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Abstract 1. Introduction 

Distributed virtual environments impose a heavy load on 
the network upon which they reside. Bandwidth is a po- 
tential bottleneck because n users imply 0(n*) update 
messages per time unit, which is prohibitive for a large 
number of users. Efficient message filtering is called for, 
in both centralized systems, having a central server, and 
decentralized systems, having no central server. We solve 
the message filtering problem for decentralized multi-user 
systems based on geometric virtual worlds, popular in 
interactive 3D graphics applications. This is achieved by 
exploiting the visual relevance relationship (based on 
proximity, visibility and direction criteria) between pairs 
of users to compute mutually irrelevant regions in user 
parameter space. These regions are then used as up- 
date-free regions (UFR’s); i.e. no communication between 
users is required while they are in their respective re- 
gions. Geometric algorithms for computing UFR’s for the 
proximity, visibility and direction relevance criteria are 
described. Our implementation and experimental results 
show that the message-filtering algorithm is out- 
put-sensitive. Use of our algorithms is especially effective 
where messages are sent through a slow communication 
network, such as the Internet. 

Distributed multi-user systems, where many agents roam 
within a virtual environment, have recently gained popu- 
larity. Two major technical advances drive this trend: 
computer graphics and computer networks. With the ad- 
vent of the Internet and the virtual reality modeling lan- 
guage (VRML) [S], 3D shared environments are a reality. 
Commercial VRML-based examples are Blaxxun’s Com- 
munity Server [3] and Sony’s Community Place [9]. 

CR Categories and Subject Descriptors: C.2.4 [Com- 
puter Communication Networks]: Distributed Systems; 
1.3.5 [Computer Graphics] Computational Geometry and 
Object Modeling; 1.3.7 [Computer Graphics]: 3D Graph- 
ics and Realism. 

Additional Keywords: distributed systems, virtual real- 
ity, message filtering. 

Distributed environments can be implemented on two 
kinds of system architectures: centralized or decentral- 
ized. Centralized systems are typically based on a server 
(or servers) connected to a large number of clients. All 
information sent between clients passes through the 
server. Despite its simplicity, the client-server architec- 
ture has serious drawbacks. The first is latency: using an 
intermediate relay between two clients can cause signifi- 
cant communication delays (consider two clients located 
in the same city and the server in another continent). The 
second is scalability: handling the multitude of messages 
generated by a large number of clients can seriously 
overload any single server machine. ~(n*)messages per 
time unit must flow through the server (between all pairs 
of clients) to keep n clients up-to-date. To make this man- 
ageable, the server must reduce the number of outgoing 
update messages by employing message filtering tech- 
niques (e.g. the RTIME “Intelligent message filtering” 
technology [lI]). The third drawback is the vulnerability 
of the system to server failures, which may paralyze the 
entire system. Because of these drawbacks, a decentral- 
ized implementation is to be preferred. 
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In decentralized systems, or so-called point-to-point sys- 
tems (e.g. Earnshaw et al’s VRMUD environment [6]), 
communication between clients is done directly. This 
minimizes latency. However, the scalability problem re- 
mains, since requiring that all clients have an up-to-date 
knowledge of the states of other clients implies that each 
of n clients will receive n-l messages per time unit. Here 
too, message filtering techniques are required to reduce 
the load to the bare minimum. This is potentially possible 
since not every message from every client is relevant to 
every other client. Examples of relevance relations are 
proximity (“is B too far from A for A to care about ?“), 
direction (“is A looking at B ?“) and visibility (“is B visi- 
ble to A ?“). The main question then becomes how can 
each client be sent o&y what it needs and not much more 
than this. 
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Existing message filtering algorithms in distributed sys- 
tems are suitable primarily for the centralized model. The 
filtering is done relatively easily by the server which con- 
stantly has an up-to-date knowledge about all the clients. 
In this system there is one fully-updated entity, the server, 
and a collection of partly-updated entities, the clients, 
who are guaranteed to have all relevant up-to-date data. 
In decentralized systems, with no central server, message 
filtering is much more complicated. In these systems, 
contradicting requirements are to be met: intelligent deci- 
sions are to be made at each client, but yet no client is 
guaranteed to have full knowledge about the world. 

