Controlling copies of objects

Copying an object is not always

the same as copying its contents




The issue

e A C++ class defines the meaning of
every operation performed on objects
of that class.

e If you don't define certain operations,
the compiler does it for you:

— Ordinarily, copying a class object means
copying its elements

— That behavior is often inappropriate for
classes that represent abstract data types




Objects versus values

e \What is the difference?
e Why does it matter?
e How do we model the difference?

o Warning: These concepts are somewhat
vague and approximate, and not
everyone agrees on what they mean




e Once created (computed), they are
never modified

e No way to tell the difference between a

value and a copy of it
e Typically called rvaluesin C and C++




e Referred to by /valuesin C and C++
e Once created, they can be modified

e A copy of an object is distinct from the
original
— Modifying one does not modify the other

— Their addresses are different (whatever
that means in a given language)

e Objects usually contain values




Examples

e 3 is a value

e If we define a variable, as in
int x = 3;
that variable is an object, which
contains the value 3




Variables are objects

e \We can demonstrate that distinct
variables are distinct objects by
changing one of them and observing
that the other does not change

e Even if the variables are const, we can
still observe that they have different
addresses




Pointers are values

e A copy of a pointer is indistinguishable
from the original, even though pointers
identify (/.e. contain the addresses of)
objects

e Variables that contain pointers are
objects, as usual




Arrays are (essentially)
objects

e In C and C++, the name of an array is
usually converted to the address of its
initial element, which is distinct for
distinct arrays

e By implication, string literals (such as
“abc’) are objects, not values,
because they are arrays




A concrete example

e We will define a class String whose
objects represent variable-length strings
of characters

e We would like String objects to
behave much like values

e In particular, we would like to be able
to pass Strings as arguments, return
them as results, etc.




One implementation snhag

e A string literal, as built into the C and
C++ languages, is an object, but it
evaluates to a pointer, which is a value

e That means that “copying” a string
literal copies the pointer, which results
in two pointers that identify the same
object




Literals and aliasing

e Suppose we say

char* x = new charl[4];
strcpy(x, “cat”);
char* y = Xx;

x[2] = ‘r’;

Then x and y refer to the same object,
so changing x[2] changes y[2] also

e This behavior makes it hard to treat
strings as values




Strings as values

e \What we would like is an abstraction
that lets us use strings as if they were
values:

— Copying a string should copy the
characters that constitute it

— Freeing a string should free its characters

e To define such an abstraction, we need
to be able to define copying




What is copying?

e Copying an object creates a copy of it

e Therefore, copying is a way of
constructing a new object

e Accordingly, we say how to copy
objects of a particular class by writing a
copy constructor for that class




What is a copy constructor?

e Suppose we have an object of class X
and we want to construct another
object of class X from it

e Then we need a constructor that takes
an object of class X as argument




Overloading constructors

e The copy constructor had better not be
the only way to construct an object,
because if it were, there would be no
way to create the first object

e Therefore, classes that have a copy
constructor will invariably have more
than one constructor




First try

e It might seem that we could define a

copy constructor this way:
class X {
public:
X(X); // copy constructor?
} // ..

e However, this strategy fails hideously




Why X(X) doesn’t work

e Recall that passing an argument to a
function copies the argument

e Therefore, calling X(X) must copy the

object being copied
— To do that, it would

constructor, but cal

before it can copy it

have to use the copy
ing the copy

constructor must first copy the argument
e To do that, it would have to use the copy

constructor, but ...




