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Abstract 

This paper describes an object-space shadow generation 
algorithm for static polygonal environments illuminated by 
movable point light sources. The algorithm can be easily 
implemented on any graphics system that provides fast 
polygon scan-conversion and achieves near real-time 
performance for environments of modest size. It combines 
elements of two kinds of current shadow generation 
algorithms: two-pass object-space approaches and shadow 
volume approaches. For each light source a Binary Space 
Partitioning (BSP) tree is constructed that represents the 
shadow volume of the polygons facing it. As each polygon's 
contribution to a light source's shadow volume is determined, 
the polygon's shadowed and lit fragments are computed by 
filtering it down the shadow volume BSP tree. The polygonal 
scene with its computed shadows can be rendered with any 
polygon-based visible-surface algorithm. Since the shadow 
volumes and shadows are computed in object space, they can 
be used for further analysis of the scene. Pseudocode is 
provided, along with pictures and timings from an interactive 
implementation. 
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1 Introduction 

One classic problem in 3D computer graphics is that of shadow 
generation. Areas in shadow are those that are not visible from 
a light source. The presence of shadows in an image helps 
viewers to better understand the spatial relationships between 
objects, is vital for applications such as architectural planning, 
and, in general, increases the appearance of  reality that a 
picture provides. Unfortunately, current shadow generation 
algorithms do not run fast enough for interactive performance, 
except on special hardware [12]. Real-time alternatives to full 
shadow generation typically involve tricks for transforming 
polygons to create polygon shadows that are mapped onto one 
or more infinite planes [4]. These " f a k e "  shadows are not 
properly clipped to the surfaces that they shadow and are not 
blocked by intervening surfaces. 

We present a shadow algorithm that achieves interactive 
performance for polygonal environments of modest size when 
implemented on a graphics system that provides fast polygon 
scan conversion. After reviewing current shadow algorithms, 
we describe how the new algorithm is related to them. Next, 
we provide an overview of previous work on the BSP tree data 
structure and algorithms on which the shadow algorithm is 
based, and present a detailed description of how the new 
algorithm works. 

2 Previous Shadow Algorithms 

Crow's classic paper on shadow generation [8] describes three 
basic approaches: scanline shadow computation, the two-pass 
object-space approach, and shadow volumes. Since Crow's 
survey appeared, the taxonomy of shadow algorithms has been 
broadened to include three more basic methods: a two-pass z- 
buffer method [25], ray tracing [1, 24], and radiosity 
approaches [7, 17]. Because the algorithm discussed here 
combines the two-pass object-space approach with the 
shadow-volume approach, we provide a brief introduction :o 
both. 

The two-pass object-space approach, developed by Atherton, 
Weiler, and Greenberg [2] for arbitrary polygonal 
environments, applies two passes of an object-space visible- 
surface algorithm. The first pass, executed from the point of 
view of the light source, splits polygons into pieces that are 
visible from the light source (lit) and ones that are invisible 
from the light source (shadowed). This is accomplished by 
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transforming the polygons from the point of view of the light 
source and clipping those polygons that are further away 
against the clip window of those that are closer. Any part of a 
polygon that lies within a closer polygon, as seen from the 
light source, is in shadow. Lit polygon fragments are 
transformed back into their original orientation and attached to 
the original polygons as surface detail polygons. A second 
pass through the visible-surface algorithm is then performed 
from the point of view of the camera. 

The shadow-volume approach involves the construction of a 
"shadow volume" for each object facing the light source. The 
shadow volume of an object is that volume bounded by the 
object and a set of invisible "shadow polygons," all of which 
face outward from the volume. A shadow polygon is created 
by connecting two vectors emanating from the point light 
source with the two vertices of one of the object's edges. The 
polygon is bounded by the edge, and the pieces of the two light 
source vectors that begin at the edge and continue away frem 
the light source. The entire shadow volume is clipped against 
the view volume to yield a finite volume. Any part of a 
polygon within another polygon's shadow volume is 
shadowed. Whether a visible point on a scene polygon is in 
shadow can be determined by computing the relative number 
of shadow polygons between it and the eyepoint that are front- 
facing or back-facing. A number of shadow aigorithms have 
been developed that create shadow volumes as a preprocessing 
step before rendering with a scan-line or z-buffer visible- 
surface algorithm [15, 5, 16, 3, 14, 9]. 

