Another Example
of Abstraction

A class for page buffers

A problem

e Suppose we have a program that
generates integers

e \We want to print those integers in
pages that are divided into columns

e Assume that rows is the number of
rows and co lumns is the number of
columns on each page

How might the interface look?

e If we were solving this problem in C, we
would probably write something like:

vold start();
void print(int);
vold finish();

A note on interfaces

e Our “finish” operation presumably prints
the last (partial) page. Why isn't there
an operation to print the other pages?

e The other pages can be printed
“automatically” when we try to put a
number into a buffer that is full already

Buffer definition

static const int rows = 50;
static const int columns = 5;
static int buffer[rows][columns];
static 1nt row, col;

Buffering conventions

e We will fill the buffer a column at a time
and print it a row at a time

e Whenever we are about to put a value
into the buffer, we will put it at position
(row, col)

e After putting something into the buffer,
we will increment (row, col) and
flush the buffer if needed

Initialization

void start()
{

row
col

“"Print” a number

void print(int n)
{
buffer[row][col] = n;
1f (++row == rows) {
row = 0;
1t (++col == columns) {

flush_buffer();
col = 0;

Empty the buffer

e Assume the first unused buffer element
IS at coordinates (row, col)

/

/

Implications

e \We would like the same code to print
full pages as will print the partial page
at the end of the output.

e The width of a row is either col+1 (for
rows less than row) or col (otherwise)

o If the first column is not full, we will
print one or more empty rows (because
col == 0and row < rows)

Emptying the buffer

static void flush_buffer()
{

for (Aint r = 0; r < rows; ++r)
print_row
(r, r < row? col+l: col);
1if (row !'= 0 || col I= 0)
new_page();
}

static void new_page()

{
¥

cout << “\f’;

Printing a row

static void print_row(int r, 1nt w)
{
1f (w !'=0) {
for (int J =0; J < w; ++3)
cout << setw(8) <«
buffer[r]l(jl;
cout << endl;

The last page

void finish(Q)
{

}

flush_buffer();

Policy decisions

e How shall we print an empty row?
e How shall we print an empty page?
e What is the format within a row?

e How large are the pages?

e All these decisions are well isolated

The object of the game

e This program has disadvantages:
— Only one buffer
— Tied to a single file
— Two-dimensional array
— Fixed size

e We would like to avoid these
disadvantages

Allowing multiple buffers

e The way to allow for more than one of
something is to make that something
an object

e If it is an object, it must have a type, so
we will need a corresponding class
definition

e Fach object of the class we define will
represent a buffer

Allowing multiple files

e \We need a way to connect a buffer to a
file

e It is probably good enough to say what
the file is when we create the buffer

e \We can give the buffer a constructor
with an ostream* as an argument

Memory management

e Instead of using a static two-
dimensional array, we would like to use
a dynamic one-dimensional array

e We will give the size when we create
the object

Using a one-dimensional array

e Fiddling with separate row and column
variables is a nuisance, and hard to get
right

e Instead, let’s try putting values

seqguentially into a one-dimensional
array and printing them as needed

Indices

e It should not be hard to figure out how
the index of an array element
corresponds to where it is on the page

— The first column has indices [0, rows)
— The next column has [rows, 2*rows)

— And so on until the last column (column
number columns-1), which has indices
[(columns-1) *rows,
columns*rows)

Interface definition

Constructor

We can already start coding:

class Buffer {

public:
Buffer(ostream*, int, int);
~Buffer() ;<

void print(int);
};
Destructor

How will we implement it?

e \We need to store
— (a pointer to) the buffer itself
— the number of rows and columns
— the total size (rows * columns)
— how many elements are used
— the file we are using

e \We can (and should) make all these
data private

Expanded class definition

class Buffer {

public:
Buffer(ostream*, int, int);
void print(int);
~Buffer();

private:
int h, w, size, n;
ostream* f;
1nt* b;

};

How might we use it?

