
Geometric Algorithms for Message Filtering in

Decentralized Virtual Environments

Yohai Makbily’
Technion - Israel Institute of Technology

Craig Gotsman*
Virtue Ltd.

Reuven Bar-Yehuda’
Technion - Israel Institute of Technology

Abstract 1. Introduction

Distributed virtual environments impose a heavy load on
the network upon which they reside. Bandwidth is a po-
tential bottleneck because n users imply 0(n*) update
messages per time unit, which is prohibitive for a large
number of users. Efficient message filtering is called for,
in both centralized systems, having a central server, and
decentralized systems, having no central server. We solve
the message filtering problem for decentralized multi-user
systems based on geometric virtual worlds, popular in
interactive 3D graphics applications. This is achieved by
exploiting the visual relevance relationship (based on
proximity, visibility and direction criteria) between pairs
of users to compute mutually irrelevant regions in user
parameter space. These regions are then used as up-
date-free regions (UFR’s); i.e. no communication between
users is required while they are in their respective re-
gions. Geometric algorithms for computing UFR’s for the
proximity, visibility and direction relevance criteria are
described. Our implementation and experimental results
show that the message-filtering algorithm is out-
put-sensitive. Use of our algorithms is especially effective
where messages are sent through a slow communication
network, such as the Internet.

Distributed multi-user systems, where many agents roam
within a virtual environment, have recently gained popu-
larity. Two major technical advances drive this trend:
computer graphics and computer networks. With the ad-
vent of the Internet and the virtual reality modeling lan-
guage (VRML) [S], 3D shared environments are a reality.
Commercial VRML-based examples are Blaxxun’s Com-
munity Server [3] and Sony’s Community Place [9].

CR Categories and Subject Descriptors: C.2.4 [Com-
puter Communication Networks]: Distributed Systems;
1.3.5 [Computer Graphics] Computational Geometry and
Object Modeling; 1.3.7 [Computer Graphics]: 3D Graph-
ics and Realism.

Additional Keywords: distributed systems, virtual real-
ity, message filtering.

Distributed environments can be implemented on two
kinds of system architectures: centralized or decentral-
ized. Centralized systems are typically based on a server
(or servers) connected to a large number of clients. All
information sent between clients passes through the
server. Despite its simplicity, the client-server architec-
ture has serious drawbacks. The first is latency: using an
intermediate relay between two clients can cause signifi-
cant communication delays (consider two clients located
in the same city and the server in another continent). The
second is scalability: handling the multitude of messages
generated by a large number of clients can seriously
overload any single server machine. ~(n*)messages per
time unit must flow through the server (between all pairs
of clients) to keep n clients up-to-date. To make this man-
ageable, the server must reduce the number of outgoing
update messages by employing message filtering tech-
niques (e.g. the RTIME “Intelligent message filtering”
technology [lI]). The third drawback is the vulnerability
of the system to server failures, which may paralyze the
entire system. Because of these drawbacks, a decentral-
ized implementation is to be preferred.

’ Computer Science Dept., Technion - Israel Institute of
Technology, Haifa 32000, Israel.
{myohai,reuven}@cs.technion.ac.il
* Virtue Ltd., P.O.Box 199, Tirat Carmel 30200, Israel.
gotsman@virtue3d.com

Permission to make digital or hard copies ofall or part of this work for
personal or classroom use is granted without fee provided that copies
arc nnt made or distributed for prolit or commercial advantage and that
topics bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission andior a fee.

1999 Symposium on Interactive 3D Graphics Atlanta GAUSA
Copyright ACM 1999 I-581 13-082-1/99/04...$5.00

In decentralized systems, or so-called point-to-point sys-
tems (e.g. Earnshaw et al’s VRMUD environment [6]),
communication between clients is done directly. This
minimizes latency. However, the scalability problem re-
mains, since requiring that all clients have an up-to-date
knowledge of the states of other clients implies that each
of n clients will receive n-l messages per time unit. Here
too, message filtering techniques are required to reduce
the load to the bare minimum. This is potentially possible
since not every message from every client is relevant to
every other client. Examples of relevance relations are
proximity (“is B too far from A for A to care about ?“),
direction (“is A looking at B ?“) and visibility (“is B visi-
ble to A ?“). The main question then becomes how can
each client be sent o&y what it needs and not much more
than this.

