

Hierarchical Z-Buffer Visibility

Ned Greene∗ Michael Kass† Gavin Miller†

Abstract
An ideal visibility algorithm should a) quickly reject most of the
hidden geometry in a model and b) exploit the spatial and perhaps
temporal coherence of the images being generated. Ray casting
with spatial subdivision does well on criterion (a), but poorly on
criterion (b). Traditional Z-buffer scan conversion does well on
criterion (b), but poorly on criterion (a). Here we present a hi-
erarchical Z-buffer scan-conversion algorithm that does well on
both criteria. The method uses two hierarchical data structures, an
object-space octree and an image-space Z pyramid, to accelerate
scan conversion. The two hierarchical data structures make it pos-
sible to reject hidden geometry very rapidly while rendering visible
geometry with the speed of scan conversion. For animation, the
algorithm is also able to exploit temporal coherence. The method
is well suited to modelswith high depth complexity, achieving
orders of magnitude acceleration in some cases compared to ordi-
nary Z-buffer scan conversion.

CR Categories and Subject Descriptors: I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism - Hid-
den line/surface removal; J.6 [Computer-Aided Engineering]:
Computer-Aided I.3.1 [Computer Graphics]: Hardware Architec-
ture - Graphics Processors

Additional Key Words and Phrases: Octree, Pyramid, Temporal
Coherence, Spatial Coherence, Z Buffer.

1 Introduction
Extremely complex geometric databases offer interesting chal-
lenges for visibility algorithms. Consider, for example, an interac-
tive walk-through of a detailed geometric database describing an
entire city, complete with vegetation, buildings, furniture inside
the buildings and the contents of the furniture. Traditional visi-
bility algorithms running on currently available hardware cannot
come close to rendering scenes of this complexity at interactive
rates and it will be a long time before faster hardware alone will
suffice. In order to get the most out of available hardware, we need
faster algorithms that exploit properties of the visibility computa-
tion itself.

There are at least three types of coherence inherent in the visi-

∗Apple Computer, U.C. Santa Cruz
†Apple Computer

bility computation which can be exploited to accelerate a visibility
algorithm. The first is object-space coherence: in many cases a
single computation can resolve the visibility of a collection of
objects which are near each other in space. The second is image-
space coherence: in many cases a single computation can resolve
the visibility of an object covering a collection of pixels. The
third is temporal coherence: visibility information from one frame
can often be used to accelerate visibility computation for the next
frame. Here we present a visibility algorithm which exploits all
three of these types of coherence and sometimes achieves orders
of magnitude acceleration compared with traditional techniques.

The dominant algorithms in use today for visibility computa-
tions are Z-buffer scan conversion and ray-tracing. Since Z buffers
do not handle partially transparent surfaces well, we will restrict
the discussion to models consisting entirely of opaque surfaces.
For these models, only rays from the eye to the first surface are
relevant for visibility, so the choice is between Z buffering and
ray-casting (ray-tracing with no secondary rays).

Traditional Z buffering makes reasonably good use of image-
space coherence in the course of scan conversion. Implementa-
tions usually do a set-up computation for each polygon and then an
incremental update for each pixel in the polygon. Since the incre-
mental update is typically much less computation than the set-up,
the savings from image-space coherence can be substantial. The
problem with the traditional Z-buffer approach is that it makes no
use at all of object-space or temporal coherence. Each polygon
is rendered independently, and no information is saved from prior
frames. For extremely complex environments like a model of a
city, this is very inefficient. A traditional Z-buffer algorithm, for
example, will have to take the time to render every polygon of ev-
ery object in every drawer of every desk in a building even if the
whole building cannot be seen, because the traditional algorithm
can resolve visibility only at the pixel level.

Traditional ray-tracing or ray-casting methods, on the other
hand, make use of object-space coherence by organizing the ob-
jects in some type of spatial subdivision. Rays from the eye are
propagated through the spatial subdivision until they hit the first
visible surface. Once a ray hits a visible surface, there is no need
to consider any of the surfaces in the spatial subdivisions further
down along the ray, so large portions of the geometry may never
have to be considered during rendering. This is an important im-
provement on Z buffering, but it makes no use of temporal or
image-space coherence. While ray-casting algorithms that exploit
temporal coherence have been explored, it seems extremely dif-
ficult to exploit image-space coherence in traditional ray casting
algorithms.

