
EIN: A Signal Processing Scratchpad

Paul Lansky Kenneth Steiglitz
Dept. of Music Dept. of Computer Science
Princeton University Princeton University
Princeton, NJ 08544 Princeton, NJ 08544
paul@silvertone.princeton.edu ken@cs.princeton.edu

Computer systems designed for music synthesis usually encapsulate signal-processing algo-
rithms as macros or functions, and thus provide a modular interface which facilitates the develop-
ment of complex structures. This is the thinking behind Mathews’ original concept of the ‘‘unit
generator’’ (Mathews 1969) and most subsequent software synthesis languages use this approach.
While it has proven to be an effective method it has not generally provided a means by which the
users of these systems, often more musically prepared than wise in the ways of digital signal pro-
cessing, can gain an intuitive understanding of the mechanisms used to modify and create digital
signals. Indeed, there is little conceptual difference between patching a signal through a bank of
two-pole resonating filters/unit generators and tweaking the sliders on a graphic equalizer. EIN is
an attempt to provide an interface in which the user has direct control over every add, multiply
and store applied to each sample, and can gain a more direct understanding of the machinery of
digital signal processing. While its main use has been instructional, it also provides a way to
experiment with digital filters and design more complex instruments and algorithms. It is, in
effect, a kind of low-level circuit design kit for signal processing.

EIN Syntax
EIN provides the routine machinery for calling the user’s code, executing it, writing the

resulting output sound samples to a file, playing the file, and displaying and analyzing it in the
time and frequency domains. The user provides a script in a language that is a superset of C. The
EIN system then compiles it and provides a wrapper that calls the script for each time sample
from t = 0 up to the specified number of samples, nsamps; computes the next output sample
y (for the mono case), or the variables left and right (for the stereo case); and writes the
output samples to an output sound file, formated for the sampling rate of sr samples/sec.

The int variables t and nsamps, and the float variables y, left, right, and
sr, are reserved by EIN, and should not be used for other purposes. The mono/stereo option, and
the values of sr and nsamps are selected with radio buttons on the interface. The remaining
reserved names are described in Appendix 3.

As an example, here is a one-line EIN script that produces a sine wave at 440 Hz:

y = sin(t*two_PI*440./sr);

The constant two_PI (2) is provided as a convenience because it is used so often in the argu-
ments of trigonometric functions. Of course, since this code is in a loop and called once per

Version September 26, 1994.

- 2 -

sample, it is more efficient and clearer to predefine the radian frequency in the argument of the
sine as follows:

#define F 440. // frequency in Hz.
float omega; // freq. in radians per sample
if(!t) omega = two_PI*F/sr; // one-time only initialization
y = sin(omega*t);

Notice that the initialization of omega takes place only when t is zero; that is, only at the first
time sample.

EIN also provides one new command, called tap, which allows the user to store signals in
delay lines for later use. This feature makes it easy to implement filters without having to fuss
with the details of managing buffers. The signal value that is stored is always the value of y at
the point that tap is employed. The tap command is invoked by a line of the form

tap i k

where i and k are two constants of type int. (Notice that there is no semicolon terminating
the line.) This line has two effects. First, it causes the buffer Bi to be created, which stores the
value of the signal at that point. Second, the variable Si is recognized anywhere else in the code
as the current contents of that buffer, which is the signal at that point delayed by k sampling
intervals. Except for the translation of Si variables, lines not beginning with the keyword tap
are transparent to the EIN pre-processor, and are passed on untouched to the C compiler.

If a tap appears before the first use of its signal, the signal is called feedforward; other-
wise, feedback.

z

tap 1 100

0.99

S1
-100

Fig. 1 Signal flowgraph of a simple feedforward filter.

To illustrate how tap is used, consider the simple inverse-comb filter defined by the fol-
lowing equation:

w t = x t + 0.99*x t 100

where x t and w t are the input and output signals, respectively. Figure 1 shows the corresponding
signal flowgraph. What’s important about visualizing the operation of the filter with a signal
flowgraph is that it defines an order in which the calculations for each time sample are done. We
can read these from left to right in Fig. 1: first we save the value of the input signal in a buffer
with a delay of 100 samples, then we form the sum of the input signal and 0.99 times the delayed

- 3 -

input. Thus, the EIN script is

tap 1 100
y = y + 0.99*S1;

The line y = y + 0.99*S1; does the arithmetic, while the tap 1 100 line signals EIN
to create a buffer to store the value of the signal at that point. Since the tap line defining S1
appears before its first use, S1 is a feedforward signal. When it is used in the next line, it pro-
vides a version of the input delayed by 100 samples.

z

tap 1 100

0.99

S1 -100

Fig. 2 Signal flowgraph of a simple feedback filter.

