive
rates on current high-end and low-end graphics systems. We use
a cell-based decomposition of a synthetic environment and
associate a far field representation with each cell. For each cell,
we generate a sequence of far-field images and MPEG compress
them using offline encoding. At runtime, we decode the MPEG
streams and utilize algorithms that provide nearly constant time
random access to any frame, for displaying them. The frames are
selected as a function of the viewpoint. We address a number of
issues in cell generation and the use of encoding and decoding
algorithms, then demonstrate how to combine these algorithms
with multi-resolution representation and visibility culling for
interactive display. The resulting system has been implemented
and used for an interactive walkthrough of a model of a house
with realistic lighting and textures. We have tested our system
on a PC using off-the-shelf graphics hardware and achieve an
average update rate of 16 frames per second in a 260,000-
polygon model of a house 31 meters wide by 18 meters deep and
5 meters tall. This update rate represents a significant
improvement over simpler rendering algorithms.

Organization: The rest of the paper is organized in the
following manner. We survey related work in Section 2 and
present our approach in Section 3. Section 4 highlights a number
of implementation issues. We describe our system’s

performance in Section 5. Finally, we highlight areas for future
work in Section 6.

2 Related Work

In this section, we briefly survey related work on rendering
acceleration techniques and the use of image-based and video-
based representations for rendering real and synthetic
environments.

2.1 Interactive Display of Large Datasets
There are two basic types of models commonly used for
rendering large data sets: geometric representations (based on a
description of the surfaces in the model) and image-based
representations. Many hybrid combinations have also been
proposed. Based on these representations, different rendering
acceleration techniques have been proposed; examples include
multi-resolution modeling, visibility culling, and use of image-
based representations.

2.1.1 Geometric Models
By far the most common class of model representations is
geometric, where surfaces in the model are described using
polygons or curved primitives. This representation is used for
CAD, visual simulation, and most scientific applications. The
basic geometric representation, as it is commonly used, stores
each surface only once. There is no notion of appropriate
resolution, except for textures, which are commonly pre-
filtered. More advanced representations keep several levels of
detail for objects and select the correct level at run time
[Funkhouser93]. Originally, these levels of detail were
created manually. In recent years, the problem of automatic
generation of levels-of-detail has received considerable
attention in computer graphics, vision, and computational
geometry. [Cohen97, Erikson99, Garland97, Hoppe96].

2.1.2 Image-Based Representations
There has also been work on the use of images to represent
complex, but distant, portions of models at an appropriate
resolution [Maciel95,Shade96,Aliaga96]. These algorithms use
a surface-centric representation and use image-based impostors
for distant geometry. These images have been used for rendering
acceleration. However, the use of images introduces a sampling
problem: how many samples are needed for high-fidelity
rendering? Other image-based representations include camera-
centric forms [Chen93,McMillan95,Gortler96,Levoy96]. In

Figure 2: Continuum of representations of an environment, from
purely geometric to purely image-based [Lastra99]

ImageGeometry

Geometry with
textures

Conventional
Geometry

Light Fields
and QTVR

LumigraphDepth
Images

Figure 2, we show these on an axis representing how much
geometric information is used in these representations.

The image-based representations store a measure of the amount
of light arriving at a point in space, with perhaps some
information about the surface. The commercial Quicktime VR
representation [Chen95] relies on panoramic images. A user
cannot move freely around the space, but can only rotate. The
Light Field representation [Levoy96] stores images in a four
dimensional data structure representing rays between two finite
planes. The Lumigraph [Gortler96] is similar to the Light Field,
but can use some geometric information. Images with per-pixel
depth [Chen93,McMillan95] organize information as images,
but locate the samples in 3D space.

2.1.4 Visibility Culling
Besides multi-resolution models and image-based
representations, other rendering acceleration algorithms are
based on visibility culling. A particularly fruitful case has been
in the architectural model domain because of the partitioning of
space into rooms and doors (referred to in the literature as cells
and portals) [Airey90,Teller91]. For general environments,
[Greene93,Zhang97] have presented algorithms that use a
combination of object space and image space hierarchies.
[Aliaga99] have presented an approach that combines image-
based representations, levels of detail, and occlusion culling for
large geometric environments.

2.2 Combining Graphics with Video
In addition to the use of image-based representations, many
researchers have proposed techniques to use video for rendering
real and synthetic environments. There is considerable work on
techniques using interpolations among images to create visual
continuity during motion or other changes within three-
dimensional virtual spaces [Chen93,Boyd98]. Other
combinations of graphics and video include virtual sets, where
live actors can move within computer-generated settings
[Katkere97]. Carraro et al. [Carraro98] have highlighted
techniques to incorporate video displays into virtual
environments in the context of a multi-user simulator. The
MPEG-4 proposal [MPEG4] allows specification of data
displays as compositions of video and graphical objects.

