
1

Reliable programming

How to write programs that
work

• Think about reliability during design and
implementation

• Test systematically
• When things break, fix them—correctly
• Make sure everything stays fixed

A reliable design is…

• Modular: You can break it into pieces
and verify each piece separately

• Robust: Even nonsensical input will
cause it to fail in a predictable way

• Deterministic: If it fails, you can easily
make it fail the same way again

• Testable: You can look inside and see
why it’s doing what it does

Modular design

• If you break a system into pieces, then
you can
– examine the communication between the

pieces
– capture communication samples for

examination and replay
– test each piece separately

Testing pieces separately

• Stable interfaces are the key; changing
an interface may
– force a change in test strategy
– require coordinated changes on both ends

of the changing interface
– create contradictions among versions

• Interface changes are much harder to
test than implementation changes

Robust design

• The best bet is for a component to
handle all possible inputs gracefully

• Second best (and often good enough):
Fail in a clear way on bad input

• Worse: Do something random on bad
input (garbage in, garbage out)

• Worst of all: Don’t know what input is
good and what isn’t

2

Programming without limits

• One important form of robustness is
avoiding fixed limits in programs
– Library algorithms are a good start
– “Who needs more than two digits in a

year, anyway?”

• If you absolutely must have a fixed
limit, document and check for it

Deterministic design

• The hardest programs to test are those
that give different output when run
twice on the same input
– interactive programs
– programs that depend on system state
– programs that use random numbers

• Unless you isolate indeterminacy, you
have a hard struggle ahead of you

Isolating indeterminacy

• Make the indeterminate parts of your
program as small as you possibly can

• Define interfaces to the rest of the
system

• Capture sample data flow across those
interfaces; use them for testing

• Example: Capture keystrokes, mouse
events, etc. in a GUI

Testable design

• It is often much easier to determine
whether a result is correct than it is to
compute it
– Checking if an array is sorted after the fact
– Sanity checks on output
– Data structure audits

• Such tests can often reveal problems
before they affect other components

Assertions

• If you write
 #include <assert.h>

 assert(expr);

• If expr is zero (false), the program will
halt at that point with a diagnostic
message (unless preprocessor variable
NDEBUG is set).

Logging

• It can often be useful for programs to
leave a trail of bread crumbs while
they’re running
– Write significant events into a log file
– Examine the log file afterwards to see if

everything worked OK

• You can turn off logging later if it turns
out to cost too much

3

A reliable implementation is…

• Well specified
• Easy to understand
• Easy to explain
• Careful about edge cases

Well specified implementation

• Careful specification is important
– doesn’t have to be formal
– has to exist—probably in writing

• How can you know if a program is
doing what it’s supposed to do if you
don’t know what it’s supposed to do?

• A specification gives you a test standard

Clean implementation

• If it’s obvious how a program works, it’s
likely that it does work…

• …and if it doesn’t work, the reason is
likely to be obvious

• Messy implementation is often a
symptom of not understanding the
problem thoroughly

Explaining programs

• The best way to be sure you
understand something—or to find out
where you don’t—is to try to explain it
to someone else

• This fact is sometimes formalized in
inspections, code reviews, etc.

• If you don’t understand why something
doesn’t work, try to prove that it works

Edge cases

• Lots of programs deal with collections
• When asking if such a program works,

consider looking at
– the smallest possible input (usually null)
– the next smallest input (a single element)
– the largest possible input
– one less than the largest possible
– one more than the largest possible

Proving programs

• Sometimes it is possible to prove that a
program works. For example:
 double power(double x0, double n0) {
 double x = x0;
 unsigned n = n0;
 double r = 1;
 while (n != 0) {
 r *= x;
 --n;
 }
 return r;
}

Loop invariant:
r = x(n0–n)

4

Systematic testing

• If a component has
– a clear specification, and
– input and output that can be captured,

 then it is easy to generate test cases
• You (or—better yet—someone else) can

write test cases together with the code
• Be sure you can run them automatically

What is most important to
test?

• The most important parts of the
program—those on which many other
parts depend

• The most difficult parts of the program
• Parts whose performance is critical to

the performance of the whole system

Unit testing

• You should have
– a collection of tests for each component
– additional tests for the whole system
– programs to run tests automatically

• If you are sure that each component
works before you put the system
together, it will save lots of work in
testing the whole system

Debugging

• A necessary nuisance
• Easy to get wrong
• Requires a special state of mind
• Many tools available—some of them

even work

A necessary nuisance

• Thinking carefully in advance can avoid
many bugs

• Looking carefully at your programs and
trying to prove them can avoid others

• Type checking and other linguistic tools
can avoid still more

• Nevertheless, sometimes things just
don’t work right

How to avoid making things
worse

• Be sure that you’re running the
program that you’re trying to fix

• Be sure it’s broken before you fix it
• Be sure that what you’re trying to fix is

actually the part that’s broken
• Be sure that you understand completely

why what you’re doing will fix the bug
that you found

5

A special state of mind

• Your program is broken because you
misunderstood something…

• …but if you knew what you had
misunderstood, you wouldn’t have
misunderstood it

• Therefore, you have to assume that
much of what you know might be
wrong

How not to do it

• Find a piece of code that looks like it
might be related to the problem

• Change it at random and try it out
• If it looks like it worked, you’re done
• Otherwise, go back to the beginning

A more productive approach

• Find a piece of code that looks relevant
to the problem

• Form a hypothesis about why the code
is wrong

• Write a test case that makes it fail
• Fix it and verify that it now works
• Save that test case—you’ll need it later

Simplifying the bug hunt

• If you can break it, you’re almost done
• What did you change since it worked?
• If the input is right and the output is

wrong, what’s the first point at which
the program is misbehaving?

• This is where the ability to capture
inter-module communication comes in
handy

Once you think you’ve found it

• Do you understand how the bug you
found accounts for the behavior you
saw? All of it?

• Does fixing the bug correct the behavior
in the way you expected?

• If not, did you remember to recompile
the program before running it again?

• Did fixing it break anything else?

Debugging tools

• Useful tools: stack traces, breakpoints,
ability to print variables, etc.

• Less useful for interactive or distributed
programs

• Sometimes have their own bugs
• Supplement, not substitute, for careful

testing, source code control, etc.

6

Did fixing it break anything
else?

• 100 little bugs in the code,
100 bugs in the code;
Fix a bug, compile it again,
101 little bugs in the code…

Ensuring that bugs stay fixed

• Remember that test case I said you’d
need later? Try to build
– a library of test cases that correspond to

bugs that you’ve found
– a mechanism for running all those test

cases automatically every time you change
anything significant

• A good library of test cases can be
more valuable than the system itself

Example: compiler test library
(1988)

• For every bug report, we created a
program that reproduces the bug

• Every time we built an internal version
of the compiler (at least weekly), we
ran every test case and reported the
ones that now failed that used to work

When does a compiler test
work?

• If the program is expected to run
without diagnostics, we designed it to
print pairs of identical output lines

• If the program is expected to produce a
message, we put a special comment in
the source code; a little program
compared the compiler output with the
comments to verify the messages

Running batches of tests

• Every test gets a number
• A little program recompiles the compiler

and runs every test
• The result is a list of tests passed and

failed, which we compare with last
week’s results

• We really care about tests that used to
pass and now fail

Summary

• It is much harder to make a system
reliable as an afterthought than to
design it that way from the start

• Reliability demands constant vigilance