39

Existing message filtering algorithms in distributed sys-
tems are suitable primarily for the centralized model. The
filtering is done relatively easily by the server which con-
stantly has an up-to-date knowledge about all the clients.
In this system there is one fully-updated entity, the server,
and a collection of partly-updated entities, the clients,
who are guaranteed to have all relevant up-to-date data.
In decentralized systems, with no central server, message
filtering is much more complicated. In these systems,
contradicting requirements are to be met: intelligent deci-
sions are to be made at each client, but yet no client is
guaranteed to have full knowledge about the world.

The following example demonstrates why the decentral-
ized message filtering problem is difficult: Consider a
simple environment consisting of two agents (clients) A
and B. Furthermore, assume that A and B cannot see each
other (for example, they are occluded from each other),
namely, they are mutually irrelevant. In this situation B
should not update A (of its movements), because A has no
use for these updates until B becomes visible. However,
for B to continue to make the correct decision whether to
update A, B must always know where A is, namely, A
must always send messages to B. The same holds for A: In
order to decide correctly, B must always update A. The
result is a paradox: A and B must always update each
other in order to be able to decide when not to update
each other. For an example of an erroneous situation
which might arise if care is not exercised in these situa-
tions, see Fig. 1

I B’ ‘A
i A

Bll /j/ I
B. n A

’ I ’ jr/ ..:

(4 (b) (c)

Figure 1: An erroneous situation arising in decentralized
multi-user systems: (a) A and B are located on opposite
sides of an occluder. (b) A moves upwards, not updating
B since A’s trajectory is invisible to B. (c) B also moves
upwards, not updating A, since B is invisible to A ac-
cording the information B has about A. The result is in-
consistent: A and B think they do not see each other, even
though they do.

Achieving absolute message filtering, i.e. sending only
relevant updates, is probably impossible, but it is possible
to decrease the messages traveling in the network to al-
most only the relevant ones. This paper shows how.

The general technique is as follows: if a pair of agents are
irrelevant, it is possible to compute two regions in their
parameter space containing the agents’ respective states,
such that as long as each agent is in its respective region -
they remain irrelevant. These regions are called up-
date-free regions (UFR’s) (see Fig. 2). The protocol for
updates between each pair of agents will then be as fol-
lows: as long as each agent is inside its UFR - updates
need not be sent, and the agents are silent. When an agent
exits its LJFR, a mutual update is required. From that time
on - updates are transmitted between the agents and rele-
vance is tested for at every time step. As soon as the
agents become irrelevant again, new UFRs are computed,
the agents fall silent, and the process iterates. See Fig. 3
for an example. The key is to design the UFRs as cleverly
as possible, so as to maximize the time until each agent
exits his respective region. This will minimize the number
of updates.

I I

(a)

Figure 2: Possible UFR’s for the example in Fig.1. As
long as A and B do not exit their respective UFR’s, no
communication is required between them.

(4 (b) (cl

Figure 3: UFR’s for message filtering purposes, com-
puted during agent movement: (a) Initial states and
UFR’s. A moves upwards. (b) A exits UFR, resulting in
new UFR computation. B then moves downwards. (c) B
exits UFR, resulting in another UFR computation.

When the relevance relation is symmetric (e.g. proximity
or visibility), either both agents should be silent (while
irrelevance holds) or constantly transmitting (when rele-
vance holds). If the relation is asymmetric (e.g. direction),
situations may arise when just one agent is constantly
transmitting, and the other silent. In this case, since at
least one agent (the silent one) is always up-to-date,
UFR’s are not required. In effect, the up-to-date agent
functions as a mini-server.

40

The remainder of this paper is organized as follows: The
next section surveys previous work related to message
filtering. Section 3 describes the general UFR method and
a user behavioral model on which the UFR computations
are later based. Section 4 describes concrete geometric
algorithms to compute 2D UFR’s for the proximity, di-
rection and visibility relevance relations. Not surpris-
ingly, the most interesting, and complex, algorithm
emerges from the visibility relation. We measure the per-
formance of our algorithms empirically in Section 5, and
conclude in Section 6.

2. Previous Work

This section surveys existing message filtering methods, de-
signed mostly for centralized multi-user systems, and discusses
if and how they are applicable to decentralized systems.