2.3 Video for Multimedia Applications
There is extensive work on the use of video for multimedia
applications. These include video conferencing, video-on-
demand systems, internet video [Patel98], visual effects
[Millerson90], etc. Most of these applications involve capturing
videos of real-world scenes, then storing and organizing them
efficiently using a combination of encoding and decoding
algorithms [MPEG2, Kender97, Zhang93, Shen95, Yeung97,
MPEG4].

 3 Overview

In this section we give a brief overview of our approach. We
describe an algorithm for rendering acceleration using virtual
cells, which allows us to guarantee a minimum frame rate for an
interactive walkthrough by rendering nearby objects as

geometry and replacing distant ones with a simple video-based
impostor. Finally, we explain the application of MPEG
compression to these impostors.

3.1 Cell-Based Walkthrough
Architectural models of complex environments such as power
plants, naval vessels, aircraft, and high-rise buildings are
typically too large to render naively at interactive rates on
current graphics hardware. Such models often contain anywhere
from a few hundred thousand to a few hundred million
polygons, divided into objects numbering in the hundreds or
thousands (at least). We must reduce the number of primitives
rendered at each frame in order to bring a system’s performance
up to an interactive frame rate of between 20 and 30 frames per
second. In complex environments with large open spaces, the
rendering acceleration techniques highlighted in Section 2 are
not sufficient. We perform interactive walkthroughs of such
environments by partitioning the model into regions that contain
a bounded number of primitives, then rendering only those
primitives contained in the user’s current region at runtime.
These regions are called cells within the model. Cell-based
walkthrough originated with the method of cells and portals in
architectural models and was generalized to virtual cells by
[Aliaga99].

3.2 Cells and Portals
Architectural models often exhibit an intrinsic spatial
subdivision: individual rooms (cells) connected by doorways or
windows (portals) in otherwise opaque walls. Many
architectural environments contain large, crowded spaces where
the potentially visible set within a single cell is larger than the
rendering budget. In these environments as well as outdoor
scenes, we can apply the method of virtual cells to achieve
rendering acceleration.

3.3 Virtual Cells
We generalize the concept of cells and portals to yield virtual
cells. The space within an environment where the user might
wish to travel is partitioned into cells using some convenient
subdivision (regular grid, octree, etc.). Each cell is assigned a
large cull box which is concentric with the cell itself. The
purpose of the cull box is to divide the model into a near field,
whose contents will not exceed the per-frame rendering budget,
and a far field consisting of the rest of the model. The walls of
the cull box correspond loosely to the walls of a room in
traditional cells-and-portals. Thus, the potentially visible set for
a particular cell consists of only those objects that intersect the
cull box. We replace the far field with an inexpensive video-
based impostor created as part of an offline process of cell
generation. By varying the sizes of the cull boxes for different
cells, we can enforce an upper bound on the number of
primitives that must be rendered for any viewpoint in any cell.

Virtual cells are generated by first determining which parts of
the environment will be explored by the user, choosing sample
points within that region of exploration, and finally constructing
a rectangular cell around each sample point. Increasing the
sampling density generally yields increased fidelity at runtime at
the expense of increased storage requirements and preprocessing
time. The “volume of interest” is computed by subdividing
regions indicated by the user. Another possible approach is to

use a Delaunay triangulation of the free space and use it to
generate the virtual cells. Figure 4 shows the relationship
between a cell and a cull box in our system.

3.4 Video-Based Impostors
To avoid having to render geometry for more than one cell at a
time, we replace the far field with an opaque, image-based
impostor at runtime. This impostor should have the following
properties:

• = It should be easy and fast to create.
• = It should have a compact representation.
• = It should closely approximate the appearance of the

replaced objects.
• = It should be inexpensive to render.

Several different kinds of impostors have been explored,
including flat, textured quadrilaterals, textured depth meshes,
layered depth images, and light fields [Aliaga99]. Each has its
own tradeoffs in terms of fidelity vs. storage space and the cost
of reconstruction. For simplicity, we can use flat, textured
quadrilaterals. While they exhibit undesirable perspective
artifacts when a piece of geometry may cross between the near
and far field, they are easy to generate and impose little
rendering or reconstruction load on the system at runtime.

The fidelity of the impostor to the geometry being replaced is
similar to the problem of sampling and reconstruction in the
context of image-based representations. The algorithm takes a
finite number of samples of the environment from locations
fixed during preprocessing. At runtime, these samples are used
to reconstruct the appearance of the portion of the model
captured by impostors. The performance of the algorithm varies
considerably as a choice of these samples.