Here we present a visibility algorithm which combines the
strengths of both ray-casting and Z buffering. To exploit object-

space coherence, we use an octree spatial subdivision of the type
commonly used to accelerate ray tracing. To exploit image-space
coherence, we augment traditional Z-buffer scan conversion with
an image-space Z pyramid that allows us to reject hidden geom-
etry very quickly. Finally, to exploit temporal coherence, we use
the geometry that was visible in the previous frame to construct a
starting point for the algorithm. The result is an algorithm which is
orders of magnitude faster than traditional ray-casting or Z buffer-
ing for some models we have tried. The algorithm is not difficult
to implement and works for arbitrary polygonal databases.

In section II, we survey the most relevant prior work on accel-
erating ray casting and scan conversion. In section III, we develop
the data structures used to exploit object-space, image-space and
temporal coherence. In section IV, we describe the implementation
and show results for some complex models containing hundreds
of millions of polygons.

2 Prior Work
There have been many attempts to accelerate traditional ray-tracing
and Z buffering techniques. Each of these attempts exploits some
aspect of the coherence inherent in the visibility computation it-
self. None of them, however, simultaneously exploits object-
space, image-space and temporal coherence.

The ray-tracing literature abounds with references to object-
space coherence. A variety of spatial subdivisions have been used
to exploit this coherence and they seem to work quite well (e.g.
[1, 2, 3, 4, 5]). Temporal coherence is much less commonly ex-
ploited in practice, but various techniques exist for special cases.
If all the objects are convex and remain stationary while the cam-
era moves, then there are constraints on the way visibility can
change[6] which a ray tracer might exploit. On the other hand,
if the camera is stationary, then rays which are unaffected by the
motion of objectscan be detectedand used from the previous
frame[7]. When interactivity is not an issue and sufficient mem-
ory is available, it can be feasible to render an entire animation
sequence at once using spacetime bounding boxes[8, 9]. While
these techniques make good use of object-space coherence and
sometimes exploit temporal coherence effectively, they unfortu-
nately make little or no use of image-space coherence since each
pixel is traced independently from its neighbors. There are heuris-
tic methods which construct estimates of the results of ray-tracing
a pixel from the results at nearby pixels (e.g. [10]), but there
seems to be no guaranteed algorithm which makes good use of
image-space coherence in ray tracing.

With Z-buffer methods (and scan conversion methods in gen-
eral) the problems are very different. Ordinary Z-buffer rendering
is usually implemented with an initial set-up computation for each
primitive followed by a scan-conversion phase in which the af-
fected pixels are incrementally updated. This already makes very
good use of image-space coherence, so the remaining challenge
with Z-buffer methods is to exploit object-space and temporal co-
herence effectively.

A simple method of using object-space coherence in Z-buffer
rendering is to use a spatial subdivision to cull the model to the
viewing frustum [11]. While this can provide substantial accelera-
tion, it exploits only a small portion of the object-space coherence
in models with high depth complexity. In architectural models,
for example, a great deal of geometry hidden behind walls may
lie within the viewing frustum.

In order to make use of more of the object-space coherence
in architectural models, Airey et. al. [12, 13] and subsequently
Teller and Sequin[15] proposed dividing models up into a set of
disjoint cells and precomputing the potentially visible set (PVS)

of polygons from each cell. In order to render an image from
any viewpoint within a cell, only the polygons in the PVS need
be considered. These PVS schemes are the closest in spirit to the
visibility algorithm presented here since they attempt to make good
use of both object-space and image-space coherence. Nonetheless,
they suffer from some important limitations. Before they can be
used at all, they require an expensive precomputation step to de-
termine the PVS and a great deal of memory to store it. Teller
and Sequin, for example, report over 6 hours of precomputation
time on a 50 MIP machine to calculate 58Mb of PVS data needed
for a model of 250,000 polygons[15]. Perhaps more importantly,
the way these methods make use of cells may limit their appro-
priateness to architectural models. In order to achieve maximum
acceleration, the cells must be 3D regions of space which are al-
most entirely enclosed by occluding surfaces, so that most cells
are hidden from most other cells. For architectural models, this
often works well since the cells can be rooms, but for outdoor
scenes and more general settings, it is unclear whether or not PVS
methods are effective. In addition, the currently implemented al-
gorithms make very special use of axially-aligned polygons such
as flat walls in rectilinear architectural models. While the methods
can in principle be extended to use general 3D polygons for oc-
clusion, the necessary algorithms have much worse computational
complexity[15]. Finally, although the implementations prefetch
PVS data for nearby cells to avoid long latencies due to paging,
they cannot be said to exploit temporal coherence in the visibility
computation very effectively.

