
COS 126 Princeton University Spring 2024

Programming Exam

Before you begin. Read through this page of instructions. Do not start the exam (or read the
next page) until instructed to do so.

Duration. You have 80 minutes to complete this exam.

Advice. Review the entire exam before starting to write code. Implement the constructor and
instance methods in the order given, one at a time, testing in main() after you complete each
method. The last instance method is the most challenging.

Submission. Submit your solutions on TigerFile using the link from the Exams page. You may
submit multiple times (but only the last version will be graded).

Check Submitted Files. You may click the Check Submitted Files button to receive partial
feedback on your submission. We will attempt to provide this feature during the exam (but you
should not rely upon it).

Grading. Your program will be graded primarily on correctness. Clarity and efficiency will also
be considered. You will receive partial credit for a program that implements some of the required
functionality. You will receive a substantial penalty for a program that does not compile.

Allowed resources. During the exam you may use only the following resources: course textbook;
companion booksite; lecture slides; course website; course Ed; your course notes; and your code from
the programming assignments or precept. For example, you may not use Google, StackOverflow,
or ChatGPT.

No collaboration or communication. Collaboration and communication during this exam are
prohibited, except with course staff. A staff member will be outside the exam room to answer
clarification question.

No electronic devices or software. Software and computational/communication devices are
prohibited, except to the extent needed for taking this exam (such as a laptop, browser, and IntelliJ).
For example, you must close all unnecessary applications and browser tabs; disable notifications;
and power off all other devices (such as cell phones, tablets, smart watches, and earbuds). You
must use the Princeton wireless network eduroam, not a mobile hotspot.

Honor Code pledge. Write and sign the Honor Code pledge by typing the text below in the file
acknowledgments.txt.

I pledge my honor that I will not violate the Honor Code during this examination.

Electronically sign it by typing /s/ followed by your name.

After the exam. Discussing or communicating the contents of this exam before solutions have
been posted is a violation of the Honor Code, as is accessing TigerFile.

Deliverables. For this programming exam, you will submit two files:

1. A Java program TigerWallet.java, containing a data type for managing a wallet that con-
tains both cash and a cryptocurrency.

2. An acknowledgments.txt file, containing your Honor Code pledge.
Getting Started
You are an engineer at a bank, writing software to support a new crypto-currency called TigerCoin (logo below). Your
bank handles a series of accounts and transactions like deposits, withdrawals and transfers. Your project folder contains
three Java files:

Account.java – records information for a single account. You will implement several methods in this class.
Bank.java – keeps track of all accounts. You do not need to examine this class, and do not modify it.
TigerCoin.java – handles all transactions. You will implement some methods in this class.

Part 1
Edit the file Account.java to implement a mutable abstract data type Account that consists of an account holder’s
name (a String, like “Alice”) and their current TigerCoin balance (a double, like 12345.67). Do not change the API – the
public interface should remain unchanged. For all parts of this exam, you may assume that arguments representing
TigerCoin funds (e.g., amount in the methods below) are non-negative – there are no transactions for negative funds.
You may also assume that any name is a String containing a sequence of letters/digits (no spaces or punctuation), like
“Alice” or “Alice2021”. Implement these methods:

public Account(String name) – Constructor: create an account with the given name and initial balance 0.0.
public String toString() – Return a String representation in this format: <name>: $<balance> , for example,
Alice: $12,345.67 . Note the space after the colon! (Hint: see the helpful method formatTC .)
public void deposit(double amount) – Increase the balance in this account by the given amount.
public boolean sufficientFunds(double amount) – Return false if withdrawing the given amount would

cause the account balance to be negative. Otherwise return true.
public boolean withdraw(double amount) – Subtract the given amount from the account balance and return

true, provided that this would not cause the balance to become negative. Otherwise, do not change the balance
and return false.

Test your implementation using the provided main method, which should produce the following output. You are free to
change this method to test your code however you like (as long as it compiles).

Upload through Part 1…

At this point you made many changes in the file Account.java . Upload your partially completed exam, by uploading this
file. Also be sure you have already signed and uploaded the HONOR CODE in the file honor-code.txt .

% javac-introcs Account.java

% java-introcs Account

Created account -- Alice: $0.00

After deposit of 300 -- Alice: $312.50

Does Alice have sufficient funds to withdraw 250? true

Does Alice have sufficient funds to withdraw 600? false

After withdrawing 250 -- Alice: $62.50

Getting Started
You are an engineer at a bank, writing software to support a new crypto-currency called TigerCoin (logo below). Your
bank handles a series of accounts and transactions like deposits, withdrawals and transfers. Your project folder contains
three Java files:

Account.java – records information for a single account. You will implement several methods in this class.
Bank.java – keeps track of all accounts. You do not need to examine this class, and do not modify it.
TigerCoin.java – handles all transactions. You will implement some methods in this class.