Consider, for example, the visibility relation. A central server
which must decide if an update originating at A must be sent to
B, has to perform a geometric line-of-sight (LOS) calculation
between A and B. To perform optimal message filtering, the
server must perform this computation online for all pairs of
agents at each time step, which is prohibitive. Distance compu-
tations for determining the proximity relation, as in COMMIC
[2], DIVE [5] and Virtual Society [9] are less expensive, so
more tolerable, but still a significant load on any server.

In order to save online relevance computations, but still be able
to perform reasonable message filtering, the RING [7],
CLOVES [4], NPSNET [lo] and SPLINE [1] systems partition
the 3D virtual world to cells (with various regular or irregular
structures). Two cells are said to be relevant if at least one point
in each cell are relevant. In a preprocessing phase, the relevance
relationship between every pair of cells is calculated and stored
in a map at the server. Note that this is applicable only to static
geometric worlds, and, for a typical virtual world, most pairs of
cells will be relevant, especially if the cells are large. The rele-
vance map is exploited at run-time when the server sends the
updates originating at agent A only to other agents in cells that
are relevant to the cell containing A. However, the technique is
conservative: the agents might be irrelevant even though they
are located in relevant cells. This results in unnecessary up-
dates, so is suboptimal. Increasing the map cell resolution will
increase the effectiveness of the map, at the expense of more
storage space.

At first glance, it might seem that cell-to-cell relevance tech-
niques are applicable to message filtering in decentralized sys-
tems by storing the relevance map at each client. Besides this
technique being limited to only static scenes, a second glance
reveals that the only benefit that may be reaped from the rele-
vance map is that two agents may be silent as long as they are in
mutually irrelevant cells, and they both know that they are in
their respective cells. This is the simplest form of UFR’s. Once
an agent A exits its cell, it must break its silence to B, lest A’s
new cell is relevant to B’s.

The temporal bounding volume (TBV) visibility algorithm for
dynamic scenes, proposed by Sudarsky and Gotsman [12], is
applicable to message filtering in decentralized virtual envi-
ronments. The TBV is a volume guaranteed to contain a dy-
namic agent from its creation until some expiration date based
on some knowledge of the agent’s behavior (for instance, its
maximal velocity). To perform message filtering, an agent A
maintains a TBV for each other agent in the system. Once the
TBV associated with B expires or becomes relevant (e.g. visi-
ble), A requests from B an update on B’s status, as B might be
relevant now. Until then B was silent. The problem with this
technique is that it is concerned with notions of time (“expira-
tion date”), while the visual relevance relation is determined by
only spatial data (e.g. the location). Moreover, using this tech-
nique, agent A computes a TBV for agent B based only on B’s
data, as opposed to UFR’s, which are computed based on both
A’s and B’s data. Hence, the TBV solution is suboptimal.

When agent behavior is somewhat predictable, dehd reck-
oning [lo] may be used to further reduce the message
load, Here both agents jointly assume some predictable
behavior of each other, and are silent as long as they in-
deed behave that way and are irrelevant based on that
behavior. The first agent to break the behavior pattern
transmits an update, and this reiterates. It is clear that
dead reckoning is useful only for scenarios where most
agent movements are predictable.

3. The General UFR Method

To perform message filtering in decentralized systems, we must
provide each agent with a decision procedure on what to send to
other agents in the system, or, in other words, which of the po-
tential n-l updates may be filtered (not transmitted).

Our general message filtering algorithm, run at each agent inde-
pendently, is outlined in Fig. 4, and can be described as fol-
lows: A region is a continuous set of states an agent can have in
its parameter space (location, direction, etc.). An Up-
date-Free-Region of an agent A, associated with another agent
B (A.UFR[B]), is a region such that as long as A’s state is lo-
cated within the region, it does not need to communicate with
B. Computing UFR’s on the fly for each pair of agents is the
key to the message filtering algorithm. For polygonal environ-
ments, these UFR’s turn out to be polygonal, so checking con-
tainment in a UFR is a simple point-in-polygon query. While
each agent is in its respective UFR, messages between the two
agents may be filtered, because the agents are mutually irrele-
vant. Once one of the agents exits its UFR, updates must be
sent. As soon as irrelevance holds again, the UFR’s are recom-
puted, and the process iterates. Optimal UFR’s are those con-
taining the agents for as long as possible. This implies that the
UFR’s should have maximal areas, namely, there will be no
possibility of enlarging any UFR while keeping the regions
mutually irrelevant. The pair of UFR’s should also be balanced
(if the agents’ behavior is identical). Since the UFR must be
computed in near real-time, a fast algorithm is helpful. Con-
straints on the agents behavior may simplify the UFR’s compu-
tation We present algorithms for the case where the motion of
the two agents are unconstrained, and their behavior identical.