The following example demonstrates why the decentral- 
ized message filtering problem is difficult: Consider a 
simple environment consisting of two agents (clients) A 
and B. Furthermore, assume that A and B cannot see each 
other (for example, they are occluded from each other), 
namely, they are mutually irrelevant. In this situation B 
should not update A (of its movements), because A has no 
use for these updates until B becomes visible. However, 
for B to continue to make the correct decision whether to 
update A, B must always know where A is, namely, A 
must always send messages to B. The same holds for A: In 
order to decide correctly, B must always update A. The 
result is a paradox: A and B must always update each 
other in order to be able to decide when not to update 
each other. For an example of an erroneous situation 
which might arise if care is not exercised in these situa- 
tions, see Fig. 1 
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Figure 1: An erroneous situation arising in decentralized 
multi-user systems: (a) A and B are located on opposite 
sides of an occluder. (b) A moves upwards, not updating 
B since A’s trajectory is invisible to B. (c) B also moves 
upwards, not updating A, since B is invisible to A ac- 
cording the information B has about A. The result is in- 
consistent: A and B think they do not see each other, even 
though they do. 

Achieving absolute message filtering, i.e. sending only 
relevant updates, is probably impossible, but it is possible 
to decrease the messages traveling in the network to al- 
most only the relevant ones. This paper shows how. 

The general technique is as follows: if a pair of agents are 
irrelevant, it is possible to compute two regions in their 
parameter space containing the agents’ respective states, 
such that as long as each agent is in its respective region - 
they remain irrelevant. These regions are called up- 
date-free regions (UFR’s) (see Fig. 2). The protocol for 
updates between each pair of agents will then be as fol- 
lows: as long as each agent is inside its UFR - updates 
need not be sent, and the agents are silent. When an agent 
exits its LJFR, a mutual update is required. From that time 
on - updates are transmitted between the agents and rele- 
vance is tested for at every time step. As soon as the 
agents become irrelevant again, new UFRs are computed, 
the agents fall silent, and the process iterates. See Fig. 3 
for an example. The key is to design the UFRs as cleverly 
as possible, so as to maximize the time until each agent 
exits his respective region. This will minimize the number 
of updates. 
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Figure 2: Possible UFR’s for the example in Fig.1. As 
long as A and B do not exit their respective UFR’s, no 
communication is required between them. 
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Figure 3: UFR’s for message filtering purposes, com- 
puted during agent movement: (a) Initial states and 
UFR’s. A moves upwards. (b) A exits UFR, resulting in 
new UFR computation. B then moves downwards. (c) B 
exits UFR, resulting in another UFR computation. 

When the relevance relation is symmetric (e.g. proximity 
or visibility), either both agents should be silent (while 
irrelevance holds) or constantly transmitting (when rele- 
vance holds). If the relation is asymmetric (e.g. direction), 
situations may arise when just one agent is constantly 
transmitting, and the other silent. In this case, since at 
least one agent (the silent one) is always up-to-date, 
UFR’s are not required. In effect, the up-to-date agent 
functions as a mini-server. 

40 



The remainder of this paper is organized as follows: The 
next section surveys previous work related to message 
filtering. Section 3 describes the general UFR method and 
a user behavioral model on which the UFR computations 
are later based. Section 4 describes concrete geometric 
algorithms to compute 2D UFR’s for the proximity, di- 
rection and visibility relevance relations. Not surpris- 
ingly, the most interesting, and complex, algorithm 
emerges from the visibility relation. We measure the per- 
formance of our algorithms empirically in Section 5, and 
conclude in Section 6. 

2. Previous Work 

This section surveys existing message filtering methods, de- 
signed mostly for centralized multi-user systems, and discusses 
if and how they are applicable to decentralized systems. 

