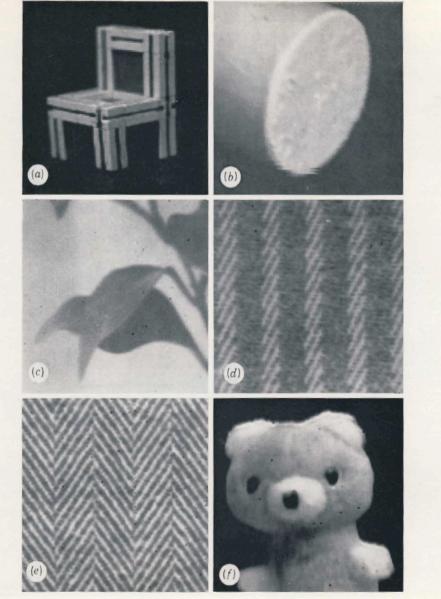
Datasets for object recognition and scene understanding

Slides adapted with gratitude from http://www.cs.washington.edu/education/courses/cse590v/11au/ (Neeraj Kumar and Brian Russell)

1972

Slide credit: A. Torralb



Taken with a considerably modified Information International Incorporated Vidissector, and the rest were taken with a considerably modified Information International Incorporated Vidissector, and the rest were taken with a Telemation TMC-2100 vidicon camera attached to a Spatial Data Systems digitizer (Camera Eye 108). The full dynamic range from black to white is represented by 256 grey-levels. The images reproduced here were created by an Optronics P150ohPhotowriter from intensity arrays that measured 128 elements square. This size of intensity array corresponds to viewing a 1 in square at 5 ft with the human retina. The image of the period at the end of this sentence probably covers more than 40 retinal receptors. The reader should view the images from a distance of about 5 ft when assessing the performance of the programs.

Marr, 1976

Slide credit: A. Torralba

Caltech 101 and 256

101 object classes

256 object classes

Fei-Fei, Fergus, Perona, 2004

9,146 images

Griffin, Holub, Perona, 2007

30,607 images

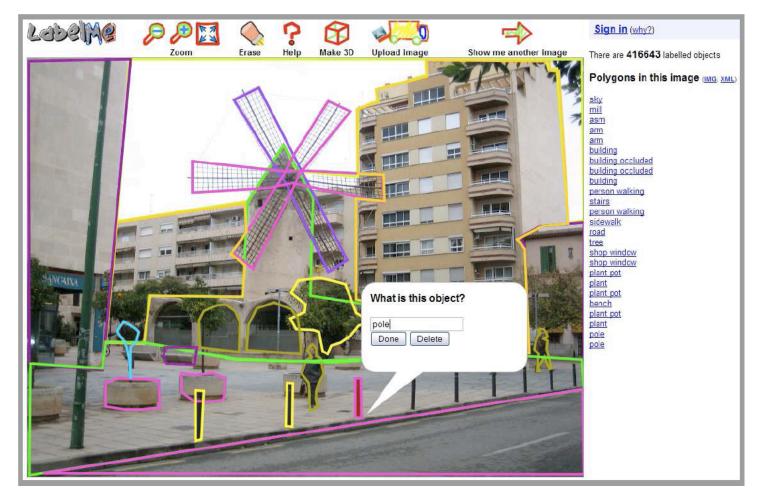
Slide credit: A. Torralba

MSRC

591 images, 23 object classes Pixel-wise segmentation

J. Winn, A. Criminisi, and T. Minka, 2005

LabelMe



Tool went online July 1st, 2005 825,597 object annotations collected 199,250 images available for labeling

labelme.csail.mit.edu

B.C. Russell, A. Torralba, K.P. Murphy, W.T. Freeman, IJCV 2008

Downloads^{New!} Labeling tool Help About

Matlab Toolbox Upload Images Stats

Your query (street) matches 13238 images

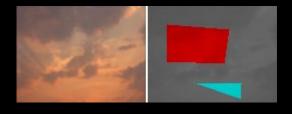
Quality of the labeling

Extreme labeling

The other extreme of extreme labeling

... things do not always look good...