The technique described here combines elements of both these 
approaches, with some important differences [6]. In the two- 
pass object-space approach, the scene must be wholly within 
the light source's view volume and must be transformed by the 
light source's perspective transformation. While the algorithm 
described here does clip scene polygons into shadowed and fit 
parts, it does not require that polygons be transformed in the 
shadow generation process. The basis of the Atherton, Weiler, 
and Greenberg algorithm--the Weiler-Atherton polygon 
clipper [22] (or its more robust descendant [23])--contains a 
number of implementation subtleties. In contrast, our algorithm 
uses a simpler clipping algorithm that always clips a polygon 
against a plane, rather than against another polygon. The new 
algorithm's second (visible-surface) pass may be conveniently 
accomplished in image-space. Alternatively, the algorithm 
may also be used to perform object-space visible-surface 
determination by placing the light source at the eyepoint and 
returning the list of the non-overlapping lit (visible) polygon 
fragments that are computed. 

Although the new algorithm generates a shadow volume, the 
volume does not have to be closed (e.g., by clipping it agaiast 
the view volume) and does not include the actual scene 
polygons. Shadow-volume algorithms typically use the 
shadow volume to compute shadows in the course of 
performing visible-surface determination. The algorithm 
described here clips the scene polygons against the shadow 
volume in object space in the spirit of [16], creating the 
shadow volume as it proceeds. 

Our algorithm benefits from the divide-and-conquer power of 
the Binary Space Partitioning (BSP) tree [10, 11] and its 
generalization to modeling polyhedra [20]. It is relatively 
simple and straightforward to implement and efficient enough 

to provide interactive performance. In order to understand 
how the algorithm works it is necessary to review some BSP 
fundamentals. 

3 BSP Fundamentals 

The BSP visible-surface algorithm, developed by Fuchs, 
Kedem, and Naylor, provides an extremely elegant and simple 
way to determine visibility priority among polygons in a scene 
independent of the eyepoint [10, 11]. A BSPIree represents a 
recursive partitioning of n-dimensional space, inspired by the 
early work of Schumacker [18, 19]. In 3D, the BSP tree's root 
is a polygon selected from those in the scene. The root 
polygon is used to partition object space into two half-spaces. 
One half-space contains all remaining polygons in front of the 
root polygon, relative to its plane equation, and the other 
contains all polygons behind it. Any polygon that lies on both 
sides of the root polygon's plane is split by the plane and its 
front and back pieces are assigned to the appropriate half- 
space. One polygon each from the root polygon's front and 
back half-space become its front and back children. Each child 
is recursively used to divide the remaining polygons in its 
half-space in the same fashion. The tree is complete when each 
leaf node contains only a single polygon whose two half- 
spaces are empty, A modified inorder traversal of this tree 
provides for O(n) back-to-front ordering from an arbitrary 
viewpoint. 

Thibault and Naylor [20] introduced the concept of using a 
BSP tree to represent polyhedral solids. They associate an 
" i n "  or "out"  value with each empty region at the leaves. 
Assuming that a polyhedron's normals point outward, then an 
" i n "  region con-esponds to the half-space on a polygon's back 
side, and an "out"  region corresponds to the half-space on a 
polygon's front side. Each internal node defines a plane and 
has a list of polygons embedded in the plane. The " i n "  and 
"out"  regions form a convex polyhedral tessellation of space. 
Thus, a BSP tree can represent an arbitrary (possibly concave) 
solid with holes as a union of convex " i n "  regions. Thibault 
and Naylor show how to produee a BSP tree from a polygonal 
boundary representation of a solid and how to perform Boolean 
set operations on two boundary representations or on a BSP 
tree and a boundary representation to yield a new BSP tree. 