Part 1
Edit the file Account.java to implement a mutable abstract data type Account that consists of an account holder’s
name (a String, like “Alice”) and their current TigerCoin balance (a double, like 12345.67). Do not change the API – the
public interface should remain unchanged. For all parts of this exam, you may assume that arguments representing
TigerCoin funds (e.g., amount in the methods below) are non-negative – there are no transactions for negative funds.
You may also assume that any name is a String containing a sequence of letters/digits (no spaces or punctuation), like
“Alice” or “Alice2021”. Implement these methods:

public Account(String name) – Constructor: create an account with the given name and initial balance 0.0.
public String toString() – Return a String representation in this format: <name>: $<balance> , for example,
Alice: $12,345.67 . Note the space after the colon! (Hint: see the helpful method formatTC .)
public void deposit(double amount) – Increase the balance in this account by the given amount.
public boolean sufficientFunds(double amount) – Return false if withdrawing the given amount would

cause the account balance to be negative. Otherwise return true.
public boolean withdraw(double amount) – Subtract the given amount from the account balance and return

true, provided that this would not cause the balance to become negative. Otherwise, do not change the balance
and return false.

Test your implementation using the provided main method, which should produce the following output. You are free to
change this method to test your code however you like (as long as it compiles).

Upload through Part 1…

At this point you made many changes in the file Account.java . Upload your partially completed exam, by uploading this
file. Also be sure you have already signed and uploaded the HONOR CODE in the file honor-code.txt .

% javac-introcs Account.java

% java-introcs Account

Created account -- Alice: $0.00

After deposit of 300 -- Alice: $312.50

Does Alice have sufficient funds to withdraw 250? true

Does Alice have sufficient funds to withdraw 600? false

After withdrawing 250 -- Alice: $62.50

Getting Started
You are an engineer at a bank, writing software to support a new crypto-currency called TigerCoin (logo below). Your
bank handles a series of accounts and transactions like deposits, withdrawals and transfers. Your project folder contains
three Java files:

Account.java – records information for a single account. You will implement several methods in this class.
Bank.java – keeps track of all accounts. You do not need to examine this class, and do not modify it.
TigerCoin.java – handles all transactions. You will implement some methods in this class.

Part 1
Edit the file Account.java to implement a mutable abstract data type Account that consists of an account holder’s
name (a String, like “Alice”) and their current TigerCoin balance (a double, like 12345.67). Do not change the API – the
public interface should remain unchanged. For all parts of this exam, you may assume that arguments representing
TigerCoin funds (e.g., amount in the methods below) are non-negative – there are no transactions for negative funds.
You may also assume that any name is a String containing a sequence of letters/digits (no spaces or punctuation), like
“Alice” or “Alice2021”. Implement these methods:

public Account(String name) – Constructor: create an account with the given name and initial balance 0.0.
public String toString() – Return a String representation in this format: <name>: $<balance> , for example,
Alice: $12,345.67 . Note the space after the colon! (Hint: see the helpful method formatTC .)
public void deposit(double amount) – Increase the balance in this account by the given amount.
public boolean sufficientFunds(double amount) – Return false if withdrawing the given amount would

cause the account balance to be negative. Otherwise return true.
public boolean withdraw(double amount) – Subtract the given amount from the account balance and return

true, provided that this would not cause the balance to become negative. Otherwise, do not change the balance
and return false.

Test your implementation using the provided main method, which should produce the following output. You are free to
change this method to test your code however you like (as long as it compiles).

Upload through Part 1…

At this point you made many changes in the file Account.java . Upload your partially completed exam, by uploading this
file. Also be sure you have already signed and uploaded the HONOR CODE in the file honor-code.txt .

% javac-introcs Account.java

% java-introcs Account

Created account -- Alice: $0.00

After deposit of 300 -- Alice: $312.50

Does Alice have sufficient funds to withdraw 250? true

Does Alice have sufficient funds to withdraw 600? false

After withdrawing 250 -- Alice: $62.50

Getting Started
You are an engineer at a bank, writing software to support a new crypto-currency called TigerCoin (logo below). Your
bank handles a series of accounts and transactions like deposits, withdrawals and transfers. Your project folder contains
three Java files:

Account.java – records information for a single account. You will implement several methods in this class.
Bank.java – keeps track of all accounts. You do not need to examine this class, and do not modify it.
TigerCoin.java – handles all transactions. You will implement some methods in this class.