Testing



Most common labels: test adksdsa woiieiie

. . .

Sophisticated testing

Most common labels: Star Square Nothing

. . .

Visual Object Classes Challenge 2011 (VOC2011)

[click on an image to see the annotation]

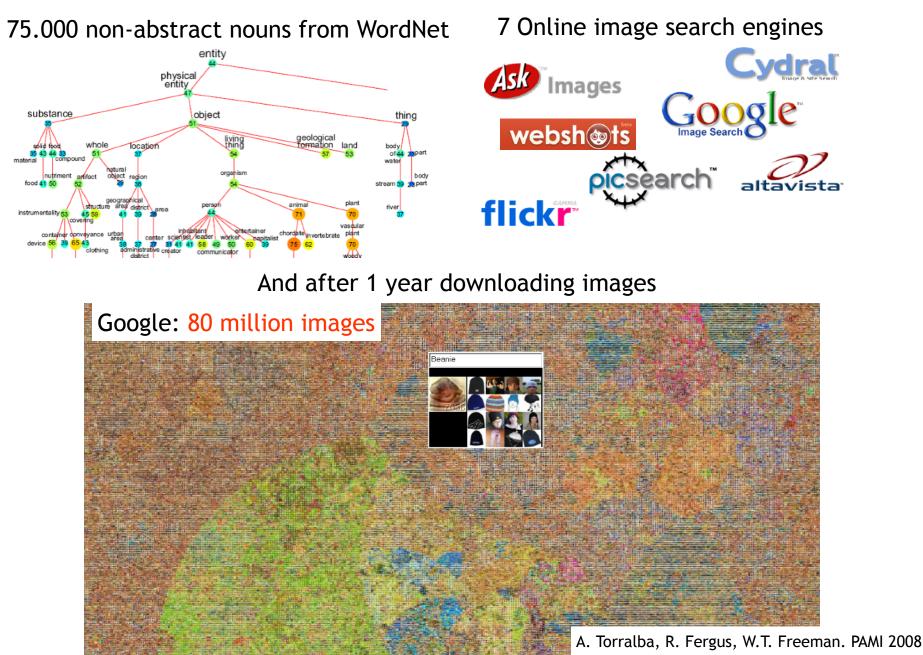
2011 version - 20 object classes: *Person:* person *Animal:* bird, cat, cow, dog, horse, sheep *Vehicle:* aeroplane, bicycle, boat, bus, car, motorbike, train *Indoor:* bottle, chair, dining table, potted plant, sofa, tv/monitor

The train/val data has 11,530 images containing 27,450 ROI annotated objects and 5,034 segmentations

- Three main competitions: classification, detection, and segmentation
- Three "taster" competitions: person layout, action classification, and ImageNet large scale recognition

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman

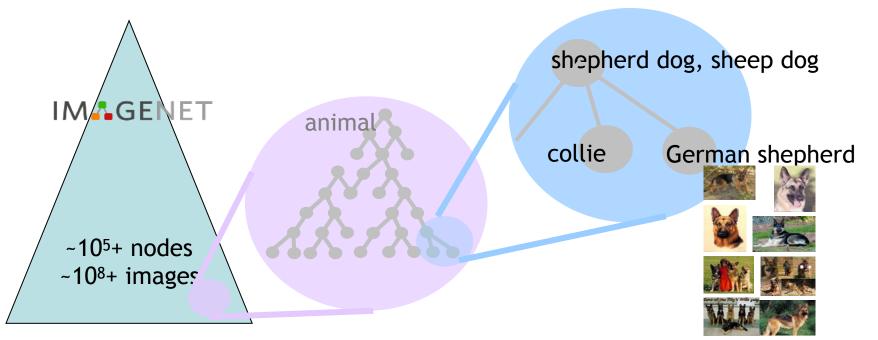
80.000.000 tiny images Slide credit: A. Torralb



