
1

Computing with functions

Overview

• Most programs that we have seen treat
objects as abstract data types
– they define both state and behavior
– the state is primary
– the behavior describes how to manipulate

the state

• Sometimes, it is useful to treat behavior
as more important than state

A classic example

• Many programming languages have sort
functions as part of their libraries

• It is usually useful to be able to specify
a comparison function as an argument
to the sort function

Another example

• Suppose we want a generic linear-
search function

• We have seen how to make the
function independent of the data
structure being searched

• What about making it independent of
the search criterion as well?

Searching for a particular
value

• The find function looks for the first
element with a given value:
 template<class It, class X>
It find(It begin, It end, const X& x)
{
 while (begin != end && *begin != x)
 ++begin;
 return begin;
}

• How can we generalize the search
criterion?

Generalizing the search
criterion

• We want something to which we can
hand a sequence element and get an
answer: yes or no

• It seems to make sense for that
something to be a function whose input
is an X and output is a bool

2

Rewriting the search function

 template<class It, class X>
It find2(It begin, It end, bool (*f)(X))
{
 while (begin != end && !f(*begin))
 ++begin;
 return begin;
}

• Can we generalize it even more?

Further generalization

• We need not insist that f be a function.
It can be any appropriate type:
 template<class It, class F>
It find_if(It begin, It end, F f)
{
 while (begin != end && !f(*begin))
 ++begin;
}

• How might f be anything other than a
function?

Function objects

• In C++, we can call any object as if it
were a function, provided that the
object has operator() defined

• In other words, if obj is an object, then
obj(x) means obj.operator()(x)

• Of course, obj has to be of a type with
operator() defined

• We call such objects function objects

In other words…

• The find_if function will accept any
function or function object as its third
argument

• It will call the function (or call the
operator() member of the object) to
test each element of the sequence

Example

• Find the first white-space character in a
string:
 find(s.begin(), s.end(), isspace)

A more interesting example

• Suppose that b and e are iterators that
delimit a sequence, and we want to find
the first element that is >10

• We might write a function
 bool gt10(int x) { return x > 10; }

• and then call
find(b, e, gt10)

• But what if we want to find the first
element that is >n?

3

Doing it the hard way

 int xx;
 bool gtxx(int x) { return x > xx; }

• and then, we might say
 xx = n;
 … find_if(b, e, gtxx) …

• This approach is ugly!
• Why?

Why the approach is ugly

• It relies on a global variable
• To use it, you must

– set the state explicitly (by assigning to the
variable), and then

– call the function

• In effect, the function relies on hidden
state

How to clean it up

• Bind the state and the function together
into a function object:
 class gt_n {
public:
 gt_n(int n0): n(n0) { }
 bool operator()(int x)
 { return x > n; }
private:
 int n;
};

Using class gt_n

• To find the first element >10:
 find_if(b, e, gt_n(10))

• To find the first element >x:
 find_if(b, e, gt_n(x))

• In both cases, global variables are
unnecessary

It might be nice if…

• Another way to get rid of the global
variable would be to make it local:
 {
 int n;
 bool gt_n(int x) { return x > n; }
 … find_if(b, e, gt_n) …
}

• But C++ doesn’t allow this technique
• Why not?

Nested functions

• Programming languages of the Algol
and Pascal family generally allow nested
functions

• C and C++ do not
• The reason has to do with ease of

implementation: While a function is
executing, it sees only its own local
variables and all global variables

4

Function objects simulate
nested functions

• If a function could be nested inside
another, you would be able to get at
the inner function’s local variables, or
those of the outer function(s), or global
variables

• A member function can get at its local
variables, or its object’s members, or
global variables

Generating function objects

• Our gt_n type lets us create function
objects that encapsulate comparison
with a particular value

• It would be tricky to do that even with
nested functions (because it needs GC):
 bool (*gt_n(int n))(int)
{
 bool f(int x) { return x > n; }
 return f;
}

Two problems

• Allowing nested functions in a language
potentially complicates the calling
sequence for all functions

• Allowing functions to return nested
functions as values causes trouble
unless the language supports garbage
collection

• C++ pushes the complexity into objects

How do other languages do it?