Consider, for example, the visibility relation. A central server 
which must decide if an update originating at A must be sent to 
B, has to perform a geometric line-of-sight (LOS) calculation 
between A and B. To perform optimal message filtering, the 
server must perform this computation online for all pairs of 
agents at each time step, which is prohibitive. Distance compu- 
tations for determining the proximity relation, as in COMMIC 
[2], DIVE [5] and Virtual Society [9] are less expensive, so 
more tolerable, but still a significant load on any server. 

In order to save online relevance computations, but still be able 
to perform reasonable message filtering, the RING [7], 
CLOVES [4], NPSNET [lo] and SPLINE [1] systems partition 
the 3D virtual world to cells (with various regular or irregular 
structures). Two cells are said to be relevant if at least one point 
in each cell are relevant. In a preprocessing phase, the relevance 
relationship between every pair of cells is calculated and stored 
in a map at the server. Note that this is applicable only to static 
geometric worlds, and, for a typical virtual world, most pairs of 
cells will be relevant, especially if the cells are large. The rele- 
vance map is exploited at run-time when the server sends the 
updates originating at agent A only to other agents in cells that 
are relevant to the cell containing A. However, the technique is 
conservative: the agents might be irrelevant even though they 
are located in relevant cells. This results in unnecessary up- 
dates, so is suboptimal. Increasing the map cell resolution will 
increase the effectiveness of the map, at the expense of more 
storage space. 

At first glance, it might seem that cell-to-cell relevance tech- 
niques are applicable to message filtering in decentralized sys- 
tems by storing the relevance map at each client. Besides this 
technique being limited to only static scenes, a second glance 
reveals that the only benefit that may be reaped from the rele- 
vance map is that two agents may be silent as long as they are in 
mutually irrelevant cells, and they both know that they are in 
their respective cells. This is the simplest form of UFR’s. Once 
an agent A exits its cell, it must break its silence to B, lest A’s 
new cell is relevant to B’s. 

The temporal bounding volume (TBV) visibility algorithm for 
dynamic scenes, proposed by Sudarsky and Gotsman [12], is 
applicable to message filtering in decentralized virtual envi- 
ronments. The TBV is a volume guaranteed to contain a dy- 
namic agent from its creation until some expiration date based 
on some knowledge of the agent’s behavior (for instance, its 
maximal velocity). To perform message filtering, an agent A 
maintains a TBV for each other agent in the system. Once the 
TBV associated with B expires or becomes relevant (e.g. visi- 
ble), A requests from B an update on B’s status, as B might be 
relevant now. Until then B was silent. The problem with this 
technique is that it is concerned with notions of time (“expira- 
tion date”), while the visual relevance relation is determined by 
only spatial data (e.g. the location). Moreover, using this tech- 
nique, agent A computes a TBV for agent B based only on B’s 
data, as opposed to UFR’s, which are computed based on both 
A’s and B’s data. Hence, the TBV solution is suboptimal. 

When agent behavior is somewhat predictable, dehd reck- 
oning [lo] may be used to further reduce the message 
load, Here both agents jointly assume some predictable 
behavior of each other, and are silent as long as they in- 
deed behave that way and are irrelevant based on that 
behavior. The first agent to break the behavior pattern 
transmits an update, and this reiterates. It is clear that 
dead reckoning is useful only for scenarios where most 
agent movements are predictable. 

3. The General UFR Method 

To perform message filtering in decentralized systems, we must 
provide each agent with a decision procedure on what to send to 
other agents in the system, or, in other words, which of the po- 
tential n-l updates may be filtered (not transmitted). 