41

while (1)
if (A.state not in A.UFR) then

if (UFR == 0) then
A.send(B,A.state,noWait);
st=B.state;

end
else

A.send(B,A.state, wait);
msg = A.receive(B);
st = msg.state;

end
A.calc UFR(st); -

End
If (msg =A.onReceived(B)) then

if(msg.isWait)then
A.send(B,A.state,noWait);

A.calc-UFR(st);
end
A.change-state0;

End

Figure 4: Message filtering algorithm for agent A updat-
ing agent B.

The effectiveness of the UFR algorithm depends on the agent’s
behavior. If the agent advances consistently in one direction, it
will soon approach the UFR’s boundary and stray outside the
UFR, resulting in communication and possibly UFR recompu-
tation. If the agent moves in a random walk, it tends to stay
close to its initial state and remain within the UFR, staying
silent for a long period of time. The ideal, but least interesting
case, is when the agents do not move at all, forever remaining
within their UFR’s, hence silent ad infinitum. The following
model captures possible agent behavior: at each step the agent
advances a fixed distance in a direction picked at random within
a fixed range of directions, denoted by the parameter u, relative
to its initial state. See Fig. 5 for examples.

Larger values of a describe more random behavior. Values of a
less than 180 describe movement in which the agent’s distance
from the initial state can only increase. We believe the model
most representative of a typical (human) agent’s behavior is a
=180. In this case there is a good balance between the agents’
tendency to distance itself from its origin, but yet have some
random behavior.

As Fig. 2 shows, given states of two agents there are many pos-
sible ways to define UFR’s. Which is to be prefered ? We an-
swer this with the following argument: Given the initial location
in parameter space of an agent A, what can another agent B
deduce about the whereabouts of A after some time t ? Only
that A will have moved some distance from the initial state.
Since many directions are equi-probable, B may model A as
having “moved” simultaneously in all directions. The same
holds for A’s knowledge of B. Since the agent continuously
distances itself from the initial state, this movement may be
simulated by an imaginary simultaneous expansion of the
agents in space from their initial states. We call this process the
mutually expanding process, and use it to define optimal
UFR’s: Each agent, starting from its initial state, “conquers” a
state in the space if the state is irrelevant to all other states con-
quered so far by the other agent, and it reaches it before the
other. The process stops when no more states may be con-
quered. Each agent’s conquered region can then function as its
UFR.

(4
r I

!i
(d) (e)

Figure 5: The agent behavior model (a) The agent can
advance from its current position s2 in any direction
contained in an arc of 0 degrees around the line between
s2 and its initial position sl. (b) Trajectories of two
agents for a=360 (random walk) (c) a=270 (d) a=180 (e)
a=90 (f) a=0 (deterministic walk).

(4 0)) (c 1
,-

(4

Figure 6: Visibility-based mutual expanding process used
to define optimal UFR’s: (a) Initial states (b) Some time
later, the agents are simultaneously expanding and still
are invisibie from each other. (c) Some time later, the
boundaries of the UFRs start to form. (d) Final UFR’s -
the regions cannot be extended.

Fig. 6 is a sequence of snapshots of the expanding process in
the scenario of Fig. 1. It shows that the optimal UFR’s in this
scenario are those of Fig. 2(a).

The UFR Definition

Let Dist(agent, state) be the distance for an agent to
travel from its current state to the given state (this is not
necessarily the Euclidean distance if there are obstacles)

Let R(statel, state2) be the relevance relation, between
agent2 in state2 to agent1 in statel. R(state, path) holds
iff there exist s E path such that R(state,s). The path is a
collection of states.

