Geometric Modeling
For Computer Graphics

Thomas Funkhouser
Princeton University
C0S 598B, Spring 2000

Hypothesis

• 3D models will become ubiquitous (eventually)
 ◦ Laser range scanners
 ◦ World Wide Web
 ◦ Fast graphics cards

When will 3D models be as common as images are today?
Challenges

• Usually only “raw” 3D data is available
 ◦ Low-level geometric primitives
 ◦ No semantic labeling, no structure
 ◦ Incomplete, invalid

What properties can be computed for this bunny?

Course Objective

• Develop algorithms for analysis of 3D shape

How can we use this chair in a 3D application?
Applications

- Computer-aided design
- Medicine
- Training
- Education
- Entertainment
- E-commerce
Applications

- Computer-aided design
- Medicine
- Training
- Education
- Entertainment
- E-commerce

Apo A-1
(Theoretical Biophysics Group, University of Illinois at Urbana-Champaign)

Human Skeleton
(SGI)

Applications

- Computer-aided design
- Medicine
- Training
- Education
- Entertainment
- E-commerce

Driving Simulation
(Evans & Sutherland)

Interactive Kitchen Planner
(Matsushita)

Geri’s Game
(Pixar Animation Studios)

Desk Assembly
(Silicon Graphics, Inc.)
Goals

- Develop algorithms for analysis of 3D models
 - Reconstruction
 - Segmentation
 - Feature detection
 - Labeling
 - Matching
 - Classification
 - Retrieval
 - Recognition
 - Clustering

How can we fix up 3d data into solid models?
Goals

• Develop algorithms for analysis of 3D models
 ◦ Reconstruction
 ◦ Segmentation
 ◦ Feature detection
 ◦ Labeling
 ◦ Matching
 ◦ Classification
 ◦ Retrieval
 ◦ Recognition
 ◦ Clustering

How can we decompose a 3D object into its parts?

Goals

• Develop algorithms for analysis of 3D models
 ◦ Reconstruction
 ◦ Segmentation
 ◦ Feature detection
 ◦ Labeling
 ◦ Matching
 ◦ Classification
 ◦ Retrieval
 ◦ Recognition
 ◦ Clustering

Can we identify tell-tale features?
Goals

- Develop algorithms for analysis of 3D models
 - Reconstruction
 - Segmentation
 - Feature detection
 - Labeling
 - Matching
 - Classification
 - Retrieval
 - Recognition
 - Clustering

How can we use semantic tags in 3D applications?

Goals

- Develop algorithms for analysis of 3D models
 - Reconstruction
 - Segmentation
 - Feature detection
 - Labeling
 - Matching
 - Classification
 - Retrieval
 - Recognition
 - Clustering

Are these the same chair?
Goals

• Develop algorithms for analysis of 3D models
 - Reconstruction
 - Segmentation
 - Feature detection
 - Labeling
 - Matching
 - Classification
 - Retrieval
 - Recognition
 - Clustering

What geometric features define a chair?

Goals

• Develop algorithms for analysis of 3D models
 - Reconstruction
 - Segmentation
 - Feature detection
 - Labeling
 - Matching
 - Classification
 - Retrieval
 - Recognition
 - Clustering

What query will retrieve these chairs?
Goals

- Develop algorithms for analysis of 3D models
 - Reconstruction
 - Segmentation
 - Feature detection
 - Labeling
 - Matching
 - Classification
 - Retrieval
 - Recognition
 - Clustering

Is this blue chair in the database?

Blanz et al.

Goals

- Develop algorithms for analysis of 3D models
 - Reconstruction
 - Segmentation
 - Feature detection
 - Labeling
 - Matching
 - Classification
 - Retrieval
 - Recognition
 - Clustering

Can we learn which 3D models are similar?
Related Work

• Analysis of 3D models shares ideas developed for other multimedia data types

Example: Image Analysis

Which is easier to analyze: a 2D image or a 3D model?
3D Shape Analysis

- Appropriate representation of 3D shape is key
 - Higher-level structures have more information

Example: skeleton

Syllabus

- Study 3D representations of shape
 - Surfaces
 - Solids
 - High-level reps

- Investigate 3D analysis algorithms
 - Reconstruction from raw data
 - Feature detection
 - Classification
 - Similarity queries

Students present papers for representations during each class
Example 1: Generative Models

- Reconstruct manifold meshes from range data

Partial Meshes

Ramamoorthy et al. (SIGGRAPH 99)

Example 1: Generative Models

Partial Mesh

Generative Model

Ramamoorthy et al.
Example 2: Building Block Models

- Reconstruct 3D model from 2D image

Reconstructed 3D Model

Parameterized Building Blocks

Coursework

- Lectures:
 - Present papers
 - Lead discussions

- Projects:
 - Acquire raw 3D data
 - Reconstruct high-level representation from raw 3D data
 - Analyze shape from high-level representation
First Assignment

• Acquire 3D data from World Wide Web
 ◦ Range images
 ◦ Polygonal models
 ◦ Volumetric data sets

• Build repository of interesting 3D data sets
 ◦ Gather test data
 ◦ Learn properties of currently available models
 ◦ Gain insight into interesting research problems

• Example:
 ◦ http://www.cc.gatech.edu/projects/large_models/

Summary

• Motivation:
 ◦ Automatic analysis of available 3D models

• Goals:
 ◦ Study and compare 3D object representations
 ◦ Develop tools for processing and analysis of 3D models
 ◦ Identify interesting research problems for later study