
1

Generic handles

Memory management made
easier

A cautionary note

• The programming technique that we
are about to see is pretty specific to
C++, because it relies on
– destructors
– templates

• However, the way we will develop the
program is applicable to any language

The problem

• Remember the Expr classes?
– Version 1

• the user does memory management
• leaks memory, never really satisfactory

– Version 2
• memory management in the implementation
• somewhat intertwined with the rest of the code

• We are going to try to do better

Do better? How?

• Better correspondence between the
code and the concepts it expresses

• More general
• Easier to follow once you understand it

Our first try (lecture 11)

• Our first try was a user-visible class
hierarchy:
 class Expr { /* … */ };
 class IntExpr: public Expr { /* … */ };
 class UnaryExpr: public Expr { /* … */ };
 class BinaryExpr: public Expr { /* … */ };

• Advantage: Straightforward
• Disadvantage: Exposes memory

management to users

Using the first try

 IntExpr* three = new IntExpr(3);
IntExpr* four = new IntExpr(4);
IntExpr* five = new IntExpr(5);

 UnaryExpr* negfive =
 new UnaryExpr(“-”, five);

 BinaryExpr* twelve =
 new BinaryExpr(“*”, three, four);

 BinaryExpr* seven =
 new BinaryExpr(“+”, negfive, twelve);

seven->print(cout);

2

Memory management woes

• There is no good place to delete
– Sometimes, the user has to delete

 Expr* e1 = new IntExpr(8);

 Expr* e2 = new BinaryExpr("*", e1, e1);

– But sometimes, it’s impossible
 Expr* e =
 new BinaryExpr("*",
 new IntExpr(3),
 new IntExpr(4));

• Therefore, we need a better scheme

The second version
(lecture 13)

• We renamed our base class ExprBase
• We added a use count to the
ExprBase class

• We defined a use-counted handle class
called Expr
– An Expr object contains a pointer to
ExprBase

– The Expr class does memory management

The revised data structure

Expr

Expr Expr

Expr

Use count
Derived-class data structure

Outline of class hierarchy

 class Expr { /* … */ };
 class ExprBase { /* … */ };

 class IntExpr: public ExprBase
 { /* … */ };

 class UnaryExpr: public ExprBase
 { /* … */ };

 class BinaryExpr: public ExprBase
 { /* … */ };

This approach is easier to use

 Expr e(“*”,
 Expr(“-”, Expr(3)),
 Expr(“+”, Expr(4), Expr(5)));

 e.print(cout);

However, there are still
disadvantages

• A single class implements the user
interface for the Expr hierarchy and
use-counted memory management

• Each Expr object contains data related
to the expression contents and to
memory management

3

The source of the problems

• Class Expr is really a kind of container
– Each Expr object contains a single

expression node

• But it is an intrusive container
– The bookkeeping information is intertwined

with the data in the container element

• If we’re going to keep the code
separate, we’ll want separate data, too

A new strategy

• Keep the use count separate from the
expression node
– Advantage: We can ignore what’s in the

expression nodes when we do memory
management, and vice versa

– Disadvantage: Probably slightly slower

• Put all the memory management in a
separate class

The data structure

Expr
Expr

Expr

Expr

use count

derived-class data structure

Let’s think about it generically

• We have an inheritance hierarchy
• We want a handle class whose objects

will
– each identify an object from that hierarchy
– manage memory for its object
– not know the details of that object’s type

• In effect, we want a generic handle

What properties should it
have?

• The usual construct, copy, assign, and
destroy operations

• A way of constructing a handle from an
object of the target class

• A way of getting at the object to which
the handle is attached

These handles act a lot like
pointers

• They are sometimes called “counted
pointers” or “smart pointers”

• We can use the operator-> feature
of C++ to make them look a lot like
pointers

• It is hard to defend against deliberate
misuse

4

operator-> explained

• If p is a pointer, then p->x is defined
as equivalent to (*p).x

• If p is not a pointer, then p->x is
defined as (p.operator->())->x

• Note that this definition is recursive:
operator-> can return a class object
as long as it is of a type with
operator-> defined

We can already start coding

 template<class T> class Handle {
public:
 Handle();
 Handle(T*);
 Handle(const Handle&);
 Handle& operator=(const Handle&);
 ~Handle();

 T& operator*() const;
 T* operator->() const;
private:
 T* p;
 int* use;
};

We will want to cater to null
handles

• If someone says
 Handle<T> h;
we want to allow it, even though h
doesn’t refer to anything useful (yet).

• We would like to avoid special cases in
our use-counting code

• Therefore, every handle will have a use
count, even if its pointer is 0

The default constructor

 template<class T> Handle<T>::Handle():
 use(new int(1)), p(0) { }

Other constructors

• When we attach a handle to an object,
we will be giving the handle the
responsibility for deleting that object
eventually:
 {
 Handle<string>
 h(new string(“hello”));
 // …
}

Constructor definitions

 template<class T>
Handle<T>::Handle(T* tp):
 use(new int(1)), p(tp) { }

 template<class T>
Handle<T>::Handle(const Handle<T>& h):
 use(h.use), p(h.p) { ++*use; }

5

Destructor

 template<class T>
Handle<T>::~Handle() {
 if (--*use == 0) {
 delete use;
 delete p;
 }
}

Assignment

• As usual, we will increment the use
count on the right-hand side before we
decrement our own:
 template<class T> Handle<T>&
Handle<T>::operator=(const Handle<T>& h) {
 ++*h.use;
 if (--*use == 0) {
 delete use; delete p;
 }
 use = h.use; p = h.p;
 return *this;
}

The * and -> operators

 template<class T>
T& Handle<T>::operator*() const {
 return *p;
}

 template<class T>
T* Handle<T>::operator->() const {
 return p;
}

How do we use it?

• It works a lot like a pointer, but it will
delete objects for us:
 // Pointer version
int* p(new int(42));
cout << *p << endl;
delete p;

 // Handle version
Handle<int> h(new int(42));
cout << *h << endl;
// No delete

Interactions with inheritance

• Handles encapsulate pointers, which
means that they can point to a base
class in an inheritance hierarchy:
 class B { virtual ~B(); /* … */ };

 class D: public B { /* … */ };
 Handle h(new D);

Handles as data elements

• Because handles have copy and
assignment defined, we can use them
as elements of other data structures,
almost as easily as if they were pointers
 struct node {
 Handle<Thing> h;
 Handle<OtherThing> h2;
 // …
};

6

What do these handles do for
us?

• They are an abstraction of the idea of
use-counted memory allocation

• They behave a lot like pointers
• They allow us to structure our programs

to separate the algorithmic part from
the memory-management part

• We have to write the Handle template
only once

Advantages of use counting

• We can manage resources other than
memory
– files
– network connections

• Resources are deallocated as soon as
they are no longer needed
– no unused memory sitting around and

waiting for the garbage collector

What don’t they do for us?

• Use-counted memory allocation does
not handle circular data structures

• There is some extra overhead in
allocating the use counts separately

• They are not completely foolproof
– Attaching a handle to an object not allocated by
new is a recipe for disaster

– You mustn’t explicitly delete an object while there
is still a handle attached to it

Homework (due Monday)

• Take the Handle template definition
and the first version of the Expr class
definition (both available from the
course website) and merge them,
modifying the Expr class hierarchy to
use the Handle template.

• Add an appropriate definition of
operator<< for Expr output