Slide credit: A. Torralb

IM GENET

- An ontology of images based on WordNet
 - 22,000+ categories of visual concepts
 - 15 million human-cleaned images
 - www.image-net.org



Deng, Dong, Socher, Li & Fei-Fei, CVPR 2009

- Collected all the terms from WordNet that described scenes, places, and environments
 - Any concrete noun which could reasonably complete the phrase "I am in a place", or "let's go to the place"
- 899 scene categories
- 130,519 images
- 397 scene categories with at least 100 images
- 63,726 labeled objects

J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba, CVP

All the following slides are from A. Torralba and A. Efro

Unbiased Look at Dataset Bias

Alyosha Efros (CMU) Antonio Torralba (MIT)

and the second production of the second

Are datasets measuring the right thing?

- In Machine Learning: Dataset is The World
- In Recognition
 Dataset is a <u>representation</u> of The World
- Do datasets provide a <u>good</u> representation?

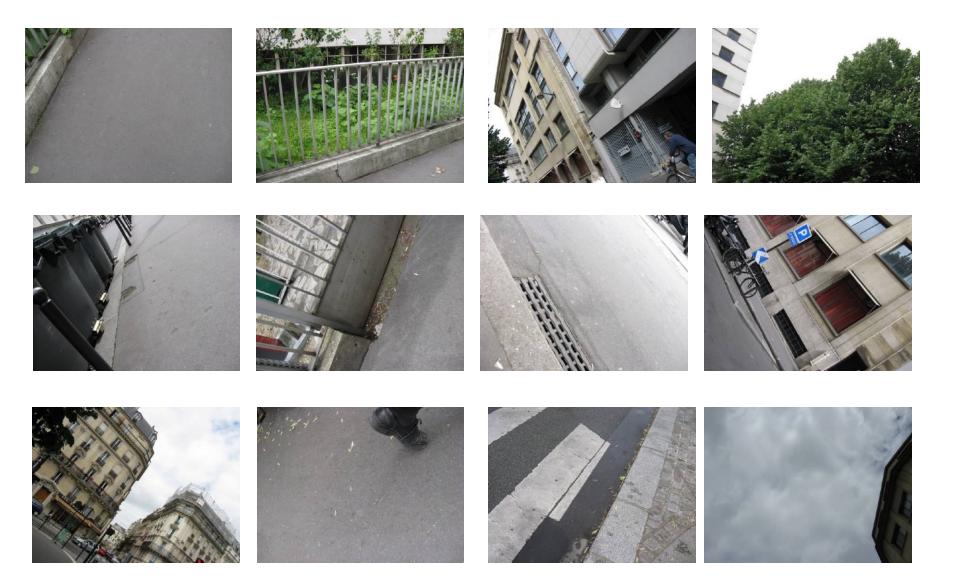
Visual Data is Inherently Biased

- Internet is a tremendous repository of visual data (Flickr, YouTube, Picassa, etc)
- But it's <u>not</u> random samples of visual world

Flickr Paris



Sampled Alyosha Efros's Paris



Sampling Bias

People like to take pictures on vacation

Photographer Bias

 People want their pictures to be recognizable and/or interesting

VS.