Our general message filtering algorithm, run at each agent inde- 
pendently, is outlined in Fig. 4, and can be described as fol- 
lows: A region is a continuous set of states an agent can have in 
its parameter space (location, direction, etc.). An Up- 
date-Free-Region of an agent A, associated with another agent 
B (A.UFR[B]), is a region such that as long as A’s state is lo- 
cated within the region, it does not need to communicate with 
B. Computing UFR’s on the fly for each pair of agents is the 
key to the message filtering algorithm. For polygonal environ- 
ments, these UFR’s turn out to be polygonal, so checking con- 
tainment in a UFR is a simple point-in-polygon query. While 
each agent is in its respective UFR, messages between the two 
agents may be filtered, because the agents are mutually irrele- 
vant. Once one of the agents exits its UFR, updates must be 
sent. As soon as irrelevance holds again, the UFR’s are recom- 
puted, and the process iterates. Optimal UFR’s are those con- 
taining the agents for as long as possible. This implies that the 
UFR’s should have maximal areas, namely, there will be no 
possibility of enlarging any UFR while keeping the regions 
mutually irrelevant. The pair of UFR’s should also be balanced 
(if the agents’ behavior is identical). Since the UFR must be 
computed in near real-time, a fast algorithm is helpful. Con- 
straints on the agents behavior may simplify the UFR’s compu- 
tation We present algorithms for the case where the motion of 
the two agents are unconstrained, and their behavior identical. 
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while (1) 
if (A.state not in A.UFR) then 

if ( UFR == 0) then 
A.send(B,A.state,noWait); 
st=B.state; 

end 
else 

A.send(B,A.state, wait); 
msg = A.receive(B); 
st = msg.state; 

end 
A.calc UFR(st); - 

End 
If (msg =A.onReceived(B)) then 

if(msg.isWait)then 
A.send(B,A.state,noWait); 

A.calc-UFR(st); 
end 
A.change-state0; 

End 

Figure 4: Message filtering algorithm for agent A updat- 
ing agent B. 

The effectiveness of the UFR algorithm depends on the agent’s 
behavior. If the agent advances consistently in one direction, it 
will soon approach the UFR’s boundary and stray outside the 
UFR, resulting in communication and possibly UFR recompu- 
tation. If the agent moves in a random walk, it tends to stay 
close to its initial state and remain within the UFR, staying 
silent for a long period of time. The ideal, but least interesting 
case, is when the agents do not move at all, forever remaining 
within their UFR’s, hence silent ad infinitum. The following 
model captures possible agent behavior: at each step the agent 
advances a fixed distance in a direction picked at random within 
a fixed range of directions, denoted by the parameter u, relative 
to its initial state. See Fig. 5 for examples. 

Larger values of a describe more random behavior. Values of a 
less than 180 describe movement in which the agent’s distance 
from the initial state can only increase. We believe the model 
most representative of a typical (human) agent’s behavior is a 
=180. In this case there is a good balance between the agents’ 
tendency to distance itself from its origin, but yet have some 
random behavior. 

As Fig. 2 shows, given states of two agents there are many pos- 
sible ways to define UFR’s. Which is to be prefered ? We an- 
swer this with the following argument: Given the initial location 
in parameter space of an agent A, what can another agent B 
deduce about the whereabouts of A after some time t ? Only 
that A will have moved some distance from the initial state. 
Since many directions are equi-probable, B may model A as 
having “moved” simultaneously in all directions. The same 
holds for A’s knowledge of B. Since the agent continuously 
distances itself from the initial state, this movement may be 
simulated by an imaginary simultaneous expansion of the 
agents in space from their initial states. We call this process the 
mutually expanding process, and use it to define optimal 
UFR’s: Each agent, starting from its initial state, “conquers” a 
state in the space if the state is irrelevant to all other states con- 
quered so far by the other agent, and it reaches it before the 
other. The process stops when no more states may be con- 
quered. Each agent’s conquered region can then function as its 
UFR. 
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Figure 5: The agent behavior model (a) The agent can 
advance from its current position s2 in any direction 
contained in an arc of 0 degrees around the line between 
s2 and its initial position sl. (b) Trajectories of two 
agents for a=360 (random walk) (c) a=270 (d) a=180 (e) 
a=90 (f) a=0 (deterministic walk). 

(4 0)) (c 1 
,- 

(4 

Figure 6: Visibility-based mutual expanding process used 
to define optimal UFR’s: (a) Initial states (b) Some time 
later, the agents are simultaneously expanding and still 
are invisibie from each other. (c) Some time later, the 
boundaries of the UFRs start to form. (d) Final UFR’s - 
the regions cannot be extended. 

