Princeton University

COS 217: Introduction to Programming Systems

Topics

Spring 2019 Midterm Exam Preparation

You are responsible for all material covered in lectures, precepts, assignments, and required readings. This
is a non-exhaustive list of topics that were covered. Topics that are crossed out will not appear on the
midterm exam but may appear on the final exam.

1. Number systems

Binary, octal, and hexadecimal

Finite unsigned integers, operations, and overflow

Finite two’s complement signed integers, operations, and overflow
Floating-point numbers

2. C programming

From source to executable: preprocess, compile, assemble, link
Program structure: multi-file programs with header files
Process memory layout: text, stack, heap, rodata, data;bss sections
Primitive data types
Variable declarations and definitions
Variable scope, hinkage-and-duration/extent
Constants: #define, constant variables, enumerations
Operators
Statements
Function declarations and definitions
Pointers and arrays
¢ (Call-by-reference, arrays as parameters, strings
¢ Command-line arguments
Input/output facilities: getchar (), fgetc(), putchar(), fputc(), gets(),
fgets (), puts(), fputs(), scanf(), fscanf(), printf(), fprintf()
Structures
Dynamic memory management
® malloc(), calloc(), realloc(), free()
e Common errors: dereference of dangling pointer, memory leak, double free
Abstract data types; opaque pointer types
Generic data structures and functions
* Void pointers
¢ Function pointers and function callbacks
Parameterized macros and their dangers (see King Section 14.3)

3. Programming in the large

Modules and interfaces
e Abstract data types and ADT design in C
¢ Heuristics for effective modules: encapsulates data, manages resources, is
consistent, has a minimal interface, detects and handles/reports errors,
establishes contracts, has strong cohesion, has weak coupling
Program and programming style
¢ Bottom-up design, top-down design, least-risk design

Page 1 of 2

¢ Building
® Motivation for make, make fundamentals, non-file targets, macros
e Testing
¢ External testing
¢ Internal testing and assertions: validating parameters and return values,
checking invariants, checking array subscripts, checking function values
¢ Unit testing with scaffolds and stubs
¢ Test coverage: statement, path, boundary
* Debugging
¢ General heuristics for debugging: understand error messages, think before
writing, look for familiar bugs, divide and conquer, add more internal tests,
display output, use a debugger, focus on recent changes
¢ Heuristics for debugging dynamic memory management: look for common
DMM bugs, diagnose seg faults using gdb, manually inspect malloc (), calls,
comment-out free () calls, use Meminfo, use Valgrind
+—Performanee-improvement
4. Tools and the GNU/Linux programming environment
° Linux, bash, emacs, gcc, gdb, make, gpret
5. Common algorithms and data structures
* Finite-state automata
e Linked lists
e Hash tables: hashing algorithms, key ownership and defensive copies
6. Applications
* De-commenting
e String manipulation
e Symbol tables
* Dynamically expanding arrays

Readings
As specified by the course Schedule web page...

Required:
e (C Programming (King): 1,2,3,4,5,6,7,8,9,40, 11, 12, 13, 14, 15, 16, 17, 18,
19,20.1, 22, 24.1
* Computer Systems (Bryant & O'Hallaron): 1
* ARM 64-bit Assembly Language (Pyeatt with Ughetta) 1

Recommended:
e Computer Systems (Bryant & O'Hallaron): 2, 545
® The Practice of Programming (Kernighan & Pike): 1,2,4,5,6,%,8
o Unix Tutorial for Beginners (website)
® GNU Emacs Tutorial (website)
® Linux Pocket Guide (Barrett) pp. 166-179
® Deterministic Finite Automaton Wikipedia article (website)
® GNU GDB Tutorial (website)
® GNU Make Tutorial (website)

* GNU-Gprof-hutorial-twebstte)

Copyright © 2019 by Robert M. Dondero, Jr. and Szymon Rusinkiewicz

Page 2 of 2

	Princeton University
	COS 217: Introduction to Programming Systems
	Spring 2019 Midterm Exam Preparation
	Topics
	Readings

