
COS126 Written Exam 2 Spring ‘22

Instructions. This exam has eight (8) questions worth a total of one hundred (100) points. You have fifty

(50) minutes.

This exam is preprocessed by computer. Write neatly and legibly. If you use a pencil, write darkly. Write

all answers inside the designated rectangles and nothing else (e.g., no scratch work inside designated

rectangles). Fill in circles completely: ⚫ (not ✔ or ✘). If you change your mind, you must erase

completely and fill in another circle!

Resources. The exam is closed book, except that you are allowed to use a single two-sided reference

sheet (8.5-by-11 paper, two-sided, in your own handwriting). No electronic devices are permitted.

Discussing this exam. Discussing the contents of this exam before solutions have been posted is a

violation of the Honor Code.

This exam. Do not remove this exam paper from this room. Print your name, NetID, precept, and the

room in which you are taking the exam in the space below. Also, copy and sign the Honor Code pledge.

(1 point). You may enter this information now. Again, please write neatly and legibly.

NAME:

NETID (not email alias):

PRECEPT:

EXAM ROOM:
◯ McCosh 50 ◯ McDonnell A02 ◯ CS 104

◯ CS 301/302/401 ◯ OTHER ____________________

PLEDGE: “I pledge my honor that I will not violate the Honor Code during this examination.”

SIGNATURE:

1 of 10

Question 1 Objects 12 points

Fill in ALL the statement numbers where the described entities appear. An example is provided.

1 public class Ball {
2
3 private double rx, ry;
4
5 public Ball() {
6 rx = 0.5; ry = rx;
7 }
8
9 public void move() {
10 rx = rx + .001;
11 ry = ry + .002;
12 }
13
14 public void move(double x, double y) {
15 rx = rx + x;
16 ry = ry + y;
17 }

18 public Ball copy() {
19 Ball b = new Ball();
20 b.rx = rx;
21 b.ry = ry;
22 return b;
23 }
24
25 public static void main(String[] args) {
26 Ball b1 = new Ball();
27 Ball b2 = new Ball();
28 Ball b3 = b2;
29 Ball b4 = b3.copy();
30 b1.move();
31 b2.move(.1, .1);
32 b3.move();
33 b4.move();
34 }
35 }

Example: the + operator (appears in statements 10, 11, 15, 16):

1. Instance variable declaration

2. Directly invokes a constructor

3. Overloaded method signature

4. Constructor signature

5. Primitive type variable declaration

6. Reference type variable declaration

2 of 10

Question 2 Performance and Analysis of Algorithms 12 points

For each of the following algorithms from our programming assignments, estimate the average case
running time as a function of the input size N.

1. From N-Body: calculate and sum all the forces between pairs among N bodies, then calculate their
velocities, then update their positions, and then draw the bodies at single time step t.

1 logN N NlogN N2 N3 2N 3N N!

◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

2. From Conjunction Function: merge (concatenate) two audio clips, each represented as an array of length
N samples.

1 logN N NlogN N2 N3 2N 3N N!

◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

3. From Recursive Graphics: draw the Sierpinski triangle using N recursive levels, assuming that drawing a
single line segment takes constant time.

1 logN N NlogN N2 N3 2N 3N N!

◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

4. From Guitar Hero: insert or remove one item in a RingBuffer object, represented as an array
containing N items. (Recall that a RingBuffer stores the array indices of the first and last elements.)

1 logN N NlogN N2 N3 2N 3N N!

◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

5. From Markov Model: insert a single k-gram into an ST object containing N k-grams.

1 logN N NlogN N2 N3 2N 3N N!

◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

6. From TSP: insert N cities into a TSP tour using the nearest insertion heuristic.

1 logN N NlogN N2 N3 2N 3N N!

◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

3 of 10

This reference card may be useful for the following problem (Question 3).