Fig. 6 is a sequence of snapshots of the expanding process in 
the scenario of Fig. 1. It shows that the optimal UFR’s in this 
scenario are those of Fig. 2(a). 

The UFR Definition 

Let Dist(agent, state) be the distance for an agent to 
travel from its current state to the given state (this is not 
necessarily the Euclidean distance if there are obstacles) 

Let R(statel, state2) be the relevance relation, between 
agent2 in state2 to agent1 in statel. R(state, path) holds 
iff there exist s E path such that R(state,s). The path is a 
collection of states. 

The Update-Free Region of A relative to B (A.UFR[B]) is 
the maximal set of states such that: 

Vp E A.UFR,Vg E World : 

R(q, p) -+ 3s E AIJFR : 
[R(s,Puth(B,q)+ Dist(A,s)< Dist(B,q)] 1 
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In words: point p is in A’s UFR if for any other point q 
relevant to p, there exists a point s in A’s UFR such that 
the path from agent B to q is relevant to the point s and 
the time for agent A to reach s is at least the time for 
agent B to reach q. 

Note that since equal velocities are assumed for the 
agents, we have replaced the notion of time with distance 
(“the time to reach is less than” is replaced by “the dis- 
tance to is less than”). 

4. UFR Algorithms 

We now present geometric algorithms for computing 
UFR’s for three different relevance relations: proximity, 
direction and visibility. The algorithms operate on 2D 
(“flatland”) scenes, which, in many scenes, may be con- 
sidered as the 2D projection of a 3D scene (e.g. in build- 
ings with walls). The proximity and direction-based UFR 
algorithms may be generalized easily to true 3D scenes. 

4.1 Proximity-Based UFR’s 

The proximity-based relation is defined as follows: 

V agent, state E World : 

R(agent,state) e 

dist(state.location, agent location) 5 agent.releveanceDist) I 

To compute the UFR, a perpendicular is extended through 
the midpoint of the segment AB. The UFR boundaries are 
then parallel to this perpendicular, at equal distances from 
it. 

Line = linethrough(A.location,B.location); 
PerpLine = line.getPerendicularAt( 

Figure 7: The proximity-based UFR algorithm. 

(4 04 

Figure 8: Outputs from the proximity-based UFR algo- 
rithm: (a) Agents A and B have same relevance distance. 
(b) When A is less mobile than B, the algorithm may be 
generalized to yield this result. 

Fig. 8(a) shows a sample output from the proximity-based algo- 
rithm. It is obvious that the regions computed by this algorithm 
are mutually irrelevant: it is not possible to draw a line segment 
between two points in each region respectively that is longer 
than the distance between the parallel lines. This algorithm 
requires 0( 1) time. 

4.2 Direction-Based UFR’s 

The direction-based relation, a function of both agent 
view direction and location, is defined as follows: 

Qagent, state E World : 

[R(agent, state) a state E agent.JieldOjView] 

Since the direction relation is not symmetric, the UFR’s for 
direction-based relevance are a combination of two types of 
regions: a 2D region in location space, and a 1D region in di- 
rection space, which is a sector of angles. This means that an 
agent will not have to send update messages only as long as it is 
in both these regions, namely, it has freedom to move in the 
location space UFR, and turn in any direction (along its own 
axis) in the direction UFR. Since the regions are not independ- 
ent, the maximal UFR is not well-defined, as each UFR may be 
enlarged at the expense of the other: We can allow more free- 
dom of movement if the directional movement is limited. How- 
ever, it is always possible to allow a direction UFR of at least 
180 degrees without compromising the area of the location 
UFR. Fig. 9 outlines the algorithm and Fig. 10 some sample 
output. 

Figure 9: The direction-based UFR algorithm. The direc- 
tion UFR’s are 180 degrees wide, and the location UFR’s 
are two half planes. 

