Another object-oriented
program

Prime numbers the hard way
(based on a program by Ravi Sethi in
his book Programming Languages—
Concepts and Constructs)

The object of this program

e Compute prime numbers, by
— generating integers
— discarding the ones that aren’t prime
¢ Do so in an object-oriented style
— a chain of objects, each of which discards
multiples of a particular integer
— the chain grows dynamically for each prime
number computed

The data structure

9 ‘Discard multiples of 2 ‘

‘ Discard multiples of 3 ‘

Prime numbers!

‘Discard multiples of 5 ‘

‘ Discard multiples of 7 ‘

What classes do we need?

¢ Classes that can act as a source of
integers
- Counters generate consecutive integers
- Filters discard multiples of an integer
¢ A wrapper class to do the prime-
number computation

We can already declare...

class Source { /* .. */ };

class Counter: public Source
{7 %}

class Filter: public Source
{7 %}

class Sieve: public Source

LAVARLVAS ¥

... but we can do better

¢ A Filter gets numbers from a
Source

¢ So does a Sieve

¢ Therefore, we can define an auxiliary
class to represent the idea of “a class
that gets numbers from a Source”

¢ We will call that class Conduit




The revised hierarchy

class Source { /* .. */ };
class Counter: public Source

{7 %}

class Conduit: public Source
{7% %%

class Filter: public Conduit
{7 %}

class Sieve: public Conduit
{7 %}

What is a Source?

¢ You poke at it and get a number back

¢ Other classes will be derived from it

class Source {
pubTic:
virtual int next() = 0;
virtual ~Source() { }
Source() { }
private:
Source(const Source&);
Source& operator=(const Source&);

};

Declaration of Counter

¢ Again, the declaration follows from the
requirements
class Counter: public Source {
pubTic:
Counter(int);
virtual int next();

private:
int n;

};

Definition of Counter

Counter: :Counter(int n0): n(n0) { }
int Counter: :next()

{
}

return n++;

We can already use our
Counter class

int mainQ)

{
Counter c(1);
int n;
do {
n = c.next();
cout << n << endl;
} while (n < 10);
return 0;
}

What does a Conduit do?

o It takes input from a Source

o It delivers output on demand through
the next function

o It lets you find its Source

o It gives you a way to change the
Source to be somewhere else

¢ It manages memory




Memory management

¢ As in the last lecture, we will assume
that if you give away a pointer to an
object, you also delegate responsibility
for deleting that object

¢ Class Sieve will hide memory details
from users

¢ So it is sufficient for a Conduit to
delete its Source when destroyed

Declaration of Conduit

Class Conduit: public Source {
pubTic:

Conduit(Source*);

virtual ~Conduit();
protected:

Source* source();

void splice(Source*);
private:

Source* src;

};

Definition of Conduit

Conduit: :Conduit(Source* s):

src(s) { }
Conduit::~Conduit() { delete src; 1}
Source* source() { return src; }
void Conduit::splice(Source* s)

{
}

src = s;

Class Filter

¢ A Filter accepts numbers from a
Source and screens out multiples of a
given integer

¢ Fundamental operations:

— Construct a FiTter from a given integer
and Source

— Fetch an integer

Fi1ter declaration

class Filter: public Conduit {
pubTic:

Filter(int, Source*);

virtual int next();
private:

int factor;

};

How does a Filter work?

¢ QObviously, it must remember its source
(Conduit does that) and what to filter

¢ The next function does the actual
screening




Definition of Filter

Filter::Filter(int f, Source* s):
Conduit(s), factor(f) { }
int Filter::next()

{ .
int n;
do n = source()->next();
while (n % factor == 0);
return n;

}

What should a Sieve do?

¢ Actual prime number computation
— Start a Counter at 2

— Each time we get back a number, create a
new Filter to screen out multiples of
that number

¢ Clean interface to the rest of the world
— Conceal the other classes
— Memory management

Using a Sieve

int mainQ)

{
Sieve s;
int n;
do {
n = s.next();
cout << n << endl;
} while (n < 100);
return 0;
}

Declaring class Sieve

class Sieve: public Conduit {
pubTic:

Sieve();

virtual int next();

};

Defining class Sieve

¢ The constructor is easy:
Sieve::Sieve():
Conduit(new Counter(2)) { }

¢ But what about the next function?

o It calls source () ->next (), which yields
the next prime

» Then it has to splice in a new Filter

The data structure




Definition of Sieve: :next

int Sieve::next()
{
int n = source()->next();

splice(new Filter(n, source()));
return n;

Observations

¢ A Sieve turns out to act like a

Conduit, so it simplifies the code to
use Conduit as a base class

¢ Class Sieve does not need an explicit
destructor, because class Conduit
takes care of it

¢ Class Sieve is the only one intended
for end-user consumption

More observations

¢ Not an optimal algorithm

¢ Recursive deletes could be improved

* Nevertheless, the idea of growing a
data structure to represent an

increasingly complicated computation is
an important one

¢ In effect, we've built an interpreter for
a tiny, special-purpose language

Understanding object-oriented
programs

¢ Following the whole program at once
can be tricky

¢ One useful strategy

— Understand the whole program
approximately

— Understand each piece and its immediate
context

—Walk through it for some test cases

Homework (due Monday)

¢ Add a member to class Expr:
class Expr {
pubTic:
int eval() const;
/]

};
that returns the value corresponding to
an expression
¢ Revise your simulation to include a
corresponding member