The algorithm presented here shares a great deal with the work
of Meagher[16] who used object-space octrees with image-space
quadtrees for rendering purposes. Meagher tried to display the
octree itself rather than using it to cull a polygonal database, so
his method is directly applicable to volume, rather than surface
models. Nonetheless his algorithm is one of the few to make use
of both object-space and image-space coherence. The algorithm
does not exploit temporal coherence.

3 Hierarchical Visibility
The hierarchical Z-buffer visibility algorithm uses an octree spa-
tial subdivision to exploit object-space coherence, a Z pyramid to
exploit image-space coherence, and a list of previously visible oc-
tree nodes to exploit temporal coherence. While the full value of
the algorithm is achieved by using all three of these together, the
object-space octree and the image-space Z pyramid can also be
used separately. Whether used separately or together, these data
structures make it possible to compute the same result as ordinary
Z buffering at less computational expense.

3.1 Object-space octree

Octrees have been used previously to accelerate ray tracing[5]
and rendering of volume data sets[16] with great effectiveness.
With some important modification, many of the principles of these
previous efforts can be applied to Z-buffer scan conversion. The
result is an algorithm which can accelerate Z buffering by orders
of magnitude for models with sufficient depth complexity.

In order to be precise about the octree algorithm, let us begin
with some simple definitions. We will say that a polygon is hidden
with respect to a Z buffer if no pixel of the polygon is closer to
the observer than the Z value already in the Z buffer. Similarly,
we will say that a cube is hidden with respect to a Z buffer if all
of its faces are hidden polygons. Finally, we will call a node of
the octree hidden if its associated cube is hidden. Note that these
definitions depend on the sampling of the Z buffer. A polygon
which is hidden at one Z-buffer resolution may not be hidden at
another.

With these definitions, we can state the basic observation that
makes it possible to combine Z buffering with an octree spatial
subdivision: If a cube is hidden with respect to a Z buffer, then all
polygons fully contained in the cube are also hidden. What this
means is the following: if we scan convert the faces of an octree
cube and find that each pixel of the cube is behind the current
surface in the Z buffer, we can safely ignore all the geometry
contained in that cube.

From this observation, the basic algorithm is easy to construct.
We begin by placing the geometry into an octree, associating each
primitive with the smallest enclosing octree cube. Then we start
at the root node of the octree and render it using the following
recursive steps: First, we check to see if the octree cube intersects
the viewing frustum. If not, we are done. If the cube does intersect
the viewing frustum, we scan convert the faces of the cube to
determine whether or not the whole cube is hidden. If the cube is
hidden, we are done. Otherwise, we scan convert any geometry
associated with the cube and then recursively render its children
in front-to-back order.

We can construct the octree with a simple recursive procedure.
Beginning with a root cube large enough to enclose the entire
model and the complete list of geometric primitives, we recur-
sively perform the following steps: If the number of primitives
is sufficiently small, we associate all of the primitives with the
cube and exit. Otherwise, we associate with the cube any primi-
tive which intersects at least one of three axis-aligned planes that
bisect the cube. We then subdivide the octree cube and call the
procedure recursively with each of the eight child cubes and the
portion of the geometry that fits entirely in that cube.

The basic rendering algorithm has some very interesting prop-
erties. First of all, it only renders geometry contained in octree
nodeswhich arenot hidden.Someof the renderedpolygonsmay
be hidden, but all of them are “nearly visible” in the following
sense: there is some place we could move the polygon where it
would be visible which is no further away than the length of the
diagonal of its containing octree cube. This is a big improvement
over merely culling to the viewing frustum. In addition, the algo-
rithm does not waste time on irrelevant portions of the octree since
it only visits octree nodes whose parents are not hidden. Finally,
the algorithm never visits an octree node more than once during
rendering. This stands in marked contrast to ray-tracing through
an octree where the root node is visited by every pixel and other
nodes may be visited tens of thousands of times. As a result of
these properties, the basic algorithm culls hidden geometry very
efficiently.

