COS 126 Princeton University Fall 2022

Programming Exam 2

Before the exam. Read this page of instructions before the exam begins. Do not start the exam
(or read the next page) until instructed to do so.

Duration. Once the exam begins, you have 80 minutes to complete it.

Submission. Submit your solutions on TigerFile using the link from the Ezams page. You may
submit multiple times (but only the last version will be graded).

Check Submitted Files. You may click the Check Submitted Files button to receive partial
feedback on your submission. We will attempt to provide this feature during the exam (but you
should not rely upon it).

Grading. Your program will be graded primarily on correctness. Efficiency and clarity will also
be considered. You will receive partial credit for a program that implements some of the required
functionality. You will receive a substantial penalty for a program that does not compile.

Allowed resources. During the exam you may use only the following resources: course text-
book, companion booksite, course website, course Ed, your course notes, and your code from the
programming assignments. For example, you may not use StackOverflow or Google.

No collaboration or communication. Collaboration and communication during this exam are
prohibited, except with course staff. A staff member will be outside the exam room to answer
clarification question.

No electronic devices or software. Software and computational/communication devices are
prohibited, except to the extent needed for taking this exam (such as a laptop, browser, and IntelliJ).
For example, you must close all unnecessary applications and browser tabs; disable notifications;
and turn off your cell phone.

Honor Code pledge. Write and sign the Honor Code pledge by typing the text below in the file
acknowledgments.txt.

I pledge my honor that I will not violate the Honor Code during this examination.
Electronically sign it by typing /s/ followed by your name.

After the exam. Discussing or communicating the contents of this exam before solutions have
been posted is a violation of the Honor Code.



Deliverables. You will submit two Java programs along with an acknowledgments.txt file:

1. A data type BinaryPoly. java for creating and manipulating binary polynomials.

2. A client program BinaryPolyClient. java that uses the BinaryPoly data type.

Parts 1 and 2 will be assessed independently; you may do Part 2 without completing Part 1.

Binary polynomials. A binary polynomial is a polynomial in which each coefficient is either 0

or 1, such as p(z) = 12* 4+ 123 + 022+ 02! + 12°. When writing a polynomial, it’s customary to omit

terms whose coefficients are 0, leave off the 1 coefficients (since they are implicit), and substitute
0

' =1:

exponent non-zero
(non-negative integer) — t€rm degree = 4

(. J
px) = x* ++1 gx) = x* + x + 1

The rules for manipulating binary polynomials are identical to those for manipulating integer
polynomials except that all arithmetic is done modulo 2 (so that all coefficients remain 0 or 1).

e To add two binary polynomials, group the terms with the same exponent together into a
single sum, remembering that 1 + 1 = 0 and there are no “carries.” For example, r(z) =
p(z) + q(z) = 23 + 2.

X+ X3 + 1

+ o ox* + x + 1

x> + x

e The degree of a polynomial is the largest exponent of a non-zero term. For example, the
degree of g(z) is 4 and the degree of r(x) is 3.

By convention, the degree of the zero polynomial z(x) = 0 is —1.

Context. Binary polynomials have many applications in computer science, including circuits,
cryptograph, and error-correcting codes.



Part 1 (19 points).

Using the template file BinaryPoly. java provided in the project folder as

a starting point, write a data type that implements the following API:

public class BinaryPoly

public BinaryPoly(int[] coefficients) creates a polynomial from the coefficients
public String toString() returns the string representation

public int degree() returns the degree

public int coefAt(int i) returns the coefficient (0 or 1) of
public BinaryPoly plus(BinaryPoly that) creates and returns a new polynomial

that is the sum of the two polynomials

Here is some more information about the required behavior:

o Constructor. The coefficients[] argument provides the coefficients of the terms for the
polynomial, with coefficients[i] corresponding to the coefficient of z*. For example, if the
array is [1, 0, 0, 1, 1], then the constructor should create the polynomial

1z + 122 + 022 + 02! + 12°.

If the length of the array is 0, this corresponds to the zero polynomial; otherwise, you may
assume that the last element in the array is 1.

String representation. The toString() method should return a string that represents the
polynomial, such as "x"4 + x"3 + 1". Specifically, the string should include each non-zero
term in the polynomial, in descending order by exponent, with adjacent terms separated by
the string " + ". If the coefficient of z* is 1, the term should appear as

— "x~i" for i > 2

— "x"fori=1

— """ fori=20
If all coefficients are 0 (i.e., the zero polynomial), the toString () method should return "0".
Valid arguments. Don’t worry about invalid arguments. You may assume the following;:

— No argument is null.
— In the constructor, each element of coefficients[] is either 0 or 1.

— In coefAt (), the argument i is between 0 and the degree (inclusive).

However, you should not assume that the two polynomials to be added have equal degree.



e Efficiency. You should strive for the following performance characteristics as a function of d,
where d is the degree of the polynomial(s):

— The degree() and coefAt () methods should take constant time
— The plus() and toString() methods should take linear time

Note that only a small number of points will be awarded for efficiency.

e Unit testing (optional). You may include a main() method for testing, such as this one:

public static void main(String[] args) {

// p(x) = x"4 +x"3 + 1

int[] coefficientsl = { 1, 0, 0, 1, 1 };

BinaryPoly p = new BinaryPoly(coefficientsl);
StdOut.println(p); // prints x74 + x"3 + 1

// q(x) =x74 +x + 1

int[] coefficients2 = { 1, 1, 0, 0, 1 };

BinaryPoly q = new BinaryPoly(coefficients2);
StdOut.println(q); // prints x"4 + x + 1

// z(x) =0

int[] coefficients3 = { };

BinaryPoly z = new BinaryPoly(coefficients3);
StdOut.println(z); // prints O

// call instance methods

StdOut.println(p.degree()); // prints 4
StdOut.println(zero.degree()); // prints -1
StdOut.println(p.coefAt(0)); // prints 1
StdOut.println(p.coefAt(1)); // prints O
BinaryPoly r = p.plus(q);

StdOut.println(r); // prints x"3 + x




Part 2 (6 points). Write a client program BinaryPolyClient.java that takes a filename as a
command-line argument; adds the binary polynomials described in the file; and prints the sum to
standard output.

Use the BinaryPoly data type to do the arithmetic (even if you did not implement it correctly).

Input format. The input file contains a positive integer d (the degree of each polynomial),
followed by the polynomials to add together, one per line. Each such line contains the d + 1
coefficients (0 or 1) of the polynomial, separated by whitespace, in descending order by exponent.

You may assume that the input is in the prescribed format and that it contains at least one
polynomial.

Example. Here is a sample execution:

~/Desktop/poly> more poly3.txt

3 «—— degree of binary polynomials
1111 <«—— coefficients, in descending order by exponent
000 «—
101 «— XP+x2+1
001
111
010

~/Desktop/poly> javac-introcs BinaryPolyClient.java

~/Desktop/poly> java-introcs BinaryPolyClient poly3.txt

XA2 + X <«—— sumof binary polynomials in poly3.txt I

filename