What do we really want

e To copy an object, we want to run a
copy constructor whose parameter is
bound to that object without copying it

e Moreover, we do not want to modify
the original object in order to copy it

e Therefore, we want the copy
constructor to take a reference to
const as its parameter




Writing a copy constructor

class String {
public:

// ..
String(const String&) ;

// ..
}s

String::String(const String&)
{ /% %/}




What operations should a
String support?

e Create a String from a null-
terminated character array

e Destroy a String
e Copy a String
e Printa String




We can start coding

Class String {
friend ostream& operator<<
(ostream&, const String&);
public:
String(Q); // empty string
String(const char¥®);
String(const String&);

private:
char* data;
s




Default constructor

e Necessary in order to allow
String s;
or
String s[10];

e We will allocate a null string:
String::String(): data(new char[1])

{
¥

data[0] = ‘\0’;




Construct a String from a
character arra

String::String(const char* s):
data(new char[strlen(s) + 1])
{

}

strcpy(data, s);




The copy constructor

String::String(const String& s):
data(new char[strlen(s.data)+1])
{

}

strcpy(data, s.data);




The rest of it

String: :~String()
{

}

delete[] data;

ostream& operator<x<
(ostream& o, const String& s)
{

0 << s.data;
return o;




int main() {
String hello(“Hello 7);
String world("world”);

cout << hello;
cout << world << endl;




Two problems

e Sometimes we will copy strings when
we’'d rather not; this problem affects
performance but not correctness

e We still havent defined the meaning of

String sl, s2;
sl = s2; // What does this do?




Assignment Is not copying

e It might appear that
sl = s2;
makes s1 into a copy of s2, but that
reasoning is deceptive

e The reason is that sl already had a
value, and we must first dispose of it
somehow

e Also, how do we specify assignment?




Defining assignment

e C++ treats assignment as a separate
operation from copying

e Assignment is a member function with
the strange name of operator=

e It should return a reference to the left-
hand side, for consistency with built-in
assignment




Example of assignment

class String {

public:
// ..
String& operator=(const String&);
// ..

I




Assignment usually has three

e Check whether the left-hand and right-
hand sides are the same object

— This is not just for efficiency; we must
avoid deleting the object’s contents and
then trying to assign them!

e Do the assignment (often like executing
the destructor and copy constructor)

e Return the left-hand side




Referring to the present
Object

e Within the body of a member function,
the keyword th1is is a pointer to the
object that is currently in use

e Therefore, the expression *this is a
reference to the present object

e Assignment operators will therefore
usually say
return *this;




Putting it all together

String&
String: :operator=(const String& s)
{
1f (this !'= &s) {
delete[] data;
data = new char[strlen(s.data)+1];
strcpy(data, s.data);
}

return *this;




Regrouping modules

e There are four interface operations
— Construct from a character array
— Construct from a(nother) String
— Assign
— Destroy
e ...but only two in implementation
— Copy in a character array
— Destroy




Implementation subroutines

e \We can't call constructors explicitly, and
shouldn’t call destructors, but we can
regroup their work into auxiliary
functions
— Copy in a string with 1n1t
— Delete our data with destroy

e The other operations will call these




Revise the class

class String {

friend ostream& operator<<
_ (ostream&, const String&);
public:
String() ;
String(const char¥*),;
String(const String&); _
String& operator=(const String&);
- ~String();
private:
char* data;
void init(const char¥®);
} void destroy();




Now we can initialize and
destroy once

void String::init(const char* s)

{
data = new char[strlen(s) + 1];
strcpy(data, s);

}

void String::destroy()
{

}

delete[] data;




The other operations become
easier

String::String(Q)
{

}

1n1t("7);

String::String(const char®* s)

{
}

1n1t(s);




More operations

String::String(const String& s)
{

}

init(s.data);

String: :~String()
{

}

destroy();




Assignment

String&
String: :operator=(const String& s)
{
1f (this = &s) {
destroy();
init(s.data);
}

return *this;




Where are we now?

e We know how to define the meaning of
copying and assignment for classes

e \We used that tool to define a class that
behaves like a variable-length string




The next couple of weeks

e Proposals due this Friday
— see notes from lecture 2 for details

—no homework this week so you can focus
on the presentations

e Presentations in class next week
e Midterm Wednesday, March 10