A weakness of the basic algorithm is that it associates some
small geometric primitives with very large cubes if the primitives
happen to intersect the planes which separate the cube's children.
A small triangle which crosses the center of the root cube, for
example, will have to be rendered anytime the entire model is not
hidden. To avoid this behavior, there are two basic choices. One
alternative is to clip the problematic small polygons so they fit in
much smaller octree cells. This has the disadvantage of increasing
the number of primitives in the database. The other alternative is
to place some primitives in multiple octree cells. This is the one
we have chosen to implement. To do this, we modify the recursive
construction of the octree as follows. If we find that a primitive
intersects a cube's dividing planes, but is small compared to the
cube, then we no longer associate the primitive with the whole
cube. Instead we associate it with all of the cube's children that
the primitive intersects. Since some primitives are associated with
more than one octree node, we can encounter them more than once
during rendering. The first time we render them, we mark them
as rendered, so we can avoid rendering them more than once in a
given frame.

3.2 Image-space Z pyramid

The object-space octree allows us to cull large portions of the
model at the cost of scan-converting the faces of the octree cubes.
Since the cubes may occupy a large number of pixels in the im-
age, this scan conversion can be very expensive. To reduce the
cost of determining cube visibility, we use an image-space Z pyra-
mid. In many cases, the Z pyramid makes it possible to conclude
very quickly a large polygon is hidden, making it unnecessary to
examine the polygon pixel by pixel.

The basic idea of the Z pyramid is to use the original Z buffer as
the finest level in the pyramid and then combine four Z values at
each level into one Z value at the next coarser level by choosing the
farthest Z from the observer. Every entry in the pyramid therefore
representsthe farthest Zfor a square area ofthe Z buffer. At the
coarsest level of the pyramid there is a single Z value which is
the farthest Z from the observer in the whole image.

Maintaining the Z pyramidis an easymatter. Every time we
modify the Z buffer, we propagate the new Z value through to
coarser levels of the pyramid. As soon as we reach a level where
the entry in the pyramid is already as far away as the new Z value,
we can stop.

In order to use the Z pyramid to test the visibility of a polygon,
we find the finest-level sample of the pyramid whose correspond-
ing image region covers the screen-space bounding box of the
polygon. If the nearest Z value of the polygon is farther away
than this sample in the Z pyramid, we know immediately that the
polygon is hidden. We use this basic test to determine the visi-
bility of octree cubes by testing their polygonal faces, and also to
test the visibility of model polygons.

While the basicZ-pyramidtestcanrejecta substantialnumber
of polygons, it suffers from a similar difficulty to the basic octree
method. Because of the structure of the pyramid regions, a small
polygon covering the center of the image will be compared to the
Z value at the coarsest level of the pyramid. While the test is still
accurate in this case, it is not particularly powerful.

A definitive visibility test can be constructed by applying the
basic test recursively through the pyramid. When the basic test
fails to show that a polygon is hidden, we go to the next finer
level in the pyramid where the previous pyramid region is divided
into four quadrants. Here we attempt to prove that the polygon
is hidden in each of the quadrants it intersects. For each of these
quadrants, we compare the closest Z value of the polygon in the
quadrant to the value in the Z pyramid. If the Z-pyramid value
is closer, we know the polygon is hidden in the quadrant. If we
fail to prove that the primitive is hidden in one of the quadrants,
we go to the next finer level of the pyramid for that quadrant and
try again. Ultimately, we either prove that the entire polygon is
hidden, or we recurse down to the finest level of the pyramid and
find a visible pixel. If we find all visible pixels this way, we are
performing scan conversion hierarchically.

A potential difficulty with the definitive visibility test is that it
can be expensive to compute the closest Z value of the polygon in
a quadrant. An alternative is to compare the value in the pyramid
to the closest Z value of the entire polygon at each step of the
recursion. With this modification, the test is faster and easier to
implement, but no longer completely definitive. Ultimately, it will
either prove that the entire polygon is hidden, or recurse down to
the finest level of the pyramid and find a pixel it cannot prove is
hidden. Our current implementation uses this technique. When
the test fails to prove that a polygon is hidden, our implementa-
tion reverts to ordinary scan conversion to establish the visibility
definitively.