Figure 2 shows the signal flowgraph of a comb filter, an example of a feedback filter. Here
the order of operations from left to right is reversed: first we form the sum of input and weighted
delayed output, then we store the output for later use. The EIN script is therefore

y = y + 0.99*S1;
tap 1 100

which uses precisely the same two lines as the inverse comb script, but in reverse order.

EIN’s tap command thus makes it possible to express traditional filter flowgraphs quite
succinctly.

The Interface
The EIN interface is a NeXTStep application which incorporates a spectrum analysis and

spectrogram of the generated signal as well as sound input and output facilities. Figure 3 shows a
snapshot of a typical screen while using EIN.

The main window, in the lower left-hand corner of the screen, and shown enlarged in Fig. 4,
contains a scrollview with the programming window, and buttons to compile, run, set the sam-
pling rate, mono or stereo output, control input signals, and optionally include additional C pro-
grams or binaries in the compile step. As EIN compiles a script as a function, linking it with its
driving program, additional C functions or libraries can be included by listing them in the form at
the bottom of the window, labelled ‘‘include (.c/.o)’’.

The views include a zoomable amplitude/time plot (Fig. 5), an adjustable FFT (Fig 6), cued
to the point of the cursor in the amplitude plot (the FFT changes as the cursor moves in the ampli-
tude plot), and a spectrogram plot (Fig. 7): time is the horizontal axis, frequency the vertical axis,
and grey-scale shows amplitude.

- 4 -

Fig. 3 Snapshot of a typical screen when using EIN.

Example: Tunable Plucked String
As a demonstration we will build a tunable plucked string filter (Jaffe and Smith 1983;

Karplus and Strong 1983) in several stages. We begin with the comb filter illustrated in Fig. 2,
with a resonant frequency of sr/100 and a feedback gain coefficient of 0.99. Its defining
equation is

w t = x t + 0.99*w t 100

The corresponding EIN script, using a built-in white noise generator, is therefore

y = rrand(); // white noise generator built-in to EIN
y = y + 0.99*S1;
tap 1 100

Next, we create the classical plucked-string filter by limiting the length of the input signal
to one pitch period and putting a feedforward lowpass filter within the feedback loop. The
defining equation of the lowpass filter is

w t = 0.5*x t + 0.5*x t 1

- 5 -

Fig. 4 Enlargement of the main window, containing script scrollview and main con-
trols.

where x and w are its input and output respectively. Figure 8 shows the signal flowgraph of the
entire plucked-string filter. The corresponding EIN script now includes a test which ensures that
the input is turned off after 100 samples, and a new tap and assignment statement for the lowpass
filter:

- 6 -

Fig. 5 Enlargement of the time waveform window.

Fig. 6 Enlargement of the FFT window.

if(t < 100) y=rrand(); else y = 0;
y = y + .99*S1;
tap 2 1
y = .5*y + .5*S2;

- 7 -

tap 1 100

Since comb filters necessarily use an integer delay they can only resonate at frequencies that
are integral divisors of the sampling rate. The standard way to tune a comb is to insert an allpass
filter in the feedback loop to approximate any fractional part d of the desired delay. The allpass
filter is implemented by the equation

w t = D*(x t w t 1) + x t 1

Setting the allpass filter coefficient D to (1 d)/(1 + d) achieves a good approximation to delay d
at low frequencies.

The signal flowgraph of the completed tuned plucked-string filter is shown in Fig. 9. The
EIN script now includes a new feedforward and feedback tap, storing delayed signals S3 and
S4 for the allpass filter.

In EIN the length of the tap n buffer is set to Ln internally. In this example we set this
value ourselves to allow us to describe the pitch as a variable. The final EIN script is shown
below:

float hz,len,delay,D;
if(!t) { // one-time-only initializations

hz = 3100; // desired frequency
len = sr/hz; // delay time in samples, with fraction
delay = len - (int)len; // fractional part of delay
D = (1.-delay)/(1.+delay); // allpass coefficient
L1 = len; // integer delay (set length of tap1)

}
if(t < L1) y=rrand(); else y = 0; // noise burst, one cycle long
y = y + .99*S1; // comb
tap 2 1
y = .5*y + .5*S2; // lowpass
tap 3 1
y = S3 + D*(y - S4); // allpass
tap 4 1
tap 1 1000 // set arbitrary large delay buffer

Example: FM Synthesis
It is equally instructive and useful to use EIN to experiment with approaches to signal gen-

eration which do not use delays and feedforward or feedback filters. Here the value of the
approach is in the conceptual simplicity of the language and the closeness between the algorithm
and its expression. A simple FM sound, for example, can be expressed in four lines of code:

- 8 -

Fig. 7 Enlargement of the spectrogram window.