TOY REFERENCE CARD

INSTRUCTION FORMATS

| | | ||
Format RR: | opcode | d | s | t | (0-6, A-B)
Format A: | opcode | d | addr | (7-9, C-F)

ARITHMETIC and LOGICAL operations
1: add R[d] <- R[s] + R[t]
2: subtract R[d] <- R[s] - R[t]
3: and R[d] <- R[s] & R[t]
4: xor R[d] <- R[s] ^ R[t]
5: shift left R[d] <- R[s] << R[t]
6: shift right R[d] <- R[s] >> R[t]

TRANSFER between registers and memory
7: load address R[d] <- addr
8: load R[d] <- M[addr]
9: store M[addr] <- R[d]
A: load indirect R[d] <- M[R[t]]
B: store indirect M[R[t]] <- R[d]

CONTROL
0: halt halt
C: branch zero if (R[d] == 0) PC <- addr
D: branch positive if (R[d] > 0) PC <- addr
E: jump register PC <- R[d]
F: jump and link R[d] <- PC; PC <- addr

Register 0 always reads 0.
Loads from M[FF] come from stdin.
Stores to M[FF] go to stdout.

16-bit registers (two's complement)
16-bit memory locations
8-bit program counter

4 of 10

Question 3 Number Representation and TOY 16 points

Number representation: Suppose that you have a 16-bit computer word, using two’s-complement
representation for integers. In the spaces to the right, write the 4-digit hexadecimal representation of
each entity described on the left.

4 hex digits, one per box

1. Decimal 50

2. Decimal –50

3. Decimal –0
(i.e., negative zero)

4. The maximum integer

TOY: Consider what happens when the following TOY program is executed - assume the program counter
is initially set to memory address 10:

01: 0003 constant 0x0003

02: 0002 constant 0x0002

03: 0001 constant 0x0001

10: 7103 R[1] <- 0003

11: 8210 R[2] <- M[10]

12: 1212 R[2] <- R[1] + R[2]

13: 9214 M[14] <- R[2]

14: 0000 halt

15: 0000 halt

16: 0000 halt

4 hex digits, one per box

5. What is the value of R[1] immediately after
the instruction at address 10 completes?

6. What is the value of R[2] immediately after
the instruction at address 11 completes?

7. What is the value of M[14] immediately after
the instruction at address 13 completes?

8. What is the value of R[1] when the
program halts?

5 of 10

Question 4 Data Structures 12 points

Recall from the Stacks lecture that in postfix notation a binary operator (like +, –, / or *) sits after a pair of
numbers on which it operates. For example, in postfix notation, the expression (3 * 2) / (3 – 1)
would be written as: 3 2 * 3 1 – / . You can use a stack to evaluate a postfix expression, by scanning
it from left to right:

1. When you see a number n, push it on the stack.
2. When you see an operator op:

a. Pop number n1 off the stack.
b. Pop number n2 off the stack.
c. Calculate (n2 op n1). For example, (3 * 2) = 6.
d. Push the calculated result (6) on the stack.

3. At the end, the final result remains on the “top” of the stack.

Use this approach to evaluate the postfix expressions (A-D). For each, show the contents of the stack
when it is most full, and when it contains the final evaluated result. The solution for the first expression,
A, is provided as an example (in gray). Hint: use scratch paper to work out your solution, and then write your
final answers in the boxes below.

A. 3 2 * 3 1 – /
B. 3 2 – 3 1 / *
C. 1 1 1 1 1 – + – +
D. 1 2 3 + 4 5 * * +

1

3

6 3

↑
Amost

↑
Afinal

↑
Bmost

↑
Bfinal

↑
Cmost

↑
Cfinal

↑
Dmost

↑
Dfinal

6 of 10

Question 5 REs and DFAs 15 points

1. Assume the alphabet is {a, b, d, e}. Next to each of the RE’s below, mark circles in the columns
corresponding to all strings matched by each RE.

REs add baba babe bad bed dabbed

b.* ◯ ◯ ◯ ◯ ◯ ◯

b.b. ◯ ◯ ◯ ◯ ◯ ◯

... ◯ ◯ ◯ ◯ ◯ ◯

.*ab.* ◯ ◯ ◯ ◯ ◯ ◯

.*(b|d)(b|d).* ◯ ◯ ◯ ◯ ◯ ◯

(a|b|d).*d ◯ ◯ ◯ ◯ ◯ ◯

2. For each of the following three DFAs, write the letter (A-I, in the square to its right) that
corresponds to the description that best specifies the set of strings that the DFA accepts.