4 The SVBSP Algorithm 

The Shadow Volume BSP (SVBSP) tree is a modified version 
of the BSP tree used by Thibault and Naylor. Each internal 
node is associated with a "shadow plane" defined by a point 
light source and an edge of a polygon facing the light source. 
(If a directional light is used, then the shadow plane is defined 
by the light source's direction vector and the polygon edge.) 
This is one of the "shadow polygons" that Crow refers to as 
bounding the shadow volume [8]. The direction of the plane's 
normal is used to determine the half-space in which an object 
is located. At the leaves are the " i n "  and "out"  cells 
indicating whether or not a region is interior to the shadow 
volume. 

There axe two basic steps to the Shadow Volume BSP 
algorithm whose execution is interleaved for each polygon 
facing the light source: 

100 



~ Computer Graphics, Volume 23, Number 3, July 1989 

• Determining shadows. The polygon is filtered down the 
SVBSP tree to determine those parts that are shadowed 
and those that are lit. 

• Enlarging the SVBSP tree. The shadow volume for each 
of  the polygon's  lit parts is created and added to the 
SVBSP tree. 

The most straightforward approach to checking whether a 
polygon is in shadow would be to compare it with the shadow 
volumes of  all other polygons. Polygons that are further from 
the light source than the polygon being tested cannot, however, 
cast a shadow on it. Therefore, if we process the polygons in 
front-to-back order relative to the light source, then each 
polygon would only have to be compared with the shadow 
volumes of  those polygons that have already been processed 
and which are closer to the light source than it. The front-to- 
back ordering can be determined by building a regular BSP 
tree from the original scene polygons and traversing it from the 
point of  view of  the light source. Note, that this BSP tree 
needs to be created only once at the outset. It must be 
recomputed only if  the scene's polygons change, not if  a light 
source is moved. 

Rather than check i f  a polygon is in each of  the individual 
shadow volumes of  all polygons in front of  it, it is more 
efficient to keep one current merged shadow volume that is 
enlarged by unioning it with the shadow volume of each new 
polygon as the polygons are processed in front-to-back order. 
Since a polygon is compared only with polygons that are closer 
to the light than it, there is no need to check it against those 
planes of  the merged shadow volume that would have been 
defined by these closer polygons. Therefore, these planes may 
be left out. (If complete shadow volumes are needed for 
subsequent computation, however, the scene polygon planes 
must be included.) The resulting merged shadow volume is a 
set of  semi-infinite pyramids radiating outward from a single 
apex at the point light source. Figure 1 (a) shows a merged 
SVBSP shadow volume in 2D for a set of lines seen from a 
point, while Figure 1 (b) shows the shadow volume with the 
lines (planes in 3D) actually included. While Nishita et al. [16] 
compare the shadow volumes of  two convex polyhedra, BSP 
trees make it relatively easy to compare the shadow volume of 
one polygon with a typically concave union of  shadow 
volumes. The union operation is a version of  the Boolean set 
union for polyhedra described in [20]. 

The determination of  which areas of  a polygon are in shadow 
is performed by filtering the polygon down the SVBSP tree, 

(a) (b) 

Figure 1 SVBSP volume in 2D. 
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F igure  2 Building an SVBSP volume in 2D. 

splitting it whenever it lies in both half-spaces of  a node's  
plane. Fragments that reach the " i n "  leaves are in shadow, 
while fragments that reach the " o u t "  leaves are lit. Since the 
SVBSP tree is built incrementally, each polygon is compared 
only with that part of  the tree in existence when it is processed. 
Note that it is not necessary to filter any polygon that doesn' t  
face the light source, since it is already entirely in shadow. 
Such polygons include any polygon whose plane embeds the 
light source. 

