Instructions. This exam has eight (8) questions worth a total of one hundred (100) points. You have eighty (80) minutes.

This exam is preprocessed by computer. Write neatly, legibly, and darkly. If you use a pencil, use extra care to write darkly. Put all answers (and nothing else) inside the designated boxes. Fill in bubbles and checkboxes completely: \bigcirc and \square (not \boldsymbol{V} or \boldsymbol{X}). Place only your answer, no calculations, inside a box: To change an answer, erase it completely and redo.

Resources. The exam is closed book, except that you are allowed to use a single two-sided reference sheet (8.5-by-11 paper, two-sided, in your own handwriting). No electronic devices are permitted.

Honor Code. This exam is governed by Princeton's Honor Code. Discussing the contents of this exam before solutions have been posted is a violation of the Honor Code.

NAME:									
NETID (not alias)									
PRECEPT	P01 \bigcirc	P02 \bigcirc	P02A	P03 \bigcirc	P04 \bigcirc	P05 ○	$\begin{gathered} \mathrm{P} 06 \\ \bigcirc \end{gathered}$	$\begin{gathered} \mathrm{P} 07 \\ \bigcirc \end{gathered}$	
	P08 \bigcirc	P08A	P10 \bigcirc	P11 \bigcirc	$\begin{gathered} \mathrm{P} 12 \\ \bigcirc \end{gathered}$	P13 \bigcirc	P14 \bigcirc	P15 \bigcirc	ISC
$\begin{aligned} & \text { EXAM } \\ & \text { ROOM } \end{aligned}$	McCosh $50 \bigcirc$ McCosh $10 \bigcirc$				McCosh $62 \bigcirc$ OTHER				

"I pledge my honor that I have not violated the Honor Code during this examination."

INSTRUCTION FORMATS

ARITHMETIC and LOGICAL operations

1: add	$R[d]<-R[s]+$
2: subtract	$R[d]<-R[s]-R[t]$
3: and	$R[d]<-R[s] \&$
4: xor	$R[t]$
5: shift left	$R[d]<-R[s] \wedge R[t]$
6: shift right	$R[d]<-R[s] \ll R[t]$

TRANSFER between registers and memory
7: load address $R[d]<-$ addr
8: load $R[d]<-M[a d d r]$
9: store $\quad M[a d d r]<-R[d]$
A : load indirect $R[d]<-M[R[t]]$
B : store indirect $M[R[t]]<-R[d]$
CONTROL
0: halt halt
C: branch zero if (R[d] == 0) PC <- addr
D : branch positive if (R[d] > 0) PC <- addr
E: jump register $\mathrm{PC}<-\mathrm{R}[\mathrm{d}]$
F: jump and link $R[d]<-P C$; $P C$ <- addr

Register 0 always reads 0 .
Loads from M[FF] come from stdin.
Stores to M[FF] go to stdout.
16-bit registers (two's complement)
16-bit memory locations
8-bit program counter

NOTE: All memory locations not specified have undefined values.

1. After executing this TOY program, what is the final value of R[2] in decimal? Place your answer, and only your answer, in the rectangle below the program.
$R[2]$ doubles
$R[C]$ times, until
$R[C]==0$

10: 7C05
11: 7101
12: 7201
13: 1222
14: 2CC1
15: DC13
16: 0000

NOTE: All memory locations not specified have undefined values. There may be more than one correct answer.
2. How would you change memory location 10 to make $\mathbf{R}[2]$'s final value be 2 ?

Place your answer in the rectangle to right of 10:
One hex symbol per box.

NOTE: All memory locations not specified have undefined values. There may be more than one correct answer.	10:	7C05			
		7101			
	12:	7201			
3. How would you change memory location 13 to make $\boldsymbol{R}[2]$'s final value be 2 ?		1	2		
	13:				
	14:	2CC1			
Place your answer in the rectangle to right of 13:One hex symbol per box.	15:	DC13	12CC		
	16:	0000	12C1		
	10:	7C05			
NOTE: All memory locations not specified have undefined values. There may be more than one correct answer.	11:	7101			
	12:	7201			
	13:	1222			
	14:	2CC1			
4. How would you change memory location 15 to make $\boldsymbol{R}[2$]'s final value be 2 ?		D	C	1	6
Place your answer in the rectangle to right of 15:	15:				
One hex symbol per box.	16:	0000	14,	C12,	DC11

```
public class Point {
    private final double x; // x-coordinate
    private final double y; // y-coordinate
    public Point(double x, double y) {
        this.x = x;
        this.y = y;
    }
    public Point() {
    x = 0;
    y = 0;
    }
    public double x() {
    return x;
    }
    public double y() {
        return y;
    }
    private double compute(double x, double y) {
    return Math.sqrt(x * x + y * y);
    }
    public double r() {
    return compute(x, y);
    }
    public double distanceTo(Point that) {
    double dx = this.x - that.x;
    double dy = this.y - that.y;
    return compute(dx, dy);
    }
    public String toString() {
    return "(" + x + ", " + y + ")";
    }
    public static void main(String[] args) {
    Point p = new Point();
    StdOut.println("p = " + p);
    StdOut.printf("x=%f,y=%f,r=%f\n",
                        p.x(), p.y(), p.r());
    Point q = new Point(0.5, 0.5);
    StdOut.println("q = " + q);
    StdOut.println(p.distanceTo(q));
    q = p;
    StdOut.println("dist(q, p) = " +
    q.distanceTo(p));
    }
}
```