Descriptions:

A. Any binary string.

B. Any binary string starting with 0.

C. Any binary string ending with 0.

D. Any binary string with even length.

E. Any binary string with odd length.

F. Any binary string with equal numbers
of 0’s and 1’s.

G. Any binary string with an even number
of 0’s and an even number of 1’s.

H. Any binary string that is a palindrome
(same forwards and backwards).

I. Any binary string representing a number
that modulo four is equal to zero.

7 of 10

Question 6 Turing Machines 12 points

In the square above each Turing Machine, write the letter corresponding to the most accurate description
of what it computes. Assume the tape starts with a valid 4-bit two’s complement binary number, and
the arrow shows the starting position of the tape head.

A. Recognize if the number is negative.
B. Recognize if the number is positive.
C. Recognize if the number is odd.
D. Recognize if the number is even.

E. Add 1 to the number.
F. Negate the number.
G. Set the number to 0.
H. Set the number to -1.

8 of 10

Question 7 Theory of Computing 10 points

For each statement, select one of:
● T for TRUE,
● F for FALSE,
● ? for nobody knows for sure, or
● X for I don’t know for sure.

If you choose X you will receive partial credit (0.4 point, as opposed to 1 point for correct).

T F ? X Statement

1. ◯ ◯ ◯ ◯ P ≠ NP

2. ◯ ◯ ◯ ◯
FACTOR is not in P. Therefore, the RSA encryption system is
secure.

3. ◯ ◯ ◯ ◯
FACTOR is something that a Turing Machine could solve,
given sufficient time.

4. ◯ ◯ ◯ ◯
If P equals NP, then finding an optimal traveling salesperson
(TSP) tour can be performed in polynomial time by a TOY
Machine with sufficient memory.

5. ◯ ◯ ◯ ◯
An optimal TSP tour can be computed in polynomial time
for any input of size N.

6. ◯ ◯ ◯ ◯

Because the Halting Problem is unsolvable, even a clever
instructor cannot write an auto-grader that determines in
all cases whether a student solution for an assignment has
an infinite loop.

7. ◯ ◯ ◯ ◯
A 2022 iPhone 13 can solve some problems in NP that
could not be solved by a Universal Turing Machine.

8. ◯ ◯ ◯ ◯
An algorithm that yields solutions to arbitrary 3-SAT inputs
must be intractable.

9. ◯ ◯ ◯ ◯
There exists a Turing Machine that can simulate another
specific Turing Machine running on a specific input.

10. ◯ ◯ ◯ ◯
All problems in NP reduce efficiently (i.e., in poly-time) to
NP-Complete problems.

9 of 10

Question 8 Combinational Circuits 10 points

1. Suppose you are designing three combinational

circuits with outputs (a, b, c), sharing the same

three inputs (x, y, z), as specified by the truth table

on the right. The boolean functions determining

the values of (a, b, c) can be expressed as

sums-of-products. Select all the terms that are

part of the sum-of-products formula for each

output below (a, b, c), or NONE if there are none.

Inputs Outputs
x y z a b c

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 0 1

0 1 1 0 1 0

1 0 0 0 0 1

1 0 1 0 1 0

1 1 0 0 1 0

1 1 1 0 1 1

Output NONE x'y'z' x'y'z x'yz' x'yz xy'z' xy'z xyz' xyz

a ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

b ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

c ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

2. The three circuits (a, b, c) are connected to a 3-8 decoder, where bit a is the most significant bit:

Of the decoder output lines d0, d1, d2, ..., d7, mark the ones that could possibly output a 1:

d0 d1 d2 d3 d4 d5 d6 d7

◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

3. The circuit drawn above takes inputs x, y, z and outputs d0, d1, d2, ..., d7. Which single word best

describes the function of that circuit?

decrement count shift negate majority parity difference

◯ ◯ ◯ ◯ ◯ ◯ ◯

10 of 10