The Update-Free Region of A relative to B (A.UFR[B]) is
the maximal set of states such that:

Vp E A.UFR,Vg E World :

R(q, p) -+ 3s E AIJFR :
[R(s,Puth(B,q)+ Dist(A,s)< Dist(B,q)] 1

42

In words: point p is in A’s UFR if for any other point q
relevant to p, there exists a point s in A’s UFR such that
the path from agent B to q is relevant to the point s and
the time for agent A to reach s is at least the time for
agent B to reach q.

Note that since equal velocities are assumed for the
agents, we have replaced the notion of time with distance
(“the time to reach is less than” is replaced by “the dis-
tance to is less than”).

4. UFR Algorithms

We now present geometric algorithms for computing
UFR’s for three different relevance relations: proximity,
direction and visibility. The algorithms operate on 2D
(“flatland”) scenes, which, in many scenes, may be con-
sidered as the 2D projection of a 3D scene (e.g. in build-
ings with walls). The proximity and direction-based UFR
algorithms may be generalized easily to true 3D scenes.

4.1 Proximity-Based UFR’s

The proximity-based relation is defined as follows:

V agent, state E World :

R(agent,state) e

dist(state.location, agent location) 5 agent.releveanceDist) I

To compute the UFR, a perpendicular is extended through
the midpoint of the segment AB. The UFR boundaries are
then parallel to this perpendicular, at equal distances from
it.

Line = linethrough(A.location,B.location);
PerpLine = line.getPerendicularAt(

Figure 7: The proximity-based UFR algorithm.

(4 04

Figure 8: Outputs from the proximity-based UFR algo-
rithm: (a) Agents A and B have same relevance distance.
(b) When A is less mobile than B, the algorithm may be
generalized to yield this result.

Fig. 8(a) shows a sample output from the proximity-based algo-
rithm. It is obvious that the regions computed by this algorithm
are mutually irrelevant: it is not possible to draw a line segment
between two points in each region respectively that is longer
than the distance between the parallel lines. This algorithm
requires 0(1) time.

4.2 Direction-Based UFR’s

The direction-based relation, a function of both agent
view direction and location, is defined as follows:

Qagent, state E World :

[R(agent, state) a state E agent.JieldOjView]

Since the direction relation is not symmetric, the UFR’s for
direction-based relevance are a combination of two types of
regions: a 2D region in location space, and a 1D region in di-
rection space, which is a sector of angles. This means that an
agent will not have to send update messages only as long as it is
in both these regions, namely, it has freedom to move in the
location space UFR, and turn in any direction (along its own
axis) in the direction UFR. Since the regions are not independ-
ent, the maximal UFR is not well-defined, as each UFR may be
enlarged at the expense of the other: We can allow more free-
dom of movement if the directional movement is limited. How-
ever, it is always possible to allow a direction UFR of at least
180 degrees without compromising the area of the location
UFR. Fig. 9 outlines the algorithm and Fig. 10 some sample
output.

Figure 9: The direction-based UFR algorithm. The direc-
tion UFR’s are 180 degrees wide, and the location UFR’s
are two half planes.

(a) (b) (c)

Figure 10: Output of the direction-based UFR computa-
tion algorithm: (a) Agent locations and view directions.
(b) UFR’s in location space. (c) UFR’s in direction space.

4.3 Visibility-Based UFRs

The more interesting, and complex, relevance relation is
visibility, i.e. the existence of an unobstructed line of
sight (LOS) between two agents. The definition of the
visibility-based relation is as follows:

43

Vagent,state E World :

[R(agent,state) -3 LOS(agent.location,state.location)]

The UFR computation algorithm for this relation actually
mimics the “dual” of the mutually expanding process. For
a given pair of agents, each agent computes the UFR of
both agents simultaneously, and afterwards discards the
UFR of the other. The computation proceeds as follows: A
finite set of strategic viewpoints is maintained for each
agent, initialized to their initial locations. As the view-
points are accumulated, the UFR’s shrink to correspond to
the intersection of all the regions occluded from these
viewpoints. Hence, the UFR of A is initially the region
occluded from B, and vice-versa. The viewpoints are gen-
erated by tracking discrete events, which are points in
time where changes in the behavior of the mutually ex-
panding process occur. See Fig. 11 for examples of such
events. The events are related to the occluders’ vertices
(end-points if the occluder is a line segment). The process
terminates when all events have been exhausted.