z
0.99

tap 2 1 0.5

0.5

tap 1 100

S2
-1

-100
S1 z

Fig. 8 Signal flowgraph of a plucked-string filter.

float env,line = (float)t/nsamps; // line from 0 to 1
env = exp(-5.*(float)t/nsamps); // exponential decay
y =10.*env*cos(133.*two_PI*t/sr); // modulator and index of modulation
y = env*cos(y + 100.*two_PI*t/sr); // carrier

Example: Cooks’ Slide Flute
Our final example is Perry Cook’s SlideFlute application (Cook 1992), a NeXT MusicKit

program, expressed in the following EIN script:

- 9 -

float ysave,amp,randamp;
float line = (float)t/nsamps;
if(!t) {

amp = 1;
randamp = .04;

}
y=(rrand()/32767.)*randamp* amp;
y += amp; // breath pressure with rand dev
y = y + (S1 * -.35); // mix with pressure of returning wave
tap 2 10 // embouchure, time to cross mouth hole
y = S2;
y = (y * y * y) - y; // transfer differential across mouth hole
y = (.2*y) + (.95 * S1); // jet stream plus full wave
ysave = y; // listen to output here
y = (.7 * y) + (.3 * S3);// low pass at end of tube
tap 3 1
tap 1 30 // fundamental
y = ysave;

S3

tap 1 1000tap 4 1

tap 3 1

tap 2 1

0.99

S1

0.5

0.5

S4

D

-1

S2
-1-1

-1000

z

z

z

z-1

Fig. 9 Signal flowgraph of the plucked-string filter with an allpass filter added for
tuning.

This is a model of a jet wind instrument. After initialization, the first two lines model a constant
breath pressure with a slight random perturbation. This is then added to 35% of the phase-
inverted previous returning wave, stored in tap 1. (The flute is considered a tube open at both
ends. The length of tap 1 models the length of the flute — this example is really a model of a
slide flute, which is constantly changing size, rather than a flute with finger holes.) The next line,
y = y 3 y, is a rough approximation to the action of the air blowing across the mouth hole,
and 20% of this is added to 95% of the mixture of the left and right-going waves. Tap 2 models
the time it takes the breath to flow across the mouth hole. Finally, a model is created of the low-

- 10 -

pass effect created by the open end of the tube (tap 3). Cook’s signal flow graph is shown in Fig.
10.

**
*

1 Pole
Filter

n

p g

r
dl

dl2

r2

Ampl.
Env.

Noise
Gen.

+
-

Fig. 10 Signal flow graph of Cook’s slide flute model. This picture is courtesy of
Perry Cook.

Conclusion
We’ve found EIN to be useful both as a workbench for experimentation with filters and sig-

nals, and as a classroom tool while teaching introductory courses in computer music and digital
signal processing. Its conceptual simplicity and freedom from elaborate syntactical rules allow it
to be introduced at the earliest stages of a course. The use of multiple views of a sound, as well as
auditory output, provide the student with feedback and reinforcement on several levels.

EIN is available by anonymous ftp in /pub/music on princeton.edu.

We conclude with an amusement. More than one beginning student has been tripped up by
the following puzzle, whose solution we leave as an exercise for the reader. The assignment is to
write an EIN script to generate a sine wave which will glissando from 2000 to 3000 Hz. The fol-
lowing script would seem to do the trick:

float line = 2000 + 1000.*(float)t/nsamps; // line from 2000 to 3000
y = sin(line*two_PI*t/sr); // compute sine

but the spectrogram from EIN shown in Fig. 10 reveals that life is not always that simple...

- 11 -

Fig. 11 Spectrogram of the signal generated by the concluding puzzle.

Acknowledgment
This work was supported by NSF Grants CDA91-15189 and MIP-9201484. The FFT and

spectral displays were taken from Edsnd, by James Pritchett, with work by Steven M. Boker.
Thanks to Perry Cook, who provided help with the slide flute example and permission to use Fig
10.

References

P. R. Cook. 1992. ‘‘A Meta-Wind-Instrument Physical Model and a Meta-Controller for Real
Time Performance Control.’’ Proceedings of the International Computer Music Associa-
tion, San Jose, California, Oct. 14-18, 1992, 273-276.

D. A. Jaffe and J. O. Smith. 1983. ‘‘Extensions of the Karplus-Strong Plucked-String Algo-
rithm.’’ Computer Music J., 7: 56-69.

K. Karplus and A. Strong. 1983. ‘‘Digital Synthesis of Plucked-String and Drum Timbres.’’
Computer Music J., 7: 43-55.

M.V. Mathews. 1969. The Technology of Computer Music. Cambridge, Massachusetts: M.I.T.
Press.

