

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Programming Style Page 106

October 12, 1997

Programming Style

•

Writing good programs is like writing good prose; the object is to

communicate

concise, straightforward, no unnecessary parts

•

Principles of good programming style are

language independent

some languages have features that

encourage

 good style, e.g. structured loops

some have features that

discourage

 good style, e.g. gotos, anemic data types

modern block-structured languages are better than older unstructured languages

but

bad

 programs can be written in

any

 language

•

Benefits of good style

code that is easy to

understand

code that is more likely to

work

code that is easy to

maintain

 and change

•

Method to develop good programming style

read

 code written by good programmers

Ask: Will I understand this program in two years?

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Programming Style Page 107

October 12, 1997

Names

•

Pick names that capture the use of the variable or function, e.g.

 addElement

nouns for variables
verbs for functions
adjectives for booleans, conditions, and some enumeration constants

•

Use

descriptive

 names for global variables and functions, e.g.

 elementCount

•

Use

concise

 names for local variables that reflect

standard notation

prefer to

for (i = 0; i < n; i++)
a[i] = 0;

•

Use

case

 judiciously

use all capitals for constants
don’t rely on only case to distinguish names

•

Use a consistent style for

compound

 names

printword PrintWord print_word

•

Module-level prefixes help distinguish names, e.g.

 Strset_T, Strset_add

•

Don’t use nerdy abbreviations and acronyms

for (arrayindex = 0; arrayindex<arraysize;
arrayindex++)

array[arrayindex] = 0;

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Programming Style Page 108

October 12, 1997

Layout and Indentation

•

Use

white space

 judiciously

separate code into “paragraphs”

make expressions more readable

•

Use

indentation

 to emphasize

structure

use editor “autoindent” facilities and a consistent amount of space

watch for extreme indentation — signals

excessive

 nesting

•

Line up parallel structures

alpha = angle(p1, p2, p3);

beta = angle(p2, p3, p1);

gamma = angle(p3, p1, p2);

•

One statement per line

•

Be

consistent

, but use

variation

 for emphasis

•

Break long lines at logical places, e.g. by precedence; indent continuations

•

Use tabular input and output formats

alpha = angle(p1, p2, p3);
beta = angle(p2, p3, p1);
gamma = angle(p3, p1, p2)

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Clear Expression Page 109

October 12, 1997

Clear Expression

•

Compare:

for(i=1; i<=n; i++)
for(j=1; j<=n; i++)
v[i-1][j-1] = (i/j)*(j/i);

vs.

/* make v the identity matrix */
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++)
v[i][j] = 0.0;

v[i][i] = 1.0;
}

•

Rules:

be clever, but don’t be

too clever

say what you mean, simply and directly

use parentheses to emphasize precedence and braces to display structure

use white space and indentation to clarify structure

don’t sacrifice clarity for “efficiency”

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Clear Expression Page 110

October 12, 1997

Clear Expression, cont’d

•

Compare:

if (!(i > 10 || 0 > i)) ...

vs.

if (0 <= i && i <= 10) ...

•

Compare:

for (neg = 0; *s1 == *s2++;)
if (*s1++ == '\0')

break;
neg = *s1 - (*--s2);
if (!neg) ...

vs.

while (*s1 == *s2 && *s1 != '\0') { s1++; s2++; }
if (*s1 == *s2) ...

vs.

if (strcmp(s1, s2) == 0) ...

•

Rules:

avoid double negation

avoid temporary variables

use library functions

let the compiler do the dirty work

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Clear Expression Page 111

October 12, 1997

Clear Expression, cont’d

•

Compare:

if (a > b)

vs.

if (b > c)
z = c;

else
z = b;

else
if (a > c)

z = c;
else

z = a;

better yet:

z = min(a, min(b, c));

•

Rules:

 lay out expressions according to standard conventions

 rearrange logic so it is easy to understand

 follow each decision with a matching action

if (a < b)
if (b <= c)

z = a;
else

z = c;
else /* a >= b *

if (b <= c)
z = b

else
z = c;