Buffer bl(&cout, 50, 5);
bl.print(n);

Buffer b2(&cerr, 24, 80);
b2.print(x);

Machine-checkable
specifications

e At this point, we could compile our class
definition and a program that uses it

e Of course, we could not execute the
program, because we have not defined
the member functions

e Still, the ability to compile code lets us
find out how it feels to use the class

The Buffer constructor

Buffer: :Buffer

h(h0), w(w0), size(hO * |
n(0), f(f0), b(new int[sizel])

{ t\i/////”\\

Nothing else to do here

These are constructor initializers; they
are executed in the order of the class
declaration(so they should appear in the
same order in the definition)

Allocating memory with new

e The new-expression in C++ is a type-
safe alternative to malloc

o If T is the name of a type, then

- new T allocates an object of type T and returns a
pointer to it

- new T[n] allocates an n-element array of T and
returns a pointer to its initial element

e To free the memory, use delete or
delete[], depending on whether you
allocated an array

Other properties of new

e Using new executes constructors
e Using delete executes destructors

e If memory allocation fails, new throws
an exception

"Printing” a number

void Buffer::print(int x)
{ v
b[n] = Xx;
1f (+#4n == size) {
flush();
h = 0;

n and size are known to be
members of Buffer within
the body of a member
function of Buffer

Flushing the buffer

e We can't just make flush an ordinary
function the way we did before

— It wouldn’t have access to the private data
— It wouldnt know which Buffer to flush

e \We must therefore make it a member
function

e Because we don't want people to call it
directly, we'll make it private

Revising the class definition

class Buffer {
public:
// as before
private:
int h, w, size, n;
ostream* f;
1nt* b;
void flush(); // new
void new_page(); // new
void print_row(int); // new

Flushing the buffer

void Buffer::flush()
{

for (int r =0; r < h; ++r)
print_row(r);
if (n 1= 0)
nhew_page();
}

void Buffer::new_page()

{
¥

*f << “\T7;

Printing a row

void Buffer::print_row(int r)

{
while (r < n) {

*f << setw(8) << b[r];
r += h;

}

*f << endl;

The destructor

Buffer: :~Buffer()
{
flush(Q;
delete[] b;

What have we gained?

e Each Buffer object holds all the
information about a particular buffer

e Users can’t get their hands on the
implementation data

e The interface is explicit—it’s just the
public section(s) of the class definition

e The auxiliary functions have
disappeared from view

Not quite the whole truth...

e In C, copying a structure copies its
elements

e C++ therefore behaves similarly unless
you ask otherwise...

e ...and asking otherwise requires a bit of
explanation of language features

e For now, just don't copy a Buffer

e Meanwhile, let's get started with the
explanations...

References

e A reference is a way of giving a(hother)

name to an object
int X = 3;
1nt& y = x; // vy is now another name for x
y = 42; // X isnow4?
e Reference types look (syntactically) like
pointer types, except that they use &

instead of *

Reference examples

int x[3] = { 8, 1, 6 };
int 1 = 2;
Int& y = x[1];

1 1;
y 7; /) xisnow { 8, 1, 7 }

Why bother with references?

e Attach a temporary name to an object
inside a complicated data structure

e Implement call by reference

— Allow a function to modify its arguments

— Pass an argument that does not have
copying defined

— Avoid copying for efficiency reasons
e Copy constructors

A function that modifies its
argument

vold clobber(int& x)
{

}

X = 0;

1nt main()

{

int 1 = 3;

clobber(1); // 1 isnow QO
}

Passing uncopyable
arguments

e We have a Buffer class whose objects
cannot legitimately be copied

e How can we pass a Buffer called, say,
b as an argument?

void f(Buffer®*); f(&b);
void g(Buffer&); g(b);

Reference to const

e As we can have a pointer to a constant,
we can have a reference to a constant

— The usual purpose is to avoid copying
where possible

— Therefore, the compiler will create a copy
for us automatically if it cannot be avoided
(instead of complaining)

e Typical syntax: const T&

Examples of references to

int 1 = 3;

const 1nt& j = 1;

1 = 4: //] isnow4

j = 3; // error:] Isconst

int& x = 10; // error: 10 is not an object

const 1nt& y = 10; // y nownames
// acopy of10

Copy constructors

e A constructor is called a copy
constructor if its (only) argument is a
reference to an object (usually const)
of its class

Buffer::Buffer(const Bufferd&);:

e The copy constructor controls how
every object of its class it copied

Additional pieces

e Controlling copies of class objects is not
quite enough: It is also necessary to
control assignment, which is different

Ty = x; // createsy as a copy of x
y = X; // copies x on top of y

e Assignment is controlled through
operator= (the assignment operator)

e More details next week