3.4.1 Creating Impostors
Image-based impostors are constructed as an offline preprocess.
Once cells have been generated for a particular model, we
employ the algorithm in Figure 3 to acquire six images of the far
field for each cell. These images will be used at runtime as
texture maps for the faces of the cull box. The OpenGL near
clipping plane is used to remove portions of the model that fall
inside the cull box. A typical resolution for the far-field images
is 512x512 in 24-bit color, which requires 4.5 megabytes of
storage for each cell during preprocessing. Since a typical
environment will have hundreds or thousands of cells, these
images must be compressed as part of preprocessing and
decompressed on demand at runtime. We apply MPEG

compression to exploit coherence between the far field images
for adjacent cells.

3.4.2 Video Compression of Impostors
The images used to compute impostors exhibit considerable
coherence from cell to cell. By arranging the 3-dimensional cell
structure into a one-dimensional list, we can impose an ordering
on the cells and arrange their far-field images into a linear
stream. This stream is amenable to compression using video
techniques. As an example, consider a path through the model as
shown in Figure 10. If the impostors from the north face of each
cull box are arranged in a stream, they depict a constant-velocity
pan through the environment. Furthermore, all of the objects
represented in each image are some minimum distance away
from the camera (typically a few meters in models between 20
and 80 meters on a side) due to the size of the cull box. This
ensures that object motion due to depth parallax is small enough
to be easily handled with motion prediction.

3.5 Offline encoding
Once all the images of the far field are available, we arrange
them into linear streams for encoding using video techniques.
The result of this encoding is the video-based representations we
use to replace distant portions of the model at runtime.

3.5.1 Mapping Cells to Streams
There are many possible ways to arrange a 3-dimensional array
as a 1-dimensional list. To maximize the benefits of video
compression, we choose a mapping with the following
properties:

• = Consecutive entries in the list exhibit coherence.
• = Changes from one image to the next can be accurately

estimated using motion prediction.
• = Adjacent cells in space often map to adjacent entries in the

list.

Figure 4: A sample cell grid. The cull box for the cell containing the
viewpoint is shown. At runtime, all objects outside the cull box will be
replaced with video impostors.

current cell

other cells

viewpoint

cull box
Figure 3: Algorithm for generating far-field images once cells have
been generated. The resulting images are MPEG-compressed for fast
runtime access.

for each cell:
place viewpoint at center of cell
set field of view so view frustum intersects cell edges
for each direction (up, down, north, south, east, west):

set view dir = $direction
clip away portions of model in front of cull-box wall
render remaining geometry
read back frame buffer and save as image

end
end

In our initial implementation, we have chosen to treat our cell
grid as an array. Rows of cells are aligned with the X axis in the
model’s space, and columns with the Y axis. We map between
our cell structure and a 1D stream by arranging the two-
dimensional array of cells in row-major order. Each of the six
faces of the cull box is used to generate a separate stream of
images.

3.5.2 Choice of Encoding Algorithm
In order to achieve maximum efficiency from our video
impostors, we chose an encoding scheme that exploits the
temporal coherence present in its input stream and is easily and
cheaply accessible at runtime. We have chosen MPEG-2
compression, as it provides a satisfactory balance between these
constraints. Moreover, hardware and software tools for fast
access and manipulation are easily available.

3.5.3 Encoding Parameters
There are three parameters in the MPEG encoding process that
govern the performance of the algorithm [MSSG]. First, the
encoder allows us to request a particular bit rate for the encoded
stream. Since the data is retrieved from a disk at runtime, we set
this parameter to be no greater than the bandwidth available
from disk to host memory. Secondly, we can constrain the
search space for motion vectors in adjacent frames. Since the
source images are of a static environment, the only motion is
due to camera parallax. Third, we choose the structure of a
group of pictures so that the discontinuities when the 1D stream
“wraps around” the 2D model are encoded as intra frames. This
same technique could be applied to other discontinuities, such as
when the 1D stream passes through a wall inside the model.

4 Implementation

In this section, we describe an implementation of our algorithm.
Our system assumes that the environment is given as a
collection of (possibly texture-mapped) polygons, and that the
user has specified a method for constructing cells. We divide
our system into two phases: preprocessing, during which cells
are created and video-based impostors are generated and
compressed, and runtime, during which the user is allowed to
walk through the environment. At runtime, MPEG manipulation
tools are used to decompress the impostors on demand.

