
1

Programming abstractly

Remember the purpose of the
course

• Learn ideas in programming and system
design that transcend any one language

• Learn that programming is not just
coding

• Learn by doing

The most important idea

• Abstraction
– “the act or process of separating in thought, of

considering a thing independently of its
associations; or a substance independently of its
attributes; or an attribute or quality independently
of the substance to which it belongs” (OED)

– “leaving out of a number of resembling ideas what
is peculiar to each” (attributed to Locke by
Priestly, 1782)

– Selective ignorance (A.R. Koenig, 1990’s)

Abstraction is selective
ignorance

• When you drive a car, thinking about
how the engine works is a distraction

• When you repair a car, thinking about
how the engine works is essential

• Abstraction is deciding which aspects of
a problem to consider and which ones
to ignore

Kinds of abstraction

• Design
• Implementation
• Chunking

Design

• Design is mostly breaking large
programs into smaller parts

• Crucial decisions include
– where to draw the boundaries between the

parts
– how the parts should communicate
– the interface(s) between the parts

2

What makes a good design

• It starts with a clear understanding of
the problem

• Each component is well defined
• Each component has sensible, useful

properties
• The components accurately model the

problem

Design strategy

• Design is constructing a model
• A good model behaves similarly to what

it models
• Therefore:

– How our models behave is the most
important thing about them

– We should think about behavior before
anything else

Design tactics

• What are the important pieces of our
design?

• How do they behave? What operations
do they support?

• Once we have decided on behavior, we
can often begin writing code
immediately

Class definitions as a design
aid

• When you write down the public parts
of a class definition, you are already
part way toward your design

• You can compile the class before you fill
in the details

Implementation abstraction

• Two forms
– Conceptual abbreviations: subroutines,

classes, templates, etc.
– Chunking

An example of abstraction
(in Awk)

 {
 for (i = 1; i <= NF; ++i)
 ++words[$i]
}

 END {
 for (s in words) {
 print words[s], s
 }
}

3

Why was this program easy?

• automatic input loop
• input broken into fields
• variable-length strings
• associative arrays

– elements created automatically
– easy iteration

• automatic memory management

A similar program in C++

 #include <iostream>
#include <string>
#include <map>

 int main() {
 std::map<string, int> words;
 std::string s;

 while (std::cin >> s) ++words[s];

 std::map<string, int>::iterator i;

 for (i = words.begin();
 i != words.end(); ++i)
 std::cout << i->second << “\t”
 << i->first << std::endl;
}

Why was this program easy?

• easy to read a word at a time
• variable-length strings
• associative arrays

– elements created automatically
– easy iteration

• automatic memory management

Comparing C++ with Awk

• The Awk program is shorter
• An informal test shows that the Awk

program is about twice as fast
• So why bother with the C++ version at

all?

The real difference

• Awk was designed to solve this kind of
problem

• C++ was designed to make it easy to
implement libraries for a wide variety of
problems

• The standard library doesn’t have
particular applications in mind

What about performance?

• Awk has a built-in operation to read a
line and break it into fields

• This operation is carefully optimized,
because it is so common

• The C++ version spends most of its
time reading input

• Writing a high-performance “Awk input”
abstraction might pay off

4

Possible conclusions

• If you have a language that is intended
to solve your specific problem, use it

• Otherwise, a language that supports a
range of abstractions is useful—if you
use it that way

Abstraction and chunking

• The main part of design is creating
suitable high-level abstractions

• The main part of programming is
creating suitable low-level abstractions
and chunks

Chunking

• We read text in words and phrases, not
letters

• Similarly, we group together visual
patterns that recur in programs
(Example: *p++ = *q++)

• Finding useful chunks makes programs
easier to understand, even when all the
details are still right out in the open

An example of chunking

Paris
in the

the Spring

What did the text say?

The point of chunking

• We see what we expect to see
• Therefore, if we wish to be clear, we

should write what people expect to see
– which means we need to know (or

influence) what people will expect
– which probably requires a community

Another example of chunking

 char* strcpy(char* p, const char* q) {
 while (true) {
 *p = *q;
 if (*q == ‘\0’)
 return;
 ++p; ++q;
 }
}

 char* strcpy(char* p, const char* q) {
 while (*p++ = *q++) ;
}

5

Object-oriented programming

• An object has a type, a state, and a
behavior (or behaviors)

• Sometimes we care about these
properties, sometimes not

• An object-oriented language will make
it easy to support objects to different
degrees of abstraction

Why is OOP useful?

• Programming objects are useful
abstractions of physical objects

• Even programs that do not deal with
physical objects often want to offer
behavior that models physical objects

• It is no surprise that OOP started out as
a tool for writing simulation programs

OOP is not the world

• Pure FP (functional programming) is the
opposite of pure OOP
– In OOP, everything is data, even programs
– In FP, everything is program, even data

• The resulting style is dramatically
different

Generic programming

• A generic program is one that uses as
little knowledge as possible about its
surroundings

• Different languages express generic
programs differently
– Smalltalk uses generic typing
– C++ uses templates
– FP languages often support generic types

C++ templates

• Types that are dynamic during
compilation and static during execution

• Often used to express containers and
iterators

• Can be used as a way of connecting
parts of a system

Memory management

• Some languages handle it automatically
• If you are using a language that

doesn’t, you must make it part of your
abstractions (handles, iterators, etc)

• C++ often makes it easy to do so
• Memory is not the only resource that

programs must manage

6

Advice about programming

• Understanding the problem clearly is
the hardest part of programming

• Making your design fit the your
understanding is second hardest

• If you got both those parts right,
implementation is usually easy

• So if your implementation goes to
pieces, take another look at your design

Advice about languages

• Language and design usually depend on
each other, at least a little

• Choice of language should depend on
the whole context
– what is available
– local culture
– what problems you want to solve

• Learn several languages—thoroughly

Meta-advice

 Programming is a human activity;
forget that and all is lost.