Part 1
Edit the file Account.java to implement a mutable abstract data type Account that consists of an account holder’s
name (a String, like “Alice”) and their current TigerCoin balance (a double, like 12345.67). Do not change the API – the
public interface should remain unchanged. For all parts of this exam, you may assume that arguments representing
TigerCoin funds (e.g., amount in the methods below) are non-negative – there are no transactions for negative funds.
You may also assume that any name is a String containing a sequence of letters/digits (no spaces or punctuation), like
“Alice” or “Alice2021”. Implement these methods:

public Account(String name) – Constructor: create an account with the given name and initial balance 0.0.
public String toString() – Return a String representation in this format: <name>: $<balance> , for example,
Alice: $12,345.67 . Note the space after the colon! (Hint: see the helpful method formatTC .)
public void deposit(double amount) – Increase the balance in this account by the given amount.
public boolean sufficientFunds(double amount) – Return false if withdrawing the given amount would

cause the account balance to be negative. Otherwise return true.
public boolean withdraw(double amount) – Subtract the given amount from the account balance and return

true, provided that this would not cause the balance to become negative. Otherwise, do not change the balance
and return false.

Test your implementation using the provided main method, which should produce the following output. You are free to
change this method to test your code however you like (as long as it compiles).

Upload through Part 1…

At this point you made many changes in the file Account.java . Upload your partially completed exam, by uploading this
file. Also be sure you have already signed and uploaded the HONOR CODE in the file honor-code.txt .

% javac-introcs Account.java

% java-introcs Account

Created account -- Alice: $0.00

After deposit of 300 -- Alice: $312.50

Does Alice have sufficient funds to withdraw 250? true

Does Alice have sufficient funds to withdraw 600? false

After withdrawing 250 -- Alice: $62.50

Getting Started
You are an engineer at a bank, writing software to support a new crypto-currency called TigerCoin (logo below). Your
bank handles a series of accounts and transactions like deposits, withdrawals and transfers. Your project folder contains
three Java files:

Account.java – records information for a single account. You will implement several methods in this class.
Bank.java – keeps track of all accounts. You do not need to examine this class, and do not modify it.
TigerCoin.java – handles all transactions. You will implement some methods in this class.

Part 1
Edit the file Account.java to implement a mutable abstract data type Account that consists of an account holder’s
name (a String, like “Alice”) and their current TigerCoin balance (a double, like 12345.67). Do not change the API – the
public interface should remain unchanged. For all parts of this exam, you may assume that arguments representing
TigerCoin funds (e.g., amount in the methods below) are non-negative – there are no transactions for negative funds.
You may also assume that any name is a String containing a sequence of letters/digits (no spaces or punctuation), like
“Alice” or “Alice2021”. Implement these methods:

public Account(String name) – Constructor: create an account with the given name and initial balance 0.0.
public String toString() – Return a String representation in this format: <name>: $<balance> , for example,
Alice: $12,345.67 . Note the space after the colon! (Hint: see the helpful method formatTC .)
public void deposit(double amount) – Increase the balance in this account by the given amount.
public boolean sufficientFunds(double amount) – Return false if withdrawing the given amount would

cause the account balance to be negative. Otherwise return true.
public boolean withdraw(double amount) – Subtract the given amount from the account balance and return

true, provided that this would not cause the balance to become negative. Otherwise, do not change the balance
and return false.

Test your implementation using the provided main method, which should produce the following output. You are free to
change this method to test your code however you like (as long as it compiles).

Upload through Part 1…

At this point you made many changes in the file Account.java . Upload your partially completed exam, by uploading this
file. Also be sure you have already signed and uploaded the HONOR CODE in the file honor-code.txt .

% javac-introcs Account.java

% java-introcs Account

Created account -- Alice: $0.00

After deposit of 300 -- Alice: $312.50

Does Alice have sufficient funds to withdraw 250? true

Does Alice have sufficient funds to withdraw 600? false

After withdrawing 250 -- Alice: $62.50

TigerWallet. The data type TigerWallet represents a wallet that contains a certain amount
of cash (in dollars) and a certain amount of a virtual currency (known as tigercoin). These two
quantities are always non-negative integers. Each wallet is also associated with a particular campus
network (such as Mathey or Forbes).