3.3 Temporal coherence list

Frequently, when we render an image of a complex model using
the object-space octree, only a small fraction of the octree cubes
are visible. If we render the next frame in an animation, most of
the cubes visible in the previous frame will probably still be visi-
ble. Some of the cubes visible in the last frame will become hidden
and some cubes hidden in the last frame will become visible, but
frame-to-frame coherence in most animations ensures that there
will be relatively few changes in cube visibility for most frames
(except scene changes and camera cuts). We exploit this fact in
a very simple way with the hierarchical visibility algorithm. We
maintain a list of the visible cubes from the previous frame, the
temporal coherence list, and simply render all of the geometry on
the list, marking the listed cubes as rendered, before commencing
the usual algorithm. We then take the resulting Z buffer and use it
to form the initial Z pyramid. If there is sufficient frame-to-frame
coherence, most of the visible geometry will already be rendered,
so the Z-pyramid test will be much more effective than when we
start from scratch. The Z-pyramid test will be able to prove with
less recursion that octree cubes and model polygons are hidden.
As we will see in section IV, this can accelerate the rendering pro-
cess substantially. After rendering the new frame, we update the
temporal coherence list by checking each of the cubes on the list
for visibility using the Z-pyramid test. This prevents the temporal
coherence list from growing too large over time.

One way of thinking about the temporal coherence strategy is
that we begin by guessing the final solution. If our guess is very
close to the actual solution, the hierarchical visibility algorithm
can use the Z pyramid to verify the portions of the guess which
are correct much faster than it can construct them from scratch.
Only the portions of the image that it cannot verify as being correct
require further processing.

4 Implementation and Results
Our initial implementation of the hierarchical visibility algorithm
is based on general purpose, portable C code and software scan
conversion. This implementation uses the object-space octree, the
image-space Z pyramid and the temporal coherence list. Even
for relatively simple models the pure software algorithm is faster
than traditional software Z buffering, and for complex models the
acceleration can be very large.

In order to test the algorithm, we constructed an office module
consisting of 15K polygons and then replicated the module in a
three dimensional grid. Each module includes a stairway with a
large open stairwell making it possible to see parts of the neigh-
boring floors. None of the office walls extends to the ceiling, so
from a high enough point in any of the cubicles, it is possible to
see parts of most of the other cubicles on the same floor.

For simple models with low depth complexity, the hierarchi-
cal visibility method can be expected to take somewhat longer
than traditional scan conversion due to the overhead of perform-
ing visibility tests on octree cubes and the cost of maintaining a Z
pyramid. To measure the algorithm's overhead on simple models,
we rendered a single office module consisting of 15K polygons
at a viewpoint from which a high proportion of the model was
visible. Rendering time for a 512 by 512 image was 1.52 seconds
with the hierarchical visibility method and 1.30 seconds with tradi-
tional scan conversion, indicating a performance penalty of 17%.
When we rendered three instances of the model (45K polygons),
the running time was 3.05 seconds for both methods indicating that
this level of complexity was the breakeven point for this partic-
ular model. Hierarchical visibility rendered nine instances of the
same model (105K polygons) in 5.17 seconds, while traditional

scan conversion took 7.16 seconds.

The chief value of the hierarchical visibility algorithm is, of
course, for scenes of much higher complexity. To illustrate the
point, we constructed a 33 by 33 by 33 replication of the of-
fice module which consists of 538 million polygons. The model
is shown rendered in figure 1. 59.7 million polygons lie in the
viewing frustum from this viewpoint, about one tenth of the entire
model. Using the hierarchical visibility method, the Z-pyramid
test was invoked on 1746 octree cubes and culled about 27% of
the polygons in the viewing frustum. The bounding boxes of 687
cubes were scan converted which culled nearly 73% of the model
polygons in the viewing frustum, leaving only 83.0K polygons of
which 41.2K were front facing (.000076 of the total model) to be
scan converted in software. On an SGI Crimson Elan, the entire
process took 6.45 seconds. Rendering this model using traditional
Z buffering on the Crimson Elan hardware took approximately one
hour and fifteen minutes. Rendering it in software on the Crimson
would probably take days.