We use a model of a house with realistic lighting and texture for
our architectural environment. The house model was
constructed from the blueprints of a real house in Chapel Hill,
contains some 260,000 polygons, and uses approximately 19
megabytes of textures acquired from the real house using a
digital camera. Our system is implemented in C++, uses
OpenGL for rendering, and runs under Windows NT.

4.1 Tools for MPEG manipulation
In this section, we give a brief overview of tools used for
encoding and decoding.

4.1.1 Offline encoding
We use the freely available MPEG Software Systems Group
encoder [MSSG] to generate MPEG-2 streams from the source
images of each cell’s far field. The encoding parameters are
modified according to the cell structure we impose upon the
model. In particular, we attempt to place intra frames wherever
the viewpoint moves through a wall or “wraps around” to the
other side of the model as a result of the 2D-to-1D cell mapping.

4.1.2 Runtime decoding
To decode the MPEG streams containing far-field images at
runtime, we use MPL (MPEG Processing Library), a software
library developed at Intel Microcomputer Research Labs
[Yeo00]. It provides general-purpose, high performance
software APIs for MPEG decoding and processing. It is
targeted at applications beyond standard decoding and display.
MPL offers convenient random access to different levels of an
MPEG bitstream, from bits and motion vectors to full frames.

MPL supports both MPEG-1 and MPEG-2 at resolutions up to
HDTV (1920x1280) and is optimized with MMXTM and SSETM
technology. Some of its advanced features include random
access to any frames with near constant-time access, fast
extraction of encoded frames, simultaneous decoding of multiple
MPEG sequences, flexible input plug-ins, SMP support and
access via callbacks to non-frame-level information in the
MPEG bitstream (e.g. raw bits, blocks, macroblocks, GOP and
slice, etc.). We used MPL due to its high-speed random-access
capability and its ability to handle multiple streams
simultaneously.

MPL’s random access and backward playback capabilities are
enabled by the use of index tables. After a video is created, an
index table is created that maps out the frame dependencies and
byte offsets of the I, P, and B frames. For instance, to access
frame number N, the index table is used to identify the closest I-
frame numbered N or smaller; thereafter, MPL decodes from
that I-frame to retrieve frame N. The size of the index table is
typically less than 1% of the entire MPEG file size. Backward
playback is handled as a special case of random access.

Table 1 shows the forward, backward and random access
decoding speed on a low-cost Pentium® III 400 MHz PC. As
shown in the table, backward decode and random access speed
of MPEG1 video at 352x240 resolutions and bit rate of 1.5
Mbps is at about 60 frames/sec, which is more than sufficient for
displaying video typically captured at 30 frames/sec.

Table 1: Performance of MPL on a PIII 400MHz PC. Playback rates are
given in frames per second.

Video
Type

Width Height Forward Backward Random
Access

MPEG1
 1.5 Mbps

352 240 272.9 58.6 57.2

MPEG2
5.0 Mbps

704 480 53.7 11.8 11.7

MPEG2
10 Mbps

1280 720 22.0 4.9 4.8

Using MPL, we are able to support the following interactions:
stop (at any frame), start or resume (from any frame), constant-
speed backward playing, constant-speed forward playing and
jump to any other video stream at any specified frame.

4.3 Cell structure
We construct a cell grid for the house environment by dividing
its two-dimensional bounding box into squares 1 meter on a
side. Each of these squares corresponds to a single cell
extending from the floor of the model up through the ceiling.
The cull box for these cells is 3 meters on a side. This
implementation uses only a single layer of cells. However, there
is nothing in our method or our system preventing us from using
a truly 3-dimensional cell structure. Figure 9 shows an overhead
view of the house model with cell boundaries drawn in red. The
house model is 31 meters by 18 meters and is 5 meters tall.
Rows of cells are aligned with the X axis in model space, and
columns with the Y axis. The cell grid contains 558 cells
arranged in 18 rows of 31 cells each.

4.4 Preprocessing
Our preprocessing phase, shown in Figure 5, consists of cell
generation, far-field rendering, and creation of the MPEG
streams that contain the compressed impostor textures. We
render and store the video impostors at a resolution of 512x512
in 24-bit color. After all of the impostors have been generated,
we compress them as MPEG streams, as described in sections
3.4.2 and 3.5. One stream is generated for each of the six faces
of the cull box. Each video stream contains 558 frames (one for
each cell in the model).

4.5 System Pipeline
The architecture of the runtime portion of our system is shown
in figure 6. We have divided the system’s function into two
separate tasks, view management and prefetching. View
management consists of the actual rendering as well as user

interaction and object and texture preparation. The prefetching
task is responsible for decompressing the video impostors for
nearby cells. We describe each of these tasks in more detail
below.