Consider the Java class, Point, on the left. The code compiles successfully. Answer the following questions by filling in the bubble. Selecting Not sure will give partial credit of . 5 points.

1. The Point class is an abstract data type.
True

\bigcircFalse

\bigcircNot sure (.5)
2. Point is an immutable data type.

True \square False
3. All the methods defined in the Point class are examples of instance methods.
OTrue False
Not sure (.5)
4. Removing this. (lines 31-32) will result in a compilation error.
OTrue
False
Not sure (.5)
5. The local variables accessed in line 23 shadow the instance variables in lines 02-03.

TrueFalse
Not sure (.5)
6. It is possible to keep the API unchanged if the instance variables are changed to polar coordinates (radius \& angle instead of $x \& y$): private final double r; private final double theta;
True
False
Not sure (.5)
7. The statement at line 46 will throw an exception since q and p were initialized with different Point constructors.
False
Not sure (.5)

Assume you have access to the private Node class:

```
private class Node {
    int value;
    Node next;
}
```

Now consider the following method which operates on linked lists:

```
public boolean slinky(Node head) {
    Node a = head;
    if (a == null) return true;
    Node b = a.next;
    while (b != null && b != a) {
        b = b.next;
        if (b == null) return true;
        b = b.next;
        a = a.next;
    }
    return (b == null);
}
public boolean slinky(Node head) \{
Node \(a=\) head;
if ( \(a==\) null) return true;
Node b = a.next;
while (b != null \&\& \(b\) != \(a\) ) \{
b = b. next;
if (b == null) return true;
b = b.next;
\(a=a . n e x t ;\)
\}
return (b == null);
\}
```

Answer the following questions by filling in one bubble \qquad

1. What does slinky (head) return on the following empty list?
head \longrightarrow null
2. What does slinky(head) return on the following null-terminated list?
true
 does not return head $\longrightarrow 1 \rightarrow 2 \rightarrow$ null
3. What does slinky(head) return on the following list with a cycle?
 does not return

4. What does slinky(head) return on the following list with a cycle?

5. slinky always returns false when the linked data structure \qquad . Select the best

Sis sorted \square Dis null-terminated Sis empty \bigcirc isn't empty \bigcirc is doubly-linked answer. has a cycle \bigcirc has no cycle

In the following functions, the input array, inArray, is of size \mathbf{N}. What is the order of growth in terms of \mathbf{N} for each function?
for (int i = 0; i < N; i++)
sum += inArray[i];
return sum;
}

```
```

```
/* What is the asymptotic growth rate of mystery1? */
```

```
/* What is the asymptotic growth rate of mystery1? */
public static int mystery1(int[] inArray, int N) {
public static int mystery1(int[] inArray, int N) {
    int sum = 0;
    int sum = 0;
    for (int i = 0; i < N; i++)
    for (int i = 0; i < N; i++)
        for (int j = 0; j < i / 2; j++)
        for (int j = 0; j < i / 2; j++)
        sum += inArray[j];
```

 sum += inArray[j];
    ```
/* What is the asymptotic growth rate of mystery2? */ public static int mystery2(int[] inArray, int N) \{ int sum = 0;
for (int i = 0; i < 10; i++)
for (int j = 0; j < N; j++)
sum += inArray[j];
return sum;
\}
int sum = 0;
    for (int \(i=0 ; i<10 ; i++\) )
        sum += inArray[j];
/* This function is called by mystery3 below. */
public static int mystery3_helper(int[] inArray,
                                    int left,
                                    int right) \{
    int sum \(=0\);
    int mid \(=((\) right - left \() / 2)+\) left;
    if (left == right) return 0;
    if (left \(+1==\) right) return 0;
    for (int \(i=\) left; \(i<=\) right; \(i++\) )
        sum += inArray[i];
    return mystery3_helper(inArray, left, mid) +
        mystery3_helper(inArray, mid, right) +
        sum;
\}
/* What is the asymptotic growth rate of mystery3
    * including the time spent in mystery3_helper? */
public static int mystery3(int[] inArray, int N) \{
    return mystery3_helper(inArray, 0, N - 1);
\}
3. Fill in a single bubble to indicate the order of growth:

\(N^{3}\)


For each of the following sets of strings over the alphabet \(\{a, b, c\}\), choose the single DFA that accepts that same set. Fill in the bubble with the letter corresponding to the DFA.
1. The regular expression
(b | c)* a (b |
c)* a (a |
b
c)*
A
B
C
\(\bigcirc\)
E
2. Strings containing at most one a

\(\bigcirc\)
C
\(D\)
E
3. Strings containing an even number of a's (including no a's)
B
\({ }^{8}\)
C
\(\bigcirc\)
D
E
\(\bigcirc\)

4. Strings containing at least two a's
A
B
\(\bigcirc\)
C
D
E


Consider the following Turing machine and tape: (Note: This Turing machine has no HALT, YES, or NO states. \# denotes empty.)

1. The tape starts with all empty cells as shown above. The initial state is \(R\). Show the state of the tape after the transition and head move in which the tape goes from zero (0) to one (1) nonempty cell. Fill in all cells with only a symbol \((\mathbf{0}, \mathbf{1})\) or \#:

2. Show the state of the tape after the transition and head move during which the tape goes from three (3) to four (4) nonempty cells. Fill in all cells with only a symbol \((\mathbf{0}, \mathbf{1})\) or \#:

3. What best describes what this Turing machine does in general?

\(\bigcirc\)
hamming decode
 hamming encode

\(\bigcirc\)writes all 1's \(\square\) writes all 0's
writes in alternating 1's and 0's \(\square\) counts in binary
 converts 1 's to 0 's converts 0's to 1's
 converts 0 's to 1 's, 1 's to 0 's, and \#'s to 1's
 halts

Suppose that we have just proven that \(P\) is not equal to NP. In this context, verify the following statements by filling in a single bubble . Select l'm not sure for partial credit of .5 points.
1. \(P\) is equal to NP.


False

ONo one is sure yet

Ol'm not sure (. 5 points)
2. There does not exist an efficient algorithm for finding the non-trivial integer prime factors of a number (FACTOR).

 No one is sure yet
3. The traveling salesperson problem (TSP) is not in \(P\).

True
No one is sure yet
OI'm not sure (. 5 points)
4. The "Is this list sorted?" decision problem is not in NP.
False
 No one is sure yet Ol'm not sure (. 5 points)
5. There exists an efficient algorithm for finding optimal TSP tours, but no one has been able to find it.


False No one is sure yet

SIm not sure (. 5 points)
6. There does not exist an efficient algorithm for the Boolean satisfiability problem (SAT). True
7. No algorithm can guarantee to efficiently find a tour of length less than \(k\) for any given \(k\) for all TSP point maps.

True
No one is sure yet
Ol'm not sure (. 5 points)
8. For TSP, there does not exist a class of point maps (ie., a subset of maps having a certain stated characteristic) for which finding the optimal tour in polynomial time is possible.


False

\(\bigcirc\)No one is sure yet

OI'm not sure (. 5 points)

Consider a circuit that has three inputs \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) and produces an output of 1 if and only if exactly one of the inputs is 1.
1. Complete the truth table for this circuit, filling in 0 's or 1 's in each box:
\begin{tabular}{|c|c|c|c|}
\hline A & B & C & RESULT \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 1 \\
\hline 0 & 1 & 0 & 1 \\
\hline 0 & 1 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 \\
\hline 1 & 0 & 1 & 0 \\
\hline 1 & 1 & 0 & 0 \\
\hline 1 & 1 & 1 & 0 \\
\hline
\end{tabular}
2. What is the minimum number of 3-input AND and 3-input OR gates you need to build this circuit assuming \(A, A^{\prime}, B, B^{\prime}, C, C^{\prime}\) are all available as inputs only to the AND gates? Fill in a single bubble -
a) Minimum number of 3-input AND gates:○ 1
\(\bigcirc 2\)
3 \(\square\) 45 \(\square\) 6 \(\square\) ○ 8 O I'm not sure (. 5 points)
b) Minimum number of 3-input OR gates:\(\bigcirc 2\)
\(\bigcirc 3\) ○ 4 \(\bigcirc 5\) \(\square\) 6 ○ 7 ○ 8I'm not sure (. 5 points)```