K. Steiglitz. 1990. ‘‘Ein Kleiner Filter Compiler.’’ Tech. Report CS-TR-279-90. Computer Sci-
ence Department, Princeton University.

Appendix 1: Some Details about Buffers in EIN
The kernel of EIN, without the interface, is a very simple C pre-processor, originally only

about 50 lines long (Steiglitz 1990). In a single pass of the user’s EIN script, each non-tap line
is simply passed to the output, using the appropriate values from buffers for the Si. The only
slightly delicate issue is the way the circular buffers for storing delayed signals are handled.

- 12 -

When a tap i k line is encountered, a new buffer Bi of length N is declared to be an
array, together with the int index into that array, IDi. Then code is generated that stores the
signal at that point in the buffer. For example, the script line tap 1 100 used to save the
feedback signal in a comb filter generates the code

B1[ID1++] = y;
ID1 = ID1%L1;

where the integer variable L1 is equal to 100. The index ID1 is incremented after it is used,
and then taken modulo the length of the buffer.

The only tricky point concerns the definition of the length N of the buffer. Suppose L is
the desired loop delay, the parameter in the EIN script. When the loop is a feedback loop, N =
L; when the loop is a feedforward loop, N = L + 1. It is then not hard to verify that the buffer
value Bi[IDi] provides a signal with the desired delay. The extra buffer storage location in the
case of a feedforward loop is necessary because in that case the tap command is encountered
during the same ‘‘clock’’ cycle that the signal is used.

It also follows from this arrangement that the case L = 0 is allowed for a feedforward
loop, corresponding to a buffer of length 1; the present signal value is simply saved for use during
the same clock cycle of the filter. This is critical for the generality of the specification language,
discussed in Appendix 4. A signal may be used both before and after its corresponding tap, but
the user must remember that because the signal is used before its tap, the length of its buffer is
that of a feedback signal, and uses after its tap are delayed one fewer sampling interval than the
designated delay. As an example, if signal S1 is used both before and after tap 1 1, uses
before the tap are delayed 1 interval, but uses after are delayed 0 intervals.

Appendix 2: Warning
The example of the tuned plucked-string filter illustrated how the internally generated vari-

able L1 can be changed by the knowledgeable user. The other side of the coin is that the inter-
nally generated variable names of the form Li, Bi, and IDi are reserved by EIN and unwit-
ting use of them will cause havoc. Besides that, the parsing for the signal variables Si in the
user’s script is primitive in the current version of EIN, and no other names are allowed to begin
with ‘‘S’’.

Appendix 3: Random Access to Input in EIN
Besides the signal and buffer variables just mentioned the following are all the reserved

words in EIN:

float y, left, right, sr, two_PI;
int t, nsamps, inputskip;
short *inputsig;

All the others besides inputskip and *inputsig were described at the beginning of this
paper. These latter two variables provide random access to an input signal if one is being used.

The pointer *inputsig is the address of an array of short integers containing all the
samples of an input soundfile. If the soundfile is mono, the sample numbers are equal to array

- 13 -

locations. If the soundfile is stereo, the even indices represent the left channel and the odd indices
the right channel. The sample number is then equal to t/2 (+1 for the right channel). If an input
file has been opened the values of y are the current samples of the input signal, but the input-
sig[] array can also be used to arbitrarily address parts of the input soundfile.

The integer inputskip is the sample number at which the input signal is taken to start.
This will be a number other than 0 if it is specified in the ‘‘input skip:’’ form for an input file (see
the screen snapshot in Fig. 3). Therefore, if a sound is accessed via the *inputsig array, its
samples should be referred to by saying inputsig[t + inputskip].

Appendix 4: A Remark about Generality
Any signal flowgraph G that represents a realizable digital filter can be represented in an

EIN script using ordinary C code, plus tap statements.

The following informal argument should be convincing: Start with any signal flowgraph
and remove the delay elements. What remains must be free of loops, because it represents the
computation done during one sampling interval, and a loop would mean there would be no step-
by-step procedure for finding the next output value.

The next claim is that the nodes in the flowgraph with the delays removed can be ordered
from left-to-right, with no branches in the right-to-left direction. To do this, notice that there must
be a node with no incoming branches. If there were not, there would be a loop, because we could
start at a node and follow it backwards forever. Remove that node, putting it on the left end. Now
repeating this process results in a left-to-right ordering that satisfies the claim.

In technical jargon, the flowgraph with the delay elements removed is a directed acyclic
graph (dag), and a dag can always be topologically sorted.

The left-to-right order of the nodes now determines an order in which an EIN script can
evaluate the corresponding variables. The left-to-right arcs in the flowgraph without the delays
are implemented with feedforward (left-to-right) arcs with delay zero, and the remaining arcs
with feedforward arcs with delays L 1 and feedback arcs with delays L 1.