4.5.1 View Management Task
The view management task, implemented as a single thread, is
responsible for generating the image the user sees each frame. It
performs four functions:

• = Manage user input, including rendering state, navigation

mode, and motion of the viewpoint through the model.
• = Request far-field textures for nearby cells from the

prefetching task.
• = Retrieve texture data from the prefetching task and bind it

to OpenGL texture memory for rendering.
• = Render the model from the user’s viewpoint, including the

far-field impostors.

The user can switch at will between four navigation modes:
trackball (rotate the entire model), drive (move forward and

CAD
Model

Subdivide
Free Space Cells

Render from
cell centers

MPEG
Streams

MPEG
Encoding

Far
Field

Figure 5: Preprocessing pipeline for generating cells and video streams from
a CAD model.

Move
Viewpoint

Find
Current Cell

Enqueue
Neighbors

Prepare Near
Field

Prepare Far
Field

Render

Prefetching MPEG
decoder

Cell
Queue

Texture
Cache

Disk

User Input

Figure 6: Runtime architecture for interactive walkthrough system. The view-management task communicates with the
prefetch task through the cell queue and the texture cache.

backward, turn left and right), translate (move up and down and
side-to-side), and look (remain stationary and change the view
direction). Navigation input is collected and applied at the
beginning of each frame to minimize latency between user input
and program response.

The view management task is also responsible for informing the
prefetching task of nearby cells that the user might visit soon.
This is accomplished by updating a nearby-cell queue whenever
the user crosses a cell boundary. When this happens, the
identifiers of the four cells that share a face with the (new)
current cell are placed into the queue.

We have implemented the view management task within a
single thread in order to avoid costly OpenGL context switches
and maintain synchronization with user input. If the far-field
textures for the current cell are not yet available when the view
management task is ready to render a frame, it pauses and places
requests for those textures at the head of the prefetching queue.
The alternative, which some users may prefer, is to render a
frame with an incomplete far field.

4.5.2 Prefetching Task
The prefetching task is responsible for making sure that the
video impostors for both the current and nearby cells are
available in memory. We implement it as a free-running process
that takes as its input the cell identifiers in the nearby-cells
queue. As each cell identifier is dequeued, it is checked against
the texture cache. If the video impostors for that cell are already
resident, no further work needs to be performed. If not, the
relevant frames are decoded from each of the six MPEG streams
and placed into the texture cache. The prefetching task does not
actually bind these textures in OpenGL. Since this is a time-
consuming operation, it is not performed as part of prediction.
The view management task is left to bind textures on demand.
We have implemented the prefetching task as a single thread on
a uniprocessor machine, and multiple threads (to permit multiple
MPEG frames to be decoded simultaneously) on multiprocessor
machines.

4.6 Memory Management
When working with massive models, host memory is often a
scarce resource. It is quite common for the model itself to
occupy anywhere from tens of megabytes to tens of gigabytes of
storage space, and for the image-based representation to be
several times that size. The problem is even worse when the
video-based impostor incorporates texture maps, as texture
memory on current PC graphics cards is often limited in size and
slow to access.

We address this problem by treating the different storage areas
as caches for model and texture data. Main memory is divided
into two areas: one for the model geometry and associated
texture maps, and one for the decompressed far-field
representations. We manage the texture cache using a least-
recently-used (LRU) replacement policy. OpenGL texture
memory is handled in a similar fashion, but is a much more
limited resource: a typical PC graphics card may have 32MB of
texture memory, more than half of which is occupied by the
texture data for the model itself. It is possible to lower this
memory requirement by separating textured objects from the rest

of the model and binding the appropriate texture maps only
when those objects are present in nearby cells.

5 Performance and Results

In this section, we describe the performance of an architectural
walkthrough system implementing our algorithms. We have
tested our system on a PC running Windows NT with 256MB of
memory, a Pentium II™ processor running at 400 MHz, and an
Intergraph Intense3D graphics card. Our geometric environment
consists of a realistic model of a house containing some 45
megabytes of geometry and 19 megabytes of high-resolution
texture data.

5.1 Overall Rendering Acceleration
We demonstrate the speedup achieved by our method by
showing the polygon count and frame rate for a fixed path
through the house model both with and without cell-based
culling. Our method is able to maintain a frame rate between 10
and 20 frames/second in the house model. Naïve rendering is
consistently slower than 5 fps for most views inside the house.

5.2 Breakdown of Time Per Frame
In Table 3, we show the amount of time our system spends on
various tasks during each frame. These times are averaged over
the duration of the same sample path through the model as in
section 5.1.