(a) (b) (c) 

Figure 10: Output of the direction-based UFR computa- 
tion algorithm: (a) Agent locations and view directions. 
(b) UFR’s in location space. (c) UFR’s in direction space. 

4.3 Visibility-Based UFRs 

The more interesting, and complex, relevance relation is 
visibility, i.e. the existence of an unobstructed line of 
sight (LOS) between two agents. The definition of the 
visibility-based relation is as follows: 
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Vagent,state E World : 

[R(agent,state) -3 LOS(agent.location,state.location)] 

The UFR computation algorithm for this relation actually 
mimics the “dual” of the mutually expanding process. For 
a given pair of agents, each agent computes the UFR of 
both agents simultaneously, and afterwards discards the 
UFR of the other. The computation proceeds as follows: A 
finite set of strategic viewpoints is maintained for each 
agent, initialized to their initial locations. As the view- 
points are accumulated, the UFR’s shrink to correspond to 
the intersection of all the regions occluded from these 
viewpoints. Hence, the UFR of A is initially the region 
occluded from B, and vice-versa. The viewpoints are gen- 
erated by tracking discrete events, which are points in 
time where changes in the behavior of the mutually ex- 
panding process occur. See Fig. 11 for examples of such 
events. The events are related to the occluders’ vertices 
(end-points if the occluder is a line segment). The process 
terminates when all events have been exhausted. 
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Figure 11: Computation of visibility-based UFR’s: (a) 
Agent locations, (b) First approximation to UFR’s are oc- 
cluded areas. (c) Partition event shrinks the UFR’s by 
setting their lower boundaries to a line through the bottom 
occluder vertex. (d) Partition event again shrinks UFR’s 
by setting their top boundaries analogously. 

There are four kinds of events: add, partition, watch and 
watch-prevention. 

Add: This is the event in which the expanding process 
behavior changes by encountering an occluder vertex. 
This generates a new viewpoint (see Fig. 12). 

(4 (b) (c) 

Figure 12: The Add event: Snapshots taken from an ex- 
panding process (a) Initial state. (b) Hitting an occluder 
vertex generates a new viewpoint (c) The two viewpoints 
continue to expand simultaneously. 

Partition: This is the event in which mutual visibility is 
about to occur. It is subsequently prevented by creating a 
boundary line for the UFR’s (see Fig. 13). 

Watch: This is the event in which an agent can see a ver- 
tex, i.e. reach a point from where a formerly occluded 
vertex is now visible. 

Watch Prevention: This is the event in which an agent 
reaches a point from where it prevents the watch event by 
the other agent. 

I I I I 
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Figure 13: The Partition event: (a) Agents moving in expansion 
process and about to become mutually visible. (b) When they 
become mutually visible, a new viewpoint is generated for each 
agent, and so a partition line is formed. 

The complete UFR computation algorithm is outlined in Fig. 
14. 

// Initialize agent viewpoint sets. 
A.viewpoints = I A.location 1; 
B.viewpoints = { B.location 1; 
// Generate events and their locations. 
Event-set = 0; 
for (each occluder vertex v) 

Event-set.add(world.calcFirstEvent(v) ); 
// Initialize agent UFR's. 
A.UFR = world.calcOccludedRegionFrom(B); 
B.UFR = world.calcOccludedRegionFrom(A); 

// while the set does not contain events with 
//infinite priority. 
While (not Event-set.isEmptyO ) I 

// get event closest in time. 
Event= Event-set.getElementWithMaxPriorityO; 
// update UFR by intersection. 
Event.owner.companion.updateUFR( 

event.Location); 
if (event.type == Add) 

// Add event generates viewpoint. 
Event.owner.viewpoints +=event.Location; 

If(event.type==Add II event.type== Partition) 
Event_set.remove(event); 

// else other types of events. 
Else event.update(); 
//update priorities of all remaining events. 

Forteachevent in Event-set) event.updateO; 
) 

Figure 14: The visibility-based UFR algorithm. 