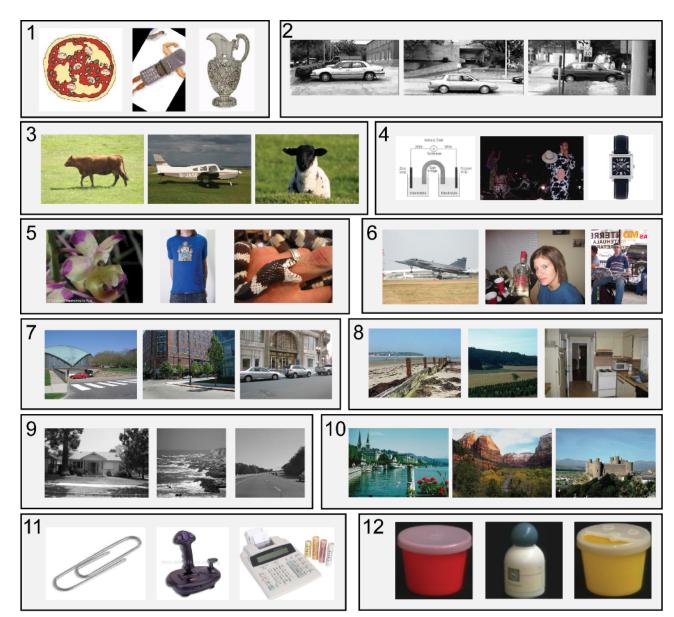
Social Bias

"100 Special Moments" by Jason Salavon

Our Question

 How much does this bias affect standard datasets used for object recognition?

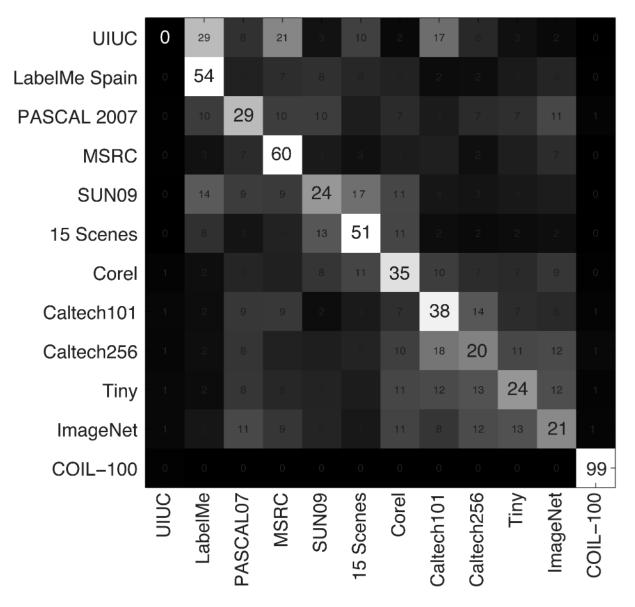
"Name That Dataset!" game



- Caltech 101
- Caltech 256 MSRC
- _ UIUC cars
- _ Tiny Images Corel
- **PASCAL 2007**
- _ LabelMe
- _ COIL-100
- _ ImageNet
- _ 15 Scenes
- _ SUN'09

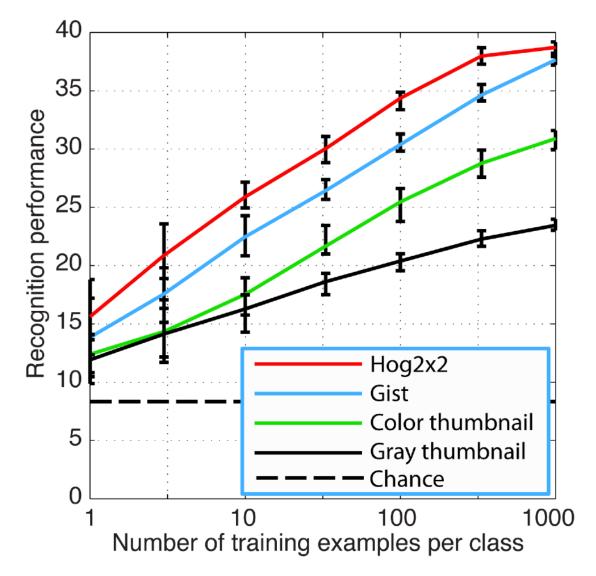
SVM plays "Name that dataset!"

SVM plays "Name that dataset!"



- 12 1-vs-all classifiers
- Standard full-image features
- 39% performance (chance is 8%)

SVM plays "Name that dataset!"



Datasets have different goals...