API. Using the template file TigerWallet.java provided in the project folder as a starting point,
write a data type that implements the following API:

public class TigerWallet

public TigerWallet(String network, int cash, int coin) create a new wallet in given network,
with specified initial cash and tigercoins

public int getCash() amount of cash in this wallet

public int getCoin() number of tigercoins in this wallet

public String toString() string representation of this wallet

public void depositCash(int amount) adds the specified amount of cash to
this wallet

public void buyCoin(int amount) buys the specified number of tigercoins

public void transferCoinTo(int amount, TigerWallet to) transfers the specified number of tigercoins
from this wallet to the specified wallet

public void mergeWith(TigerWallet[] wallets) merges the specified wallets into this one,
transferring all cash and tigercoins

public static void main(String[] args) unit tests the TigerWallet data type

2

Here is some additional information about the required behavior:

• The toString() method returns a string that represents the wallet in the format
(network, cash, tigercoins), such as "(Mathey, 100, 10)".

• The depositCash() method increases the amount of cash in the wallet by the deposited
amount. (There is no fee for depositing cash.)

• The buyCoin() method converts cash to tigercoins within a wallet. Each tigercoin costs $100.
There is a $3 fee per transaction. For example, buying 5 tigercoins increases the number of
tigercoins in the wallet by 5 and decreases the amount of cash in the wallet by $503.

• The transferCoinTo() method transfers tigercoins from one wallet to another. Specifically,
the method call from.transferCoinTo(amount, to) decreases the number of tigercoins in
the from wallet (and increases the number of tigercoins in the to wallet) by the specified
amount. If the two wallets are in different networks, the from wallet pays a $3 transaction
fee.

• The mergeWith() method combines several wallets into one. Specifically, the method call
wallet.mergeWith(wallets) transfers all of the cash and the tigercoins from the wallets in
wallets[] to wallet, leaving zero cash and tigercoins in the transferred wallets. (There is
no fee for merging wallets.)

• Exceptions. Throw an IllegalArgumentException if the arguments are invalid:

– Calling buyCoin() with insufficient cash to complete the transaction (including the fee).

– Calling transferCoinTo() with

⋄ insufficient cash to pay the fee (if applicable), or

⋄ insufficient tigercoins to complete the transfer.

– Calling wallet.mergeWith(wallets) if any of the wallets in wallets[] are

⋄ in a different network than wallet, or

⋄ if any of the wallets are equal to (i.e., aliases of) one another (or wallet).

For simplicity, you may assume that:

– The amount argument in depositCash(), buyCoin(), and transferCoinTo() is a
positive integer.

– The cash and coin arguments in the constructor are non-negative integers.

– No arguments are null, including the array elements in mergeWith().

3

• Unit testing. Include a main() method that directly calls the constructor and every instance
method. You may use this main() as a starting point:

public static void main(String[] args) {

// create four wallets

TigerWallet aja = new TigerWallet("Mathey", 100, 10);

TigerWallet bob = new TigerWallet("Forbes", 300, 1);

TigerWallet cai = new TigerWallet("Mathey", 0, 6);

TigerWallet dee = new TigerWallet("Mathey", 200, 0);

// print Aja’s cash and coin

StdOut.println("Aja cash: " + aja.getCash()); // Aja cash: 100

StdOut.println("Aja coin: " + aja.getCoin()); // Aja coin: 10

StdOut.println();

// perform some transactions

aja.depositCash(1000);

aja.buyCoin(5);

aja.transferCoinTo(2, cai);

// print wallets

StdOut.println("Aja: " + aja); // Aja: (Mathey, 597, 13)

StdOut.println("Bob: " + bob); // Bob: (Forbes, 300, 1)

StdOut.println("Cai: " + cai); // Cai: (Mathey, 0, 8)

StdOut.println("Dee: " + dee); // Dee: (Mathey, 200, 0)

StdOut.println();

// merge Mathey wallets into Aja’s wallet

TigerWallet[] wallets = { cai, dee };

aja.mergeWith(wallets);

// print wallets

StdOut.println("Aja: " + aja); // Aja: (Mathey, 797, 21)

StdOut.println("Bob: " + bob); // Bob: (Forbes, 300, 1)

StdOut.println("Cai: " + cai); // Cai: (Mathey, 0, 0)

StdOut.println("Dee: " + dee); // Dee: (Mathey, 0, 0)

StdOut.println();

}

Grading. This programming exam has a total of 50 points. Here is the breakdown:

part points

TigerWallet() 6

getCash() 3

getCoin() 3

toString() 6

depositCash() 6

part points

buyCoin() 7

transferCoinTo() 8

mergeWith() 10

main() 1

4