Observations 

1. Since an agent’s UFR is occluded from the other 
agent, the boundaries of this region consist also (besides 
occluder edges and world boundaries) of lines through 
occluder vertices. 
2. Only connected UFRs are computed, since moving 
between two unconnected occluded areas forces the agents 
to be visible to each other. 
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Fig. 15 shows some examples of UFR’s computed by the 
algorithm in some multi-occluder environments. Proof of 
the correctness of this algorithm is beyond the scope of 
this paper. We will just mention that its complexity is 
0(n3), where n is the number of occluder vertices in the 
scene. 

For static scenes, some of the complexity may be reduced 
by using a pre-computed cell-to-cell visibility map stored 
at each client. Online, the cell-to-cell visibility map is 
first used to determine mutually invisible cells. These are 
immediate parts of the UFR’s. For pairs of cells which are 
mutually visible, use our UFR computation method with 
the cells’ occluding walls and other occluders between the 
cells. This approach minimizes the number of occluders 
involved and can save much of the computation time. 

(a) (b) (c 1 

Figure 15: Sample UFR’s computed by the visibil- 
ity-based UFR algorithm. 

5. Experimental Results 

Experimental tests were made by running implementations 
of the distance-based and visibility-based UFR computa- 
tion algorithms. Since updates must be sent continuously 
if relevance holds, and none must be sent if irrelevance 
holds, the success of the algorithm is measured by the 
ratio of the number of updates sent to the number of ir- 
relevant time steps. Ideally, it should be zero. 

The performance of the UFR algorithm depends on the 
agent’s behavior. In our experiments, we simulated agents 
in a scenario with 3-4 occluders, moving according to the 
model described in Section 3, with a taking values in the 
set {0,90,180}. 

More than 400,000 agent trajectory pairs were simulated 
for each a. Each trajectory pair contains periods of rele- 
vance and irrelevance. While relevance holds, messages 
are constantly sent. While irrelevance holds, the UFR 
algorithm prevents many messages from being sent, but 
some still leak through, counted by our monitor. The re- 
sults are shown in Fig. 16. 

Messages vs. Dnmtion of imhvance 

10 

9 

8 
7 f 0 =o 

#6 

il 

- a=90 

q I c2=180 

3 

2 
1 

0 
0 50 100 150 200 250 300 350 

Duration of tilevance 

Figure 16: Experimental results. The number of updates 
is far less than the duration of irrelevance (for a=180 it 
levels off at less than 2%). 

The conclusion from these graphs is that the number of 
messages sent during the irrelevance period tends to a 
fixed low value as the period grows longer. This means 
that where filtering is needed most, namely in long peri- 
ods of irrelevance, the success is higher. In situations 
where the irrelevant period is very short - the filtering is 
less successful. 

6. Conclusion 

We have described a scheme for message filtering in de- 
centralized multi-user virtual environments. The scheme 
is based on defining and computing on-the-fly update free 
regions (UFRs) in agent parameter space. These regions 
are mutually irrelevant regions: no communication is re- 
quired while the agents are in their respective regions. 
Algorithms to compute 2D UFR’s for the proximity, di- 
rection and visibility criteria were described. The algo- 
rithms are suitable also for dynamic scenes. 

Experimental results show that in cases where filtering is 
very much needed - the algorithm achieves impressive 
update savings, and, for a pair of agents, is out- 
put-sensitive, namely that almost all the irrelevant mes- 
sages are filtered. Our message filtering technique may be 
combined with existing techniques and used in a hybrid 
client-server and client-to-client systems. 

The UFR technique, as described here, is applicable only 
to a pair of agents. In a multi-user environment, applying 
this technique for every other agent imposes a significant 
computation burden on any agent. The agent must deter- 
mine at every time step whether its state is contained in 
the UFR associated with every other agent (a 
point-in-polygon operation). In most cases, the result will 
be negative. It seems possible, using appropriate geomet- 
ric data structures, to speed up these computations by 
exploiting the temporal coherence present in the agents’ 
behavior. This implies a fully output-sensitive algorithm 
for the entire system, but requires further research to for- 
mulate a complete solution. 
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