Instructions. This exam has seven (7) questions worth a total of seventy (70) points. You have fifty (50) minutes. Write all answers inside the designated spaces. Write neatly and legibly.

This exam is preprocessed by computer. If you use pencil (and eraser), write darkly. Write all answers inside the designated rectangles. When asked to fill in circles, do so completely with a dark pencil: (not \boldsymbol{V} or \boldsymbol{x}) If you change your mind, you must erase completely and fill in another circle!

Resources. The exam is closed book, except that you are allowed to use a one-page reference sheet (8.5-by-11 paper, one side, in your own handwriting). No electronic devices are permitted.

Discussing this exam. Discussing the contents of this exam before solutions have been posted is a violation of the Honor Code.

This exam. Do not remove this exam paper from this room. Write your name, NetID, precept, and the room in which you are taking the exam in the space below. Also, write and sign the Honor Code pledge. You may enter this information now.

NAME:

NETID (not email alias):

PRECEPT:

EXAM ROOM:
"I pledge my honor that I will not violate the Honor Code during this examination."
\qquad
\qquad
\qquad

Give the value of each of the following Java expressions. To express your answer, write a Java literal of the appropriate type, such as 0 (for an int), 3.14 (for a double), false (for boolean), "tiger" (for a String), 'a' (for a char). In other words, a double value must include a decimal point (and not scientific notation), a String value must include quotes, a char value must include single quotes, and a boolean value must be lowercase. If an expression results in a compile-time or run-time error, write ERROR (only the word ERROR in all CAPS) for its value.

$$
\text { int } x=20 ; \quad \text { int } y=2 ; \quad \text { double } z=1.0 ;
$$

	Java Expression	Value
a.	y / x	0
b.	$x^{*} \mathrm{y} * \mathrm{z}$	40.0
c.	Double.parseDouble("" + z)	1.0
d.	(double) (y / x)	0.0
e.	(double) y / x	. 1
f.	$(x>=y) \& \&!(x<y)$	true
g.	$x / y^{*} z$	10.0
h.	(char) ((int) 'a')	'a'
i.	(int)"3.14159"	ERROR
j.	x * z / y	10.0

In each box below, enter the single capital letter corresponding to the best-matching description of that part of the program. You may use each letter once, more than once, or not all.

public static double[][] random(int m, int n) \{ double[][] a = new double[m][n];
 for (int $i=0 ; i<m ; i++$)
for (int $j=0 ; j<n ; j++$)

$a[i][j]=$ StdRandom. uniform(0.0, 1.0); return a;
\}

A - Transfers control to caller

D - Calls a function

G - Creates an array
J - An array index
K - Evaluates to an
L - A return type int value

H-Indicates a library name

F - Argument declaration
E-Defines an API

I - A primitive type

Consider this incomplete program - see statement 5 below:

```
public class Q3 {
    public static void main(String[] args) {
        for (int i = 0; i < 3; i++) {
            for (int j = 0; j < 3; j++) {
                    if (___)
                    System.out.print("X");
                else
                    System.out.print("0");
            }
                System.out.println("");
        }
        }
}
```

G	$(i+j)>4$
E	i ! = j
C	i \% $2=0$
A	$\mathrm{i}==0\| \| \mathrm{j}==0$
F	$(i+j) \% 2=0$

A	$\begin{aligned} & \mathbf{X X X} \\ & \mathbf{X 0 0} \\ & \mathbf{X 0 0} \end{aligned}$		$\begin{aligned} & \text { 00X } \\ & \text { 00X } \\ & \mathbf{X X X} \end{aligned}$
C	XXX	D	XXX
	000		XXX
	XXX		XXX
E	OXX	F	XOX
	XOX		OXO
	XX0		XOX
G	000		
	000		
	000		

For each of the following situations, which require storing all the data (using an array) and which can be computed without using an array? Assume all input is read from standard input using StdIn. Fill in the corresponding circle.

Requires an array
Does not require an array
a. Read the titles and duration (in
seconds) of N songs and print the average duration of all songs.
b. Read the titles and duration (in seconds) of N songs and print the name of each song whose duration is greater than a given threshold.
c. Read the titles and duration (in seconds) of N songs and determine if they are in ascending order by duration.
d. Read the titles and duration (in seconds) of N songs and create a playlist of the N songs in reverse order

 of how the songs appear in the input.
e. Read the title and duration (in seconds) of N songs and generate a randomly ordered playlist of N songs such that each song is played exactly once.

Consider the following Java code fragment:

```
double[] a = ... // see below
int N = a.length;
int low = -1;
int high = -1;
// Double.POSITIVE_INFINITY is greater than any other double
double delta = Double.POSITIVE_INFINITY;
for (int i = 0; i < N; i++)
    for (int j = i + 1; j < N; j++) {
        double value = Math.abs(a[i] - a[j]);
        if (value < delta) {
            delta = value;
            low = i;
            high = j;
        }
    }
```

For each initialization of double[] a (below), what are the values of low and high after the code completes:

	initialization	low	high
a.	double[] a $=\{ \} ;$	-1	-1
b.	double[] a = \{1.0\};	-1	-1
c.	double[] a $=\{2.0,1.0\} ;$	0	1
d.	double[] a $=\{8.0,1.0,3.0,2.0,10.0\} ;$	1	3

e. Fill in the circle corresponding to the single statement that is true for the code snippet above:

This code produces predictable results for arrays only containing positive doubles.

This code computes the indices of the first pair of array elements that have the smallest distance between the array elements.

This code computes the indices of the last pair of array elements that have the smallest distance between the array elements.

This code computes the indices of the first pair of array elements that have the greatest distance between the array elements.

Consider the following code.

```
1 public class Q6 {
2 public static void main(String[] args) {
3 int n = StdIn.readInt();
4 int[] a = new int[n];
5 for (int i = 0; i < n; i++)
6 a[n - 1 - i] = StdIn.readInt();
7
8 StdOut.print(n);
9 for (int i = 0; i < n; i++)
10 StdOut.print(" " + a[i]);
1 1 ~ S t d O u t . p r i n t l n ( ) ;
12 }
13 }
```

Suppose that the file data1 contains

$$
\begin{array}{llllllllll}
9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

and the file data2 contains

$$
\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}
$$

For each command, give the output that is printed on the terminal. Do not indicate whitespace in the output. If the command leads to no output printed on the terminal, write NOTHING (in all CAPS).

java-introcs Q6 < data2	12
java-introcs Q6 I java-introcs Q6	NOTHING
java-introcs Q6 < data1 I java-introcs Q6	9123456789
java-introcs Q6 data1	NOTHING
java-introcs Q6 < data2 > data3	NOTHING

What does this program print? Put your answers in the boxes below on the right.

```
public class Han {
    public static String[] f(String[] a) {
        String[] b = new String[a.length];
        for (int i = 0; i < a.length; i++)
        b[i] = a[i];
        a[0] = "Kitty";
        return b;
    }
    public static int g(int a) {
        a = 1000;
        return a / 2;
    }
    public static double h(double c, double d) {
        c = 2 * c;
        d = 2 * d;
        System.out.println(c + d);
        return ((c - d) * (c - d));
    }
    public static void main(String[] args) {
        int a = 1;
        String[] s = {
        "Gen", "Lara Jean", "Chris",
        "Peter", "Trevor"
        };
        int b = g(a);
        String[] t = f(s);
        double c = 2.0, d = 4.0;
        double e = h(c, d);
        System.out.println(a);
        System.out.println(b);
        System.out.println(s[0]);
        System.out.println(t[0]);
    }
}
```