The center left panel of figure 1 shows the depth complexity
processed by the algorithm for the image in the upper left. The
depth complexity displayed in this image is the number of times
each pixel was accessed in a box visibility test or in Z-buffer
polygon scan conversion. Note the bright regions corresponding
to portions of the image where it is possible to see far into the
model; these are regions where the algorithm has to do the most
work. In this image, the average depth complexity due to box
scans is 7.23, and due to polygon scan-conversion is 2.48 for a
total of 9.71. The maximum depth complexity is 124. Dividing
the number of times the Z pyramid is accessed by the number of
pixels on the screen lets us assign a value of .43 for the “depth
complexity” of the Z-pyramid tests. Thus, the total average depth
complexity of Z-pyramid tests, box scans and polygon scans is
10.14. Note that this is not the depth complexity of the model
itself, but only the depth complexity of the hierarchical visibility
computation. Computing the true depth complexity of the scene
would require scan converting the entire model of 538 million
polygons in software, which we have not done. In the lower left of
figure 1, we show the viewing frustum and the octree subdivision.
The two long strings of finely divided boxes correspond to the
two brightest regions in the depth complexity image. Note that
the algorithm is able to prove that large octree nodes in the distance
are hidden. In the lower right, we show the Z pyramid for the
scene. Even at fairly coarse resolutions, the Z pyramid contains a
recognizeable representation of the major occluders in the scene.

The office environment of figure 1 was chosen in part because
it is a particularly difficult model for PVS methods. From every
office cubicle in this environment, there are points from which
almost every other cubicle on the same floor is visible. As a
result, if the cubicles were used as cells in a PVS method, the
potentially visible set for each cell would have to include nearly
all the cells on its floor and many on other floors. Since each
floor contains about 4 million polygons, the PVS methods would
probably have to render many more polygons than the hierarchical
method. In addition, the precomputation time for published PVS
methods would be prohibitive for a model of this complexity. This
model has 2000 times as many polygons as the model described by
Teller and Sequin[15] which required 6 hours of pre-processing.

Admittedly, the replication of a single cell in the model means
that it may not be a representative example, but it will be some
time before people use models of this complexity without a great
deal of instancing. The hierarchical visibility program we used for
this example makes use of the replication in only two ways. First,
the algorithm does not need to store half a billion polygons in main
memory. Second, the algorithm only needs to consider a single
cell in constructing the octree. These same simplifications would

Fig. 3: Total time in seconds to render all windows as a func-
tion of the number of pixels on the side of each window.

2048
1024

512
256
128
64
32
16
8
4
2
1
128 64 32 16 8 4 2 1

apply to any complex model using a great deal of instancing.

Figure 2 shows the hierarchical visibility method applied to an
outdoor scene consisting of a terrain mesh with vegetation repli-
cated on a two-dimensional grid. The model used for the lower
left image consists of 53 million polygons, but only about 25K
polygons are visiblefrom this point of view. Most of the model
is hidden by the hill or is outside the viewing frustum. The corre-
sponding depth complexity image for hierarchical visibility com-
putations is shown at the top left. The algorithm works hardest
near the horizon where cube visibility is most difficult to establish.
This frame took 7 seconds to render with software scan conversion
on an SGI Crimson. In the lower right, we show a model consist-
ing of 5 million polygons. Even though the model is simpler than
the model in the lower left, the image is more complicated and
took longer to render because a much larger fraction of the model
is visible from this point of view. This image took 40 seconds to
render with software scan conversion on an SGI Crimson. The
average depth complexity for the scene is 7.27, but it reaches a
peak of 85 in the bright areas of the depth complexity image in the
upper right. These outdoor scenes have very different character-
istics from the building interiors shown in figure 1 and are poorly
suited to PVS methods because (a) very few of the polygons are
axis-aligned and (b) the cell-to-cell visibility is not nearly as lim-
ited as in an architectural interior. Nonetheless, the hierarchical
visibility algorithm continues to work effectively.

4.1 Parallelizability and Image-space coherence

We have made our hierarchical visibility implementation capable
of dividing the image into a grid of smaller windows, rendering
them individually and compositing them into a final image. The
performance of the algorithm as the window size is varied tells us
about the parallel performance of the algorithm and the extent to
which it makes use of image-space coherence. If, like most ray
tracers, the algorithm made no use of image-space coherence, we
could render each pixel separately at no extra cost. Then it would
be fully parallelizable. At the other extreme, if the algorithm
made the best possible use of image-space coherence, it would
render a sizeable region of pixels with only a small amount more
computation than required to render a single pixel. Then it would
be difficult to parallelize. Note that if we shrink the window
size down to a single pixel, the hierarchical visibility algorithm
becomes a ray caster using an octree subdivision.

