
Princeton University
COS 217: Introduction to Programming Systems

Spring 2019 Midterm Exam Preparation

Topics

You are responsible for all material covered in lectures, precepts, assignments, and required readings. This
is a non-exhaustive list of topics that were covered. Topics that are crossed out will not appear on the
midterm exam but may appear on the final exam.

1. Number systems
 Binary, octal, and hexadecimal
 Finite unsigned integers, operations, and overflow
 Finite two’s complement signed integers, operations, and overflow
 Floating-point numbers

2. C programming
 From source to executable: preprocess, compile, assemble, link
 Program structure: multi-file programs with header files
 Process memory layout: text, stack, heap, rodata, data, bss sections
 Primitive data types
 Variable declarations and definitions
 Variable scope, linkage, and duration/extent
 Constants: #define, constant variables, enumerations
 Operators
 Statements
 Function declarations and definitions
 Pointers and arrays

 Call-by-reference, arrays as parameters, strings
 Command-line arguments

 Input/output facilities: getchar(), fgetc(), putchar(), fputc(), gets(),
fgets(), puts(), fputs(), scanf(), fscanf(), printf(), fprintf()

 Structures
 Dynamic memory management

 malloc(), calloc(), realloc(), free()
 Common errors: dereference of dangling pointer, memory leak, double free

 Abstract data types; opaque pointer types
 Generic data structures and functions

 Void pointers
 Function pointers and function callbacks

 Parameterized macros and their dangers (see King Section 14.3)
3. Programming in the large

 Modules and interfaces
 Abstract data types and ADT design in C
 Heuristics for effective modules: encapsulates data, manages resources, is

consistent, has a minimal interface, detects and handles/reports errors,
establishes contracts, has strong cohesion, has weak coupling

 Program and programming style
 Bottom-up design, top-down design, least-risk design

Page 1 of 2

 Building
 Motivation for make, make fundamentals, non-file targets, macros

 Testing
 External testing
 Internal testing and assertions: validating parameters and return values,

checking invariants, checking array subscripts, checking function values
 Unit testing with scaffolds and stubs
 Test coverage: statement, path, boundary

 Debugging
 General heuristics for debugging: understand error messages, think before

writing, look for familiar bugs, divide and conquer, add more internal tests,
display output, use a debugger, focus on recent changes

 Heuristics for debugging dynamic memory management: look for common
DMM bugs, diagnose seg faults using gdb, manually inspect malloc(), calls,
comment-out free() calls, use Meminfo, use Valgrind

 Performance improvement
4. Tools and the GNU/Linux programming environment

 Linux, bash, emacs, gcc, gdb, make, gprof
5. Common algorithms and data structures

 Finite-state automata
 Linked lists
 Hash tables: hashing algorithms, key ownership and defensive copies

6. Applications
 De-commenting
 String manipulation
 Symbol tables
 Dynamically expanding arrays

Readings

As specified by the course Schedule web page...

Required:
 C Programming (King): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20.1, 22, 24.1
 Computer Systems (Bryant & O'Hallaron): 1
 ARM 64-bit Assembly Language (Pyeatt with Ughetta) 1

Recommended:
 Computer Systems (Bryant & O'Hallaron): 2, 5.1-5
 The Practice of Programming (Kernighan & Pike): 1, 2, 4, 5, 6, 7, 8
 Unix Tutorial for Beginners (website)
 GNU Emacs Tutorial (website)
 Linux Pocket Guide (Barrett) pp. 166-179
 Deterministic Finite Automaton Wikipedia article (website)
 GNU GDB Tutorial (website)
 GNU Make Tutorial (website)
 GNU Gprof Tutorial (website)

Copyright © 2019 by Robert M. Dondero, Jr. and Szymon Rusinkiewicz

Page 2 of 2

	Princeton University
	COS 217: Introduction to Programming Systems
	Spring 2019 Midterm Exam Preparation
	Topics
	Readings