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Clear Expression Page 112

October 12, 1997

Control Structure

•

Flow of control should be written for human understanding

for (i = 0; i < n; i++) {
if (strcmp(table[i].word, word))

 continue;
table[i].count++;

}

better:

for (i = 0; i < n; i++)
if (strcmp(table[i].word, word) == 0)

table[i].count++;

•

Avoid

 continue; break

is OK, but use it sparingly;
“breaking” out of functions is OK, if used with care

•

Rules:

use structured control constructs

don’t make the reader jump around or decrypt convoluted flow of control

avoid long blocks

avoid complicated, nested blocks

minimize the use of

 return

and

 break

func(a) {
if (isbad(a))

return;
...

}

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Clear Expression Page 113

October 12, 1997

Control Structure, cont’d

•

“Comb” structures

compare: vs:

if (x < v[mid])
high = mid - 1;

else if (x > v[mid])
low = mid + 1;

else
return mid;

•

Ditto for

 switch

•

Rules:

implement multiway branches with

 if ... else if ... else

emphasize that only one of the actions is performed

avoid empty

 then

and

 else

actions

handle default action, even if it “can’t happen;” use

 assert(0)

avoid nesting

if (x < v[mid])
high = mid - 1;
else if (x > v[mid])

low = mid + 1;
else

return mid;

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Clear Expression Page 114

October 12, 1997

Program Structure

•

Rules:

modularize; use interfaces

every function/interface should do

one

 thing well

every function/interface should

hide

 something

replace repetitious code with calls to functions

let the data structure the program

make sure your code “does nothing” gracefully

don’t patch bad code — rewrite it

don’t strain to reuse code — reorganize it

watch for “off-by-one” errors

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Clear Expression Page 115

October 12, 1997

Documentation

•

Best program documentation includes

clean structure

consistent programming

good mnemonic identifiers

smattering of enlighting comments

•

Comments should add new information

i = i + 1; /* add one to i */

•

Comments and code must

agree

; if they disagree, odds are they are both wrong

•

Don’t comment bad code — rewrite it

•

Comment algorithms, not coding idiosyncracies

•

Comment procedural interfaces and data structures liberally

•

Master the language and its

idioms

; let the code speak for itself

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Clear Expression Page 116

October 12, 1997

Program Organization

•

Good, consistent organization makes programs easier to read and modify

•

Pick a consistent program layout style for

functions
statements
expressions
comments

•

Small

 programs (~ few

hundred

 lines, maximum) can fit into one file

opening explanatory comments
purpose
author and history (handled better by tools like RCS)

#includes

(i.e. imports)

#defines

(i.e. constants)
type definitions (e.g.

typedef

,

struct

, etc.)
global variables

main

functions in alphabetical or logical order

•

Maximize “data ink”

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Clear Expression Page 117

October 12, 1997

Program Organization, cont’d

•

Divide medium-size programs (~ few

thousand

 lines, maximum) into modules

•

Use established interfaces and implementations

•

Implementations

organized around data or function

organize each implementation as a “small” program

•

Interfaces

use separate headers for separate interfaces, but don’t

over-modularize

permit multiple inclusion

do

not

 define variables

•

Global variables and functions

declared

 in interfaces, so all clients see the same declaration

defined

 and

initialized

 in an implementation

•

What about

large

 programs, say, more than 50,000 lines? Another course...

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Efficiency and Style Page 118

October 12, 1997

Efficiency and Style

•

If a program doesn’t

work

, it doesn’t matter how fast it is!

•

Rules:

make it clear before you make it faster

make it correct before you make it faster

see if it’s fast enough before you make it faster

keep it correct while you make it faster

ill-conceived attempts to increase efficiency usually lead to bad code; gains are usually
small or non-existent

•

Make performance improvements

only

if they are really needed, and

if there are objective

measurements

 that identify the sources of inefficiency

intuitions are notoriously bad; they aren’t “objective measurements”

•

Rules:

keep it simple to make it faster

let the compiler do the simple optimizations

don’t diddle code to make it faster — find a better algorithm