Figure 3 graphs the rendering time for a frame from a walk-
through of the model shown in figure 1 as a function of the window
size. For window sizes from 32 by 32 on up, the curve is rela-
tively flat, indicating that the algorithm should parallelize fairly
well. For window sizes below 32 by 32, however, the slope of
the curve indicates that the time to render a window is almost
independent of the window size. The algorithm can, for example,
render a 32 by 32 region for only slightly more than four times the
computational expense of ray-casting a single pixel with this algo-
rithm. Comparing the single pixel window time to the time for the

whole image, we find that image-space coherence is responsible
for a factor of almost 300 in running time for this example.

4.2 Use of graphics hardware

In addition to the pure software implementation, we have at-
tempted to modify the algorithm to make the best possible use
of available commercial hardware graphics accelerators. This
raises some difficult challenges because the hierarchical visibil-
ity algorithm makes slightly different demands of scan-conversion
hardware than traditional Z buffering. In particular, the use of
octree object-space coherence depends on being able to determine
quickly whether any pixel of a polygon would be visible if it
were scan converted. Unfortunately, the commercial hardware
graphics pipelines we have examined are either unable to answer
this query at all,or take milliseconds to answer it. One would
certainly expect some delay in getting information back from a
graphics pipeline, but hardware designed with this type of query
in mind should be able to return a result in microseconds rather
than milliseconds.

We have implemented the object-space octree on a Kubota Pa-
cific Titan 3000 workstation with Denali GB graphics hardware.
The Denali supports an unusual graphics library call which deter-
mines whether or not any pixels in a set of polygons are visible
given the current Z buffer. We use this “Z query” feature to
determine the visibility of octree cubes. The cost of a Z query de-
pends on the screen size of the cube, and it can take up to several
milliseconds to determine whether or not a cube is visible. Our
implementation makes no use of the Z pyramid because the cost
of getting the required data to and from the Z buffer would exceed
any possible savings. On a walk-through of a version of the office
model with 1.9 million polygons, the Titan took an average of
.54 secondsper frame to render512 by 512 images.Because of
the cost of doing the Z query, we only tested visibility of octree
cubes containing at least eight hundred polygons. Even so, 36.5%
of the running time was taken up by Z queries. If Z query were
faster, we could use it effectively on octree cubes containing many
fewer polygons and achieve substantial further acceleration. The
Titan implementation has not been fully optimized for the De-
nali hardware and makes no use of temporal coherence, so these
performance figures should be considered only suggestive of the
machine's capabilities.

The other implementation we have that makes use of graphics
hardware runs on SGI workstations. On these workstations, there
is no way to inquire whether or not a polygon is visible without
rendering it, so we use a hybrid hardware/software strategy. We
do the first frame of a sequence entirely with software. On the
second frame, we render everything on the temporal coherence list
with the hardware pipeline. Then we read the image and the Z
buffer from the hardware, form a Z pyramid and continue on in
software. With this implementation, on the models we have tried,
temporal coherence typically reduces the running time by a factor
of between 1.5 and 2.

In the course of a walk-through of our office model, we rendered
the frame in the upper left of figure 1 without temporal coherence,
and then the next frame shown in the upper right of figure 1 using
temporal coherence. The new polygons rendered in software are
shown in magenta for illustration. For the most part, these are
polygons that came into view as a result of panning the camera.
The center right shows the depth complexity of the hierarchical
computation for this frame. The image is much darker in most
regions because the algorithm has much less work to do given the
previous frame as a starting point. This temporal coherence frame
took 3.96 seconds to render on a Crimson Elan, as compared with
6.45 seconds to render the same frame without temporal coherence.

Current graphics accelerators are not designed to support the
rapid feedback from the pipeline needed to realize the full poten-
tial of octree culling in the hierarchical visibility algorithm. Hard-
ware designed to take full advantage of the algorithm, however,
could make it possible to interact very effectively with extremely
complex environments as long as only a manageable number of
the polygons are visible from any point of view. The octree sub-
division, the Z pyramid and the temporal coherence strategy are
all suitable for hardware implementation.

5 Conclusion
As more and more complex models become commonplace in com-
puter graphics, it becomes increasingly important to exploit the
available coherence in the visibility computation. Here we present
an algorithm which combines the ability to profit from image-
space coherence of Z-buffer scan conversionwith the ability of
ray tracing to avoid considering hidden geometry. It appears to be
the first practical algorithm which materially profits from object-
space, image-space and temporal coherence simultaneously. The
algorithm has been tested and shown to work effectively on indoor
and outdoor scenes with up to half a billion polygons.