• Functional languages treat functions as
first-class values:
 find_if(b, e, (fn x => x > n))

• Pure object-oriented languages (Smalltalk,
Java) don’t have functions as separate
entities at all

Function objects are objects

• Because function objects are objects,
we can perform computations on them

• It is possible to write functions (and the
C++ standard library includes some
such functions) that make it
unnecessary to define classes such as
gt_n at all

Some sample library functions

• Template class greater is defined so
that greater<T>()(x, y) has the
same value as x>y (and similarly for
less, equal_to, …)

• If f is a function object, then template
function bind1st(f, x)(y) has the
same value as f(x, y) (and similarly
for bind2nd)

5

Using greater and bind2nd

• To find the first element >n:
 find(b, e, bind2nd(greater<T>(), n))

Making binders work

• C++ binders are a nice example of
making a high-level abstraction work in
a language that wasn’t designed in
advance to support it

• Binders and function objects rely on a
mixture of code and conventions

Function object conventions

• Every function object has a member
called result_type that names the
type of its result

• In addition,
– if it has a single argument, it has a

member named argument_type
– if it has two arguments, it has members

named first_argument_type and
second_argument_type

Abbreviation base classes

 template<class A, class R>
struct unary_function {
 typedef A argument_type;
 typedef R result_type;
};

 template<class A1, class A2, class R>
struct binary_function {
 typedef A1 first_argument_type;
 typedef A2 second_argument_type;
 typedef R result_type;
};

Definition of greater

 template<class T> class greater:
 public binary_function<T, T, bool>: {
public:
 bool operator()
 (const T& x, const T& y) const
 {
 return x > y;
 }
};

Making bind2nd work

• The result of bind2nd(f, x) has to
include the values of f and x

• Therefore, it has to have a type that
includes the types of f and x

• We need an auxiliary type, which we
will call binder2nd, to do the work

6

Definition of binder2nd

 template<class Op> class binder2nd:
 public unary_function<
 typename Op::first_argument_type,
 typename Op::result_type> {
public:
 binder2nd(const Op&,
 const typename Op::second_argument_type&);
 result_type operator()
 (const typename Op::first_argument_type&)
 const;
private:
 Op op;
 typename Op::second_argument_type value;
};

Member functions of
binder2nd

 template<class Op>
binder2nd::binder2nd(
 const Op& o,
 const typename Op::second_argument_type& v):
 op(o), value(v) { }

 template<class Op>
binder2nd::result_type operator()
 (const typename Op::first_argument_type& arg)
 const
{
 return op(arg, value);
}

Definition of bind2nd

 template<class Op, class T>
binder2nd<Op> bind2nd(const Op& op, const T& t)
{
 return binder2nd<Op>(op,
 typename Op::second_argument_type(t));
}

The point of all this code

• Although the types are somewhat
messy,
– the classes themselves are small
– they can be combined in useful ways
– the techniques used to build them can be

used in other contexts

• Objects can be abstractions of behavior,
not just of data structures

Other relevant library
functions

• If f is a (pointer to a) function,
ptr_fun(f) is the corresponding
function object

• If pred is a unary (function object)
predicate, not1(pred) is a predicate
that yields the inverse result

Using ptr_fun and not1

• Find the first non-space character in the
string s:

 find_if(s.begin(), s.end(),
 not1(ptr_fun(isspace)));

7

A few more examples

• Flip the sign of every element of x:
 transform(x.begin(), x.end(), x.begin(),
 negate<x::value_type>());

• Replace every pointer to a null-
terminated string that compares equal
to “C” by a pointer to “C++”
 replace_if(x.begin(), x.end(),
 not1(bind2nd(ptr_fun(strcmp), “C”)),
 “C++”);

Projects

• Each team will be expected to
demonstrate its project
– be prepared to answer design and process

related questions
• Each team has to find appropriate

computing facilities for the
demonstration and schedule a mutually
agreeable time

• All demonstrations during exam week

Project scheduling

• If we heard from you by 5 PM, April 20
(well beyond the original deadline), we
accommodated your requests

• If not, it is now your problem! Either
pick an open slot or trade with another
project

10:30

Project reviews for
Monday, 5/17

• All 4 slots still open
– 10:30 - 11:30
– 1:30 - 2:30
– 3:00 - 4:00
– 4:30 - 5:30

Project reviews for
Tuesday, 5/18

• 10:30 Campus Calendar
• 1:30 Direct Chat
• 3:00 AT 5000
• 4:30 Sound Images

Project reviews for
Wednesday 5/19

• 10:30 This space available
• 1:30 Space Dust
• 3:00 Redemption
• 5:15 Clipbook

8

Project reviews for
Thursday, 5/20

• 10:30 This space available
• 1:30 Online Trading
• 3:00 Project Vulcan
• 4:30 Logic Studio