5.3 Preprocessing
Table 2 shows a breakdown of time and resources spent on our
preprocessing phase. Both the acquisition of far-field images
and subsequent MPEG encoding to form video impostors can be
easily parallelized. The encoding process can make use of as
many graphics pipelines as are available. Runtime decoding is
generally CPU-bound and benefits from a multiprocessor
machine.

Task Avg. time per frame

Cell update <1ms
Texture binding 32ms

Rendering 40ms
Total Frame Time 73ms

Table 3: Breakdown of average frame time by task. Prefetching of
textures happens in a separate thread and is not included.

Table 2: Time and space requirements for each stage of
preprocessing. These vary in direct proportion to the number of
virtual cells in the model.

Preprocessing Stage Time Disk Space

Cell creation <1 minute 30Kb
Impostor generation 21 min 2511MB

MPEG encoding 123 min 61 MB

5.4 Analysis of Results
Our system is able to maintain an upper bound on the number of
polygons rendered in any particular view of the model, as shown
in Figure 7. This is a major step toward guaranteeing a
minimum frame rate. However, we found that binding texture
data in OpenGL is unexpectedly expensive on our PC graphics
card. The regular downward spikes in Figure 8 are pauses
between cells while the system binds the texture data for a new
cell’s video impostors. By comparison, the actual decoding of
video impostors using MPL involves negligible computational
overhead.

We also encountered problems at times matching colors between
the model and the decoded video impostors, as can be seen in
Figure 13. These appear to be due to the fact that different
color-conversion formulae were used to convert from RGB to
YUV space (during MPEG encoding) and from YUV back to
RGB (during decoding).

6 Conclusions and Future Work

We have presented an algorithm for accelerating interactive
walkthroughs of architectural environments by replacing
portions of the model with video-based impostors. We have
demonstrated this algorithm on a textured, radiositized model of
a house. Our method achieves frame rates 8 times higher than is
possible with naïve rendering on common hardware. Although
this does not fully meet our goals for interactivity, it represents a
considerable improvement over previous methods and suggests
that future improvements can possibly yield an update rate of at
least 30 frames per second. In terms of implementation and
application, we dealt with several issues, including the
following:

• = compensating for color quantization artifacts in the video

compression process
• = managing limited texture memory and low host-to-

graphics-pipe bandwidth
• = choosing a sample density that gives acceptable results

without excessive preprocessing overhead

We are exploring the following issues related to the sampling
and storage of video impostors:

• = Fully automatic generation of cells based upon free space

within the model, including higher sample density in
regions of interest. It may be possible to compute a
Voronoi subdivision of free space and extract paths of
maximum clearance to guide cell creation. Crowded areas
of the model are natural targets for smaller cells and hence
denser sampling of the far field.

• = Better mappings from a 3D cell grid to a 1D stream of
impostors. Video compression techniques will give better
results if there are fewer discontinuities (as when the
viewpoint passes through a wall) in the input stream. A
mapping which stays within open regions of the model for
as long as possible is more useful.

• = Modifications to the encoding process to take advantage of
the 3D source environment. Since we generate our video
impostors from a synthetic environment using known
camera parameters, it should be straightforward to estimate
motion vectors during image generation rather than search
for them during the encoding process. We are also
investigating encoding schemes based on a 3D cell
structure instead of a 1D stream of images. Such encodings
could provide more efficient decoding and allow the use of
impostors with fewer inherent artifacts.

7 Acknowledgements

We wish to thank some of the people whose assistance has been
instrumental in this work. Matt Holliman of Intel’s Media and
Graphics Lab provided much-needed insight into problems with
color quantization and compression. We are particularly
grateful to the UNC Walkthrough team for allowing us access to
the CAD model of the house and for providing infrastructure
and model-translation assistance. We thank Bob Liang at Intel
for inviting the first three authors to the MGL group during the
summer of 1999. This research was also supported in part by

0

50000

100000

150000

200000

250000

1 101 201 301 401 501 601 701 801

Frame number

Po
ly

go
ns

 re
nd

er
ed

Unaccelerated Accelerated

Figure 7: Polygon counts along a sample path, with and without
acceleration. Our method imposes an upper bound of roughly
30000 polygons for any view of the model.

0

5

10

15

20

25

30

35

1 101 201 301 401 501 601 701 801

Frame Number

Fr
am

es
 p

er
 S

ec
on

d

Unaccelerated Accelerated

Figure 8: Frame rates along a sample path, both with and without
video-based acceleration. Our system achieves an average frame rate
of 16 frames per second.

ARO contract DAAG55-98-1-0322, a DOE ASCI Grant, NSF
grants NSG-9876914, DMI-9900157 and IIS-9821067, an ONR
Young Investigator Award, and NIH Research Resource Award
2P41RR02170-13.