The hierarchical visibility algorithm can make use of existing
graphics accelerators without modification. Small changes in the
design of graphics accelerators, however, would make a large dif-
ference in the performance of the algorithm. We hope that the
appeal of this algorithm will induce hardware designers to alter
future graphics hardware to facilitate hierarchical visibility com-
putations.

Acknowledgements
We thank Frank Crow and the Advanced Technology Group at
Apple Computer for supporting this research. We also thank Mike
Toelle, Avi Bleiweiss, Helga Thorvaldsdottir and Mike Keller of
Kubota Pacific Corporation for helping us test our algorithm on a
Titan workstation.

References
[1] S. M. Rubin and T. Whitted. A 3-dimensional representation

for fast rendering of complex scenes.Computer Graphics,
14(3):110-116, July 1980.

[2] A. Glassner. Space subdivision for fast ray tracing.IEEE
CG&A, 4(10):15-22, Oct. 1984.

[3] D. Jevans and B. Wyvill. Adaptive voxel subdivision for ray
tracing. Proc. Graphics Interface '89, 164-172, June 1989.

[4] T. Kay and J. Kajiya. Ray tracing complex surfaces.Com-
puter Graphics, 20(4):269-278, Aug. 1986.

[5] M. Kaplan. The use of spatial coherence in ray tracing. In
Techniques for Computer Graphics, etc., D. Rogers and R. A.
Earnshaw, Springer-Verlag, New York, 1987.

[6] H. Hubschman and S. W. Zucker. Frame to frame coherence
and the hidden surface computation: constraints for a convex
world. ACM TOG, 1(2):129-162, April 1982.

[7] D. Jevans. Object space temporal coherence for ray trac-
ing. Proc. Graphics Interface '92, Vancouver, B.C., 176-
183, May 11-15, 1992.

[8] A. Glassner. Spacetime ray tracing for animation.IEEE
CG&A, 8(3):60-70, March 1988.

[9] J. Chapman, T. W. Calvert, and J. Dill. Spatio-temporal
coherence in ray tracing.Proceedings of Graphics Interface
'90, 196-204, 1990.

[10] S. Badt, Jr. Two algorithms for taking advantage of temporal
coherence in ray tracingThe Visual Computer, 4:123-132,
1988.

[11] B. Garlick, D. Baum, and J. Winget. Interactive viewing
of large geometric databases using multiprocessor graphics
workstations.SIGGRAPH '90 Course Notes: Parallel Algo-
rithms and Architectures for 3D Image Generation, 1990.

[12] J. Airey. Increasing update rates in the building walkthrough
system with automatic model-space subdivision. Techni-
cal Report TR90-027, The University of North Carolina at
Chapel Hill, Department of Computer Science, 1990.

[13] J. Airey, J. Rohlf, and F. Brooks. Towards image realism with
interactive update rates in complex virtual building environ-
ments.ACM SIGGRAPH SpecialIssue on 1990 Symposium
on Interactive 3D Graphics, 24(2):41-50, 1990.

[14] S. Teller and C. Sequin. Visibility preprocessing for interac-
tive walkthroughs.Computer Graphics, 25(4):61-69, 1991.

[15] S. Teller and C. Sequin. Visibility computations in polyhedral
three-dimensional environments. U.C. Berkeley Report No.
UCB/CSD 92/680, April 1992.

[16] D. Meagher. Efficient synthetic image generation of arbitrary
3-D objects.Proc. IEEE Conf. on Pattern Recognition and
Image Processing, 473-478, June 1982.

Figure Captions

Figure 1: A 538 million polygon office environment rendered with hierarchical visibility. Upper left: Rendered image. Center left: Depth
complexity of the hierarchical visibility computation. Lower Left: Viewing frustum and octree cubes examined while rendering the image
in the upper left. Lower right: Z pyramid used to cull hidden geometry. Upper right: Image rendered with temporal coherence. Polygons
not rendered in the previous frame are shown in magenta. Center right: Depth complexity of the hierarchical visibility computation for
the frame rendered using temporal coherence.

Figure 2: Lower left: Image of a 53 million polygon model (mostly hidden) rendered using hierarchical visibility. Upper left: Corre-
sponding depth complexity for the hierarchical visibility computation. Lower right: Image of a 5 million polygon model. Upper right:
Corresponding depth complexity for the hierarchical visibility computation.