- Some are object-centric (e.g. Caltech, ImageNet)
- Otherwise are scene-centric (e.g. LabelMe, SUN'09)

 What about playing "name that dataset" on bounding boxes?

Similar results

PASCAL cars

SUN cars

Caltech101 cars

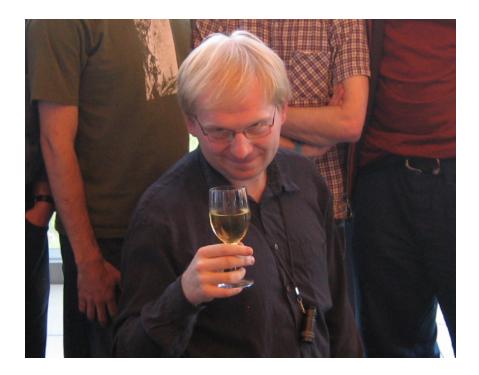
Performance: 61% (chance: 20%)

ImageNet cars

LabelMe cars

Where does this bias comes from?

Some bias is in the world



Some bias is in the world

Some bias comes from the way the data is collected

mug

About 10,100,000 results (0.09 seconds)

Search

Advanced search

59¢ Logo Coffee Mugs

www.DiscountMugs.com Lead Free & Dishwasher Safe. Save 40-50%. No Catch. Factory Direct !

Custom Mugs On Sale

www.Vistaprint.com Order Now & Save 50% On Custom Mugs No Minimums. Upload Photos & Logos.

Promotional Mugs from 69¢

www.4imprint.com/Mugs Huge Selection of Style Colors- Buy 72 Mugs @ \$1.35 ea-24hr Service

SafeSearch moderate V

Related searches: white mug coffee mug mug root beer mug shot

Representational 500 × 429 - 91k - jpg eagereyes.org Find similar images

Ceramic Happy Face 300 × 300 - 77k - jpg larose.com Find similar images

Here I go then, trying 600 × 600 - 35k - jpg beeper.wordpress.com Find similar images

The Chalk Mug » 304 × 314 - 17k - jpg coolest-gadgets.com Find similar images

Sponsored

mug 300 × 279 - 54k - jpg revnosawatch.org Find similar images

Bring your own 500 × 451 - 15k - jpg cookstownunited.ca Find similar images

ceramic mug 980 × 1024 - 30k - jpg divtrade.com

Dual Purpose Drinking 490 × 428 - 16k - ipa freshome.com Find similar images

300 × 300 - 22k - jpg aizmodo.com Find similar images

personalized coffee 400 × 343 - 15k - jpg walyou.com Find similar images

Back to Ceramic 400 × 400 - 11k - jpg freshpromotions.com.au Find similar images

We like our mugs 290 × 290 - 6k - jpg kitchencontraptions.com Find similar images

Coffee Mug as a 400 × 400 - 8k - jpg 303 × 301 - 10k - jpg freshpromotions.com.au dustbowl.wordpress.com Find similar images Find similar images

SASS Life Member 300 × 302 - 6k - jpg sassnet.com

mug

About 10,100,000 results (0.09 seconds)

59¢ Logo Coffee Mugs www.DiscountMugs.com Lead Free & Dishwasher Safe. Save 40-50%. No Catch. Factory Direct !

Custom Mugs On Sale Logos.

www.Vistaprint.com Order Now & Save 50% On Custom Mugs No Minimums. Upload Photos &