The SVBSP tree must be augmented m include each lit 
fragment 's  shadow volume. This is accomplished by creating 
a set of  shadow planes for the fragment 's  edges and 
constructing an SVBSP tree for them, using the algorithm for 
building BSP trees presented in [20]. An SVBSP tree node 
consists of  the shadow plane alone, since the shadow plane 
edge is no longer needed. Figure 2 shows the steps in the 
construction of  an SVBSP tree in 2D. Initially, the tree 
contains a single " o u t "  cell. Lines ab and cd (which would be 
polygons in 3D) are both filtered down the SVBSP tree without 
any splitting. When line e f i s  filtered down the tree, it is split 
into eg and g f b y  the shadow plane through b. Line eg is 
wholly inside an " i n "  cell (the left branch o f b  in Figure 2); 
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therefore its shadow planes are not inserted. Since each 
fragment that reaches an " o u t "  cell is lit, it casts a shadow that 
might fall on fragments added later. Therefore, shadow planes 
for each edge of  a lit polygon fragment are computed and the 
volume that they define is added to the SVBSP tree, replacing 
the ' ' ou t "  cell in which the fragment landed. 

Figure 3 shows pseudocode for shadowGenera to r ,  the top- 
level shadow generation loop for the scene polygons. Each 
scene polygon is processed by the recursive procedure 
d e l e r m i n e S h a d o w  (Figure 4), which filters the polygon down 
the SVBSP tree, splits it when necessary, and augments the 
SVBSP tree with the shadow volumes of  lit fragments. The 
pseudocode shown here assumes convex polygons and a single 
light source. 

5 Mult iple  Light  Sources 

The SVBSP algorithm described above can be easily modified 
to generate shadows cast by multiple light sources. This can 
be accomplished by building a separate SVBSP tree for each 
light source. All processing for one light source is performed 
before considering the next. Therefore, only one SVBSP tr~e 
need be kept in memory at any time. Polygons are processed 
in front-to-back order with respect to the current light source. 
Each polygon fragment must keep track of the light sources by 
which it is lit. I f  a fragment falls into an SVBSP tree " o u t "  
cell, it is marked as lit. If it falls into an " i n "  cell, it is marked 
as shadowed. In both cases, the polygon fragment is attached to 
the regular BSP tree node of  the unfragmented polygon with 
which it is associated. After all the polygons have been 

; determineShadow filters p down SVBSPtree to 
; determine shadowed fragments and reattaches shadowed 
; fragments to BSPnode. 

procedure determineShadow (p, SVBSPnode, PLS, BSPnode) 
returns SVBSPnode 

ill (SVBSPnode is an IN cell) 
attach p to BSPnode as a shadowed fragment 

else it (SVBSPnode is an OUT cell) 
attach p to BSPnode as a lit fragment 

; create shadow volume for p and 
; append it to the SVBSP free 

shadowPlanes := planes that form the shadow 
volume of p with PLS 

SVBSPnode := 
buildSVBSPtree (SVBSPnode, shadowPlanes) 

else 
; Split p by SVBSPnode.plane, creating 
; negPart and posPart. 

splitPolygon (p, SVBSPnode.plane, negPart, posPart) 

if (negPart is not null) 
SVBSPnode.negNode := 

determineShadow (negPart, 
SVBSPnode.negNode, PLS, BSPnode) 

if (posPart is not null) 
SVBSPnode.posNode := 

determineShadow (posPad, 
SVBSPnode.posNode, PLS, BSPnode) 

endif 
endproc 

Figure  4 P s e u d o c o d e  for de te rm ineShadow.  

; shadowGenerator determines shadow fragments that 
; are attached to the appropriate node in the BSP 
; tree for subsequent rendering. Alternatively, 
; fragments could be written to a file. 

procedure shadowGenerator (PLS, BSPtree) 

; Initialize the SVBSP tree to an OUT cell 

SVBSPtree := OUT 

; Process all polygons facing light source PLS in 
; front-to-back order by BSP tree traversal in O(n). 

for each scene polygon p, in front-to-back order 
relative to PLS 

if p is facing PLS 

; Determine areas of p that are shadowed. 
; BSPnode is p's node in BSPtree 

SVBSPtree := deterrnineShadow (p, SVBSPtree, 
PLS, BSPnode) 

else 
; p is not facing PLS or PLS is in p's plane 

mark p as shadowed 
endif 

endfor 

discard SVBSPtree 
endproc 

Figure  3 P s e u d o c o d e  for shadowGenera to r .  

processed in front-to-back order with respect to the current 
light source, the current SVBSP tree can be discarded and a 
new one initialized. The polygon fragments created by 
filtering the scene through the previous SVBSP tree are filtered 
through the next SVBSP tree in front-to-back order relative to 
the new light source. Note that the front-to-back order is 
established by traversing the original BSP tree, which has not 
gained any nodes due to SVBSP polygon fragmentation. 