. .
17

I
(4 (b) Cc) Cd)

Figure 11: Computation of visibility-based UFR’s: (a)
Agent locations, (b) First approximation to UFR’s are oc-
cluded areas. (c) Partition event shrinks the UFR’s by
setting their lower boundaries to a line through the bottom
occluder vertex. (d) Partition event again shrinks UFR’s
by setting their top boundaries analogously.

There are four kinds of events: add, partition, watch and
watch-prevention.

Add: This is the event in which the expanding process
behavior changes by encountering an occluder vertex.
This generates a new viewpoint (see Fig. 12).

(4 (b) (c)

Figure 12: The Add event: Snapshots taken from an ex-
panding process (a) Initial state. (b) Hitting an occluder
vertex generates a new viewpoint (c) The two viewpoints
continue to expand simultaneously.

Partition: This is the event in which mutual visibility is
about to occur. It is subsequently prevented by creating a
boundary line for the UFR’s (see Fig. 13).

Watch: This is the event in which an agent can see a ver-
tex, i.e. reach a point from where a formerly occluded
vertex is now visible.

Watch Prevention: This is the event in which an agent
reaches a point from where it prevents the watch event by
the other agent.

I I I I
(a) @)

Figure 13: The Partition event: (a) Agents moving in expansion
process and about to become mutually visible. (b) When they
become mutually visible, a new viewpoint is generated for each
agent, and so a partition line is formed.

The complete UFR computation algorithm is outlined in Fig.
14.

// Initialize agent viewpoint sets.
A.viewpoints = I A.location 1;
B.viewpoints = { B.location 1;
// Generate events and their locations.
Event-set = 0;
for (each occluder vertex v)

Event-set.add(world.calcFirstEvent(v));
// Initialize agent UFR's.
A.UFR = world.calcOccludedRegionFrom(B);
B.UFR = world.calcOccludedRegionFrom(A);

// while the set does not contain events with
//infinite priority.
While (not Event-set.isEmptyO) I

// get event closest in time.
Event= Event-set.getElementWithMaxPriorityO;
// update UFR by intersection.
Event.owner.companion.updateUFR(

event.Location);
if (event.type == Add)

// Add event generates viewpoint.
Event.owner.viewpoints +=event.Location;

If(event.type==Add II event.type== Partition)
Event_set.remove(event);

// else other types of events.
Else event.update();
//update priorities of all remaining events.

Forteachevent in Event-set) event.updateO;
)

Figure 14: The visibility-based UFR algorithm.

Observations

1. Since an agent’s UFR is occluded from the other
agent, the boundaries of this region consist also (besides
occluder edges and world boundaries) of lines through
occluder vertices.
2. Only connected UFRs are computed, since moving
between two unconnected occluded areas forces the agents
to be visible to each other.

44

Fig. 15 shows some examples of UFR’s computed by the
algorithm in some multi-occluder environments. Proof of
the correctness of this algorithm is beyond the scope of
this paper. We will just mention that its complexity is
0(n3), where n is the number of occluder vertices in the
scene.

For static scenes, some of the complexity may be reduced
by using a pre-computed cell-to-cell visibility map stored
at each client. Online, the cell-to-cell visibility map is
first used to determine mutually invisible cells. These are
immediate parts of the UFR’s. For pairs of cells which are
mutually visible, use our UFR computation method with
the cells’ occluding walls and other occluders between the
cells. This approach minimizes the number of occluders
involved and can save much of the computation time.

(a) (b) (c 1

Figure 15: Sample UFR’s computed by the visibil-
ity-based UFR algorithm.

5. Experimental Results

Experimental tests were made by running implementations
of the distance-based and visibility-based UFR computa-
tion algorithms. Since updates must be sent continuously
if relevance holds, and none must be sent if irrelevance
holds, the success of the algorithm is measured by the
ratio of the number of updates sent to the number of ir-
relevant time steps. Ideally, it should be zero.

The performance of the UFR algorithm depends on the
agent’s behavior. In our experiments, we simulated agents
in a scenario with 3-4 occluders, moving according to the
model described in Section 3, with a taking values in the
set {0,90,180}.

More than 400,000 agent trajectory pairs were simulated
for each a. Each trajectory pair contains periods of rele-
vance and irrelevance. While relevance holds, messages
are constantly sent. While irrelevance holds, the UFR
algorithm prevents many messages from being sent, but
some still leak through, counted by our monitor. The re-
sults are shown in Fig. 16.