8 References

[Airey90] J. Airey, J. Rohlf, and F. Brooks, “Towards image realism
with interactive update rates in complex virtual building
environments”, In Proc. of ACM Symposium on Interactive
3D Graphics, 1990, pp. 41--50.

[Aliaga96] D. G. Aliaga, “Visualization of Complex Models Using
Dynamic Texture-based Simplification”, IEEE Visualization
'96,October 1996.

[Aliaga99] D. Aliaga et al., “MMR: An integrated massive model
rendering system using geometric and image-based
acceleration”, Proc. of ACM Symposium on Interactive 3D
Graphics, April 1999.

[Boyd98] J. Boyd, E. Hunter, P. Kelly, L. Tai, C. Phillips and R. Jain,
"MPI-Video Infrastructure for Dynamic Environments", to
appear in IEEE International Conference on Multimedia
Systems 98.

[Brooks86] F. Brooks. Walkthrough: A dynamic graphics system for
simulating virtual buildings. In ACM Symposium on
Interactive 3D Graphics, Chapel Hill, NC, 1986.

[Carraro98] G. Carraro, J. Edmark and J. Ensor, “ Techniques for
Handling Video in Virtual Environments”, Proc. of ACM
SIGGRAPH, 1998, pp. 353-360.

[Chen93] S. Eric Chen and Lance Williams, “View Interpolation for
Image Synthesis”, In Computer Graphics (SIGGRAPH '93
Proceedings), vol. 27, J. T. Kajiya, Ed., August 1993, pp.
279--288.

[Chen95 S. Chen, “Quicktime VR: An image based approach to virtual
environment navigation”, Proc. of ACM SIGGRAPH, 1995.

[Chim98] J. Chim, M. Green, R. Lau, H. Leong and A. Si, “On Caching
and Prefetching of Virtual Objects in Distributed Virtual
Environments”, Proc. of ACM Multimedia, 1998, pp. 171-
180.

[Cohen97] J. Cohen, D. Manocha, and M. Olano. “Simplifying
Polygonal Models Using Successive Mappings”. In Proc. of
IEEE Visualization, Tampa, AZ, 1997.

[Erikson99] C. Erikson and D. Manocha, “GAPS: General and Arbitrary
Polygon Simplification”, Proc. of ACM Symposium on
Interactive 3D Graphics, 1999.

[Funkhouser93] T. A. Funkhouser. “Database and Display Algorithms
for Interactive Visualization of Architecture Model”. Ph.D.
thesis. CS Division, UC Berkeley, 1993.

[Garland97] M. Garland and P. Heckbert, “Surface simplification based
on Quadric Error Metric”, Proc. of ACM SIGGRAPH, 1997.

[Gortler96] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen,
“The Lumigraph” In SIGGRAPH 96 Conference
Proceedings, August 1996, pp. 43--54.

[Greene93]N. Greene, M. Kass, G. Miller, “Hierarchical Z-buffer
visibility”, Proc. of ACM SIGGRAPH 1993.

[Hoppe96] H. Hoppe. Progressive Meshes. In SIGGRAPH 96
Conference Proceedings: ACM SIGGRAPH, 1996, pp. 99--
108.

[Katkere97] A. Katkere, S. Moessi, D. Kuramura, P. Kelly and R. Jain,
“Towards video-based immersive environments”,
Multimedia Systems, May 1997, pp. 69-87.

[Kender97] John Kender and B. Yeo, “Video Scene Segmentation via
Continuous Video Coherence”, IBM Research Report RC
21061, December 1997.

[Lastra99] A. Lastra, Private communication, University of North
Carolina at Chapel Hill, 1999.

[Levoy96] M. Levoy and P. Hanrahan. “Light Field Rendering”, in
SIGGRAPH 96 Conference Proceedings, August 1996, pp.
31--42.

[Maciel95] W. C. Maciel and Peter Shirley. “Visual Navigation of Large
Environments Using Textured Clusters.” In 1995 Symposium
on Interactive 3D Graphics, April 1995, pp. 95-102.

[Mannoni97] B. Mannoni, “A Virtual Museum”, Communications of the
ACM, vol. 40, no. 9, pp. 61-62, 1997.

[McMillan95] L. McMillan and Gary Bishop, “Plenoptic Modeling: An
Image-Based Rendering System”, in SIGGRAPH 95
Conference Proceedings, August 1995, pp. 39-46.

[Millerson90] G. Millerson. The Technique of Television Production.
Focal Press, Oxford, England, 1990.

[MPEG2] MPEG-2, ISO, ISO/IEC JTCI CD 13818, Generic Coding of
moving pictures and associated audio, 1994.