Shading calculations can be done after the entire scene has 
been processed for each light source, since each polygon 
fragment that has passed through the last light source's SVBSP 
tree is now associated with information indicating which light 
sources illuminate it. This is ideal for graphics systems that 
offer hardware shading support for multiple light sources. 
Alternatively, shading calculations could be performed 
incrementally as each light source's visibility from a fragment 
is determined. 

6 Discussion 

It is highly desirable to keep an SVBSP tree well-balanced, 
even at the expense of  increased size, as is the case when using 
BSP trees to model polyhedra. This would help in unioning 
and filtering since each polygon must be filtered down to the 
tree's leaves. Controlling tree size is also important, however. 
One major way to accomplish this is to consider only the 
silhouette edges of  the objects of  which the polygons are 
par t - -a  standard shadow algorithm optimization. As well, the 
edges created by splitting a polygon as it is filtered down the 
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original BSP tree need not be counted, Another way to reduce 
the size of the tree is to create shadow planes only for polygons 
that the user marks as being able to cast shadows. 

In the special case of  one light source, the shadowed fragments 
may be kept and the lit fragments thrown away, rather than 
keeping both. In this case, a polygon would be rendered by 
drawing its shadowed fragments on top of the original 
unfragmented polygon, as in [2]. There are some cases in 
which shadows may be known to fall only within a specified 
region, for example when a light source is defined with cones 
or flaps [21]. In these cases, the scene can first be clipped to a 
view volume containing only the region of interest for further 
processing. This could also be accomplished using a BSP tree. 

The fragments produced by filtering down one light's SVBSP 
tree are pipelined to the next SVBSP tree. Therefore, in 
processing multiple point light sources, it better to proceed in 
the order that results in the least amount of polygon 
fragmentation. One heuristic is to process the light sources in 
increasing order of  the number of polygons facing them. 
Alternatively, the light sources can be processed in increasing 
order of the likelihood with which their position will change. 
If copies of  the intermediate fragments produced by each 
SVBSP tree for each polygon are maintained, then a change in 
the position of the t~ light source will only require sending the 
fragments from the i-1 th SVBSP tree through the remaining 
trees. Therefore, those light sources whose position will 
change most often can be computed last. 

Although a light source's SVBSP tree may be augmented with 
the shadow volumes of the lit polygon fragments that reach its 
leaves, these lit portions have already been fragmented by 
previous SVBSP trees. A smaller tree will result if  the SVBSP 
tree is instead augmented by shadow volumes created from the 
more coherent lit fragments that result from filtering the 
original scene polygon down the current SVBSP tree alone. 
These more coherent fragments cannot be used for multiple 
light source rendering since they only record the effect of the 
current light source. They may, however, be used to render the 
effects of  that light source by itself. 

As Thibault and Naylor point out, fragmentation could also be 
reduced if edges were merged when it has been determined 
that adjacent fragments are both in " i n "  or " o u t "  regions. As 
a special case, if all fragments of the polygon are lit or all are 
shadowed, then the fragments may be discarded and a copy of 
the original polygon used, marked accordingly. 

7 Implementation 

This algorithm has been implemented in C on a HP 9000 350 
TurboSRX graphics workstation under HP-UX using the 
Starbase Graphics Library. To simplify the implementation 
only convex polygons are handled and polygons are processed 
individually, so no advantage is taken of  the connectivity of  
polygons in polyhedra to identify silhouette edges. As well, no 
distinction is made between the original edges of a polygon 
and those generated by splitting it during creation of the 
original BSP tree or the SVBSP trees. A bit mask is used to 
keep track of  which light sources illuminate each polygon 
fragment. Our implementation is able to take advantage of the 
hardware shading capabilities provided by the graphics system 

when rendering the figures. Since the original scene is already 
represented as a BSP tree, the scene may be rendered with 
either the BSP visible-surface algorithm (as done in the figures 
included here) or the hardware z-buffer. Timings for the 
figures are presented in Table 1 and include only the time 
needed to generate polygon shadows. Rendering time was an 
additional fraction of  a second. 