Messages vs. Dnmtion of imhvance

10

9

8
7 f 0 =o

#6

il

- a=90

q I c2=180

3

2
1

0
0 50 100 150 200 250 300 350

Duration of tilevance

Figure 16: Experimental results. The number of updates
is far less than the duration of irrelevance (for a=180 it
levels off at less than 2%).

The conclusion from these graphs is that the number of
messages sent during the irrelevance period tends to a
fixed low value as the period grows longer. This means
that where filtering is needed most, namely in long peri-
ods of irrelevance, the success is higher. In situations
where the irrelevant period is very short - the filtering is
less successful.

6. Conclusion

We have described a scheme for message filtering in de-
centralized multi-user virtual environments. The scheme
is based on defining and computing on-the-fly update free
regions (UFRs) in agent parameter space. These regions
are mutually irrelevant regions: no communication is re-
quired while the agents are in their respective regions.
Algorithms to compute 2D UFR’s for the proximity, di-
rection and visibility criteria were described. The algo-
rithms are suitable also for dynamic scenes.

Experimental results show that in cases where filtering is
very much needed - the algorithm achieves impressive
update savings, and, for a pair of agents, is out-
put-sensitive, namely that almost all the irrelevant mes-
sages are filtered. Our message filtering technique may be
combined with existing techniques and used in a hybrid
client-server and client-to-client systems.

The UFR technique, as described here, is applicable only
to a pair of agents. In a multi-user environment, applying
this technique for every other agent imposes a significant
computation burden on any agent. The agent must deter-
mine at every time step whether its state is contained in
the UFR associated with every other agent (a
point-in-polygon operation). In most cases, the result will
be negative. It seems possible, using appropriate geomet-
ric data structures, to speed up these computations by
exploiting the temporal coherence present in the agents’
behavior. This implies a fully output-sensitive algorithm
for the entire system, but requires further research to for-
mulate a complete solution.

45

PI J. W. Barrus, R.C. Waters and D.B. Anderson,
Locals and Beacons: Efficient and precise support for
large multi-user virtual environments. Proceedings of
IEEE Virtual Reality Annual Intl. Symp. (VRAIS). 1996.

PI S. Benford, L. Fahlen, C. Greenhalge, and J.
Bowers. Managing mutual awareness in collaborative
virtual environments. Proceedings of ACM SIGCHI Con-
ference on Virtual Reality and Technology (VRST ‘94),
1994.

[31 http:\\www.blaxxun.com

[41 M. Capps, S. Teller. Communication visibility in
shared virtual worlds. Proceedings of the 6th Workshop
on Enabling Technologies: Infrastructure for Collabora-
tive Environments. Cambridge, MA, June 1997.

[51 C. Clarson and 0. Hagsand. DIVE - a platform for
multi-user virtual environments. Computers & Graphics,
17(6):663-669, 1993.

[61 R.A. Earnshaw, N. Chilton and I.J.Palmer. Visu-
alization and virtual reality on the Internet. Proceedings
of the Visualization Conference, Jerusalem, Israel, Nov.
1995.

171 T.A. Funkhouser. RING: A client-server system
for multi-user virtual environments. Proceedings of the
1995 ACM Symposium on Interactive 30 Graphics, pages
85-92, 1995.

PI J. Hartman and J. Wernecke. The VRML 2.0
Handbook, Addison-Wesley, 1996.

PI R. Lea, Y. Honda, K. Matsuda, S. Matsuda.
Community Place: Architecture and performance. Pro-
ceedings of Second Symposium on the Virtual Reality
Modeling Language (VRML ‘97), pp 41-50, 1997.

[lo] M.R. Macedonia, D.P. Brutzman, M.J. Zyda, D.R.
Pratt, P.T. Barham, J.Falby and J. Locke. NPSNET: A
multi-player 3D virtual environment over the Internet.
Proceedings of the 1995 ACM Symposium on Interactive
30 Graphics, pages 93-94, 1995.

[1 l] http:\\www.rtimeinc.com

[12] 0. Sudarsky and C. Gotsman. Output-sensitive
visibility algorithms for dynamic scenes with application
to virtual reality. Proceedings of Eurographics ‘96, 1996.
Blackwell. Computer Graphics Forum, 15(3).

46