[MPEG4] MPEG4 Home Page. In http://drogo.cselt.stet.it/mpeg.
[MSSG] MPEG Software Simulation Group home page,

http://www.mpeg.org/MSSG.
[Patel98] Ketan Patel and Lawrence Rowe, “Exploiting Temporal

Parallelism for Software-only Video Effects Processing”,
Proc. of ACM Multimedia, pp. 161-170, 1998.

[Rohlf94] J. Rohlf and J. Helman, “Iris Performer: A high performance
multiprocessor toolkit for realtime 3D Graphics”. In Proc.
of ACM Siggraph, 1994, pp. 381--394.

[Shade96] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder,
“Hierarchical Image Caching for Accelerated Walkthroughs
of Complex Environments”, In SIGGRAPH 96 Conference
Proceedings, August 1996, pp. 75--82.

[Shen95] K. Shen and E. J. Delp, “A fast algorithm for video parsing
using MPEG compressed sequences”, International
Conference on Image Processing, vol. II, pp. 252-255, Oct.
1995.

[Teller91] S. Teller and C. H. Sequin. Visibility preprocessing for
interactive walkthroughs. In Proc. of ACM Siggraph, 1991,
pp. 61--69.

[Tu00] X. Tu and B. L. Yeo, “Interactive Video for E-Merchandising”,
Intel Internal Report, Jan. 2000.

[Wei97] Q. Wei, H. Zhang and Y. Zhong, “A robust approach to video
segmentation using compressed data”, Proceedings SPIE
Storage and Retrieval for Still Images and Video Databases
V, vol. SPIE 3022, pp. 448-456, Feb. 1997.

[Yeung97] M. Yeung and B. Yeo, “Video visualization for compact
presentation and fast browsing of pictorial content”, IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 7, pp. 771-785, Oct. 1997.

[Yeo00] B.L. Yeo, M. M. Yeung, and V. Kuriakin. “MPEG Processing
Library (MPL)”, Intel Internal Report, Jan. 2000.

[Zhang93] H. Zhang, A. Kankanhalli and S. Smoliar, “Automatic
partitioning of full-motion video”, Multimedia Systems, vol.
1, pp. 10-28, July 1993.

[Zhang97] H. Zhang, D. Manocha, T. Hudson, and K. Hoff, “Visibility
culling using hierarchical occlusion maps”, In Proc. of ACM
Siggraph, 1997.

http://vision.ucsd.edu/~jeffboyd/papers/mm98.ps.gz
http://drogo.cselt.stet.it/mpeg
http://www.mpeg.org/MSSG

Figure 9: House model with cell grid overlaid in red. Each cell is 1
meter on a side and extends from the floor through the ceiling of the
house.

Figure 10: One row of cells through the model. These rows are
used to map the cells into 1D streams for video encoding.

Figure 13: Example of perspective distortion caused by lack of
depth parallax in impostors. The viewpoint is near the cell boundary
in this image. Also note the color discontinuity between impostor
and geometry.

Figure 11: Video impostor showing correct perspective effects. The
viewpoint is near the cell center in this image. Our system maintains
a frame rate between 12 and 30 frames per second for such views.

Figure 12: A view of the house with impostors disabled, for
comparison with the artifacts below. This view is rendered with a
frame rate of roughly 2 frames/sec.

	Abstract
	Keywords

	1	Introduction
	1.1	Main Contribution

	2	Related Work
	2.1	Interactive Display of Large Datasets
	2.1.1	Geometric Models
	2.1.2	Image-Based Representations
	2.1.4	Visibility Culling

	2.2	Combining Graphics with Video
	2.3	Video for Multimedia Applications

	3 	Overview
	3.1 	Cell-Based Walkthrough
	3.2	Cells and Portals
	3.3	Virtual Cells
	3.4 	Video-Based Impostors
	3.4.1	Creating Impostors

	3.4.2 	Video Compression of Impostors
	3.5 	Offline encoding
	3.5.1	Mapping Cells to Streams
	Choice of Encoding Algorithm
	3.5.3	Encoding Parameters

	4 	Implementation
	Tools for MPEG manipulation
	4.1.1	Offline encoding
	4.1.2 	Runtime decoding

	4.3 	Cell structure
	4.4	Preprocessing

	4.5	System Pipeline
	4.5.1	View Management Task
	4.5.2	Prefetching Task

	4.6	Memory Management

	5	Performance and Results
	5.1	Overall Rendering Acceleration
	5.2	Breakdown of Time Per Frame
	5.3	Preprocessing
	5.4	Analysis of Results

	6 	Conclusions and Future Work
	Acknowledgements
	8 	References