Figures 5-8 show a scene illuminated by three light sources, 
shown individually and together. Two versions of the scene 
are shown in each figure. The first version is shaded using the 
light sources. The second, fragmented version shows how the 
scene polygons are split by both the scene BSP tree and the 
light source SVBSP trees: shadowed fragments are shown in 
three levels of  g e y ,  depending on the number of  light sources 
that illuminate them, while colored fragments are lit by all 
light sources. Figure 9 shows another scene with only the 
shadowed fragments outlined. Figures 10 and 11 show 
additional scenes rendered with the algorithm. 

It is important to note that care must be taken to avoid 
problems posed by limited floating point precision. For 
example, as polygon fragments get progressively smaller due 
to fragmentation, the plane equation that would be calculated 
for each will also get progressively more inaccurate. We 
currently compute a plane equation for each original scene 
polygon and assign it to each polygon fragment generated from 
it. This not only saves computation, but assures that all 
fragments of the original polygon remain coplanar with each 
other. A similar approach can preserve the collinearity of  
edges that are formed by splitting an original scene edge. 

8 Conclusions and Future Work 

The algorithm that we have presented generates shadows in 
object space in near real-time for a modest number of  
polygons. It is simple to implement, and because it generates a 
set of  polygons as output, it may be used as a preprocess to any 
polygon-based visible-surface algorithm. Since the input and 
output formats are the same, a pipelined approach for modeling 
shadows from multiple light sources is easy to implement. No 
restrictions are placed on the locations of  the point light 
sources and viewer, no transformations are required before 
visible-surface determination. Our implementation relies o n  

the use of  a BSP tree representation of the scene to determine a 
front-to-back ordering of  the scene polygons for each light 
source in time linear in the number of scene polygons. The 
algorithm may be easily modified to support a full shadow 
volume that includes the scene polygons, in which case the 
scene BSP tree is not necessary. We have recently learned that 
Naylor (personal communication, 1989) has independently 
proposed a similar algorithm. 

BSP trees not only present a unified framework for visible- 
surface determination, point classification, and set operations 
on polyhedra, but, as we have shown, also make possible 
interactive shadow generation on modem graphics 
workstations. In addition to pursuing some of the performance 
improvements mentioned previously, we are also investigating 
a natural extension to the SVBSP algorithm to support object- 
space shadow generation for linear and area light sources [6]. 
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Figure Secs Lights Input Front-facing Front-facing S V B S P  Fragments 
polygons polygons edges nodes 

5 .62 1 27 12 49 144 122 
6 .68 1 27 15 61 140 108 
7 .23 I 27 15 61 31 49 
8 5.33 3 27 12,15,15 49,61,61 144,140,32 475 
9 1.96 1 126 61 227 88 537 

I0 4.97 2 65 33,32 132,128 210,169 523 
I1 7.99 2 106 49,53 196,212 415,191 813 

Tetra256 4.15 1 258 130 390 577 723 
Tctra1024 25.44 1 1026 514 1542 2894 3345 

Table 1 Timings for figures. Figures Tetra256 and Tetra1024 (not shown) are recursive tetrahedra [13] with 256 
and 1024 polygons, respectively, casting shadows on themselves and a ground plane. 
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Figure  5 Solids with light source 1. 

F igure  6 Solids with light source 2. 

F igure  7 Solids with light source 3. 
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Figure  8 Solids with all three light sources. 

F igure  9 Recursive tetrahedron and staircase with 
one light source, showing shadow fi'agments. 

F igure  10 Table and chair with two light sources. 

F igure  11 Room with two light sources. 
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