Related searches: white mug coffee mug mug root beer mug shot

Ceramic Happy Face

300 × 300 - 77k - jpg

Find similar images

ceramic mug 980 × 1024 - 30k - jpg

diytrade.com

Coffee Mug as a

303 × 301 - 10k - jpg

Find similar images

dustbowl.wordpress.com

larose.com

Representational 500 × 429 - 91k - jpg eagereyes.org Find similar images

(

Bring your own

500 × 451 - 15k - jpg

cookstownunited.ca

Find similar images

Back to Ceramic

400 × 400 - 8k - jpg

Find similar images

freshpromotions.com.au

Find similar images

Here I go then, trying 600 × 600 - 35k - jpg beeper.wordpress.com

Search

Advanced search

SafeSearch moderate V

Find similar images

Dual Purpose Drinking 490 × 428 - 16k - jpg freshome.com Find similar images

SASS Life Member 300 × 302 - 6k - jpg sassnet.com



Measuring Dataset Bias

Cross-Dataset Generalization

Classifier trained on MSRC cars

Cross-dataset Performance

Table 1. Cross-dataset generalization. Object detection and classification performance (AP) for "car" and "person" when training on or dataset (rows) and testing on another (columns), i.e. each row is: training on one dataset and testing on all the others. "Self" refers t training and testing on the same dataset (same as diagonal), and "Mean Others" refers to averaging performance on all except self.

task	Test on:	SUN09	LabelMe	PASCAL	ImageNet	Caltech101	MSRC	Self	Mean	Percent
	Train on:								others	drop
"car" classification	SUN09	28.2	29.5	16.3	14.6	16.9	21.9	28.2	19.8	30%
	LabelMe	14.7	34.0	16.7	22.9	43.6	24.5	34.0	24.5	28%
	PASCAL	10.1	25.5	35.2	43.9	44.2	39.4	35.2	32.6	7%
	ImageNet	11.4	29.6	36.0	57.4	52.3	42.7	57.4	34.4	40%
	Caltech101	7.5	31.1	19.5	33.1	96.9	42.1	96.9	26.7	73%
	MSRC	9.3	27.0	24.9	32.6	40.3	68.4	68.4	26.8	61%
	Mean others	10.6	28.5	22.7	29.4	39.4	34.1	53.4	27.5	48%
"car" detection	SUN09	69.8	50.7	42.2	42.6	54.7	69.4	69.8	51.9	26%
	LabelMe	61.8	67.6	40.8	38.5	53.4	67.0	67.6	52.3	23%
	PASCAL	55.8	55.2	62.1	56.8	54.2	74.8	62.1	59.4	4%
	ImageNet	43.9	31.8	46.9	60.7	59.3	67.8	60.7	49.9	18%
	Caltech101	20.2	18.8	11.0	31.4	100	29.3	100	22.2	78%
	MSRC	28.6	17.1	32.3	21.5	67.7	74.3	74.3	33.4	55%
	Mean others	42.0	34.7	34.6	38.2	57.9	61.7	72.4	44.8	48%
	SUN09	16.1	11.8	14.0	7.9	6.8	23.5	16.1	12.8	20%
	LabelMe	11.0	26.6	7.5	6.3	8.4	24.3	26.6	11.5	57%
"person" classification	PASCAL	11.9	11.1	20.7	13.6	48.3	50.5	20.7	27.1	-31%
	ImageNet	8.9	11.1	11.8	20.7	76.7	61.0	20.7	33.9	-63%
	Caltech101	7.6	11.8	17.3	22.5	99.6	65.8	99.6	25.0	75%
ass	MSRC	9.4	15.5	15.3	15.3	93.4	78.4	78.4	29.8	62%
cl_{h}	Mean others	9.8	12.3	13.2	13.1	46.7	45.0	43.7	23.4	47%
"person" detection	SUN09	69.6	56.8	37.9	45.7	52.1	72.7	69.6	53.0	24%
	LabelMe	58.9	66.6	38.4	43.1	57.9	68.9	66.6	53.4	20%
	PASCAL	56.0	55.6	56.3	55.6	56.8	74.8	56.3	59.8	-6%
	ImageNet	48.8	39.0	40.1	59.6	53.2	70.7	59.6	50.4	15%
	Caltech101	24.6	18.1	12.4	26.6	100	31.6	100	22.7	77%
	MSRC	33.8	18.2	30.9	20.8	69.5	74.7	74.7	34.6	54%
	Mean others	44.4	37.5	31.9	38.4	57.9	63.7	71.1	45.6	36%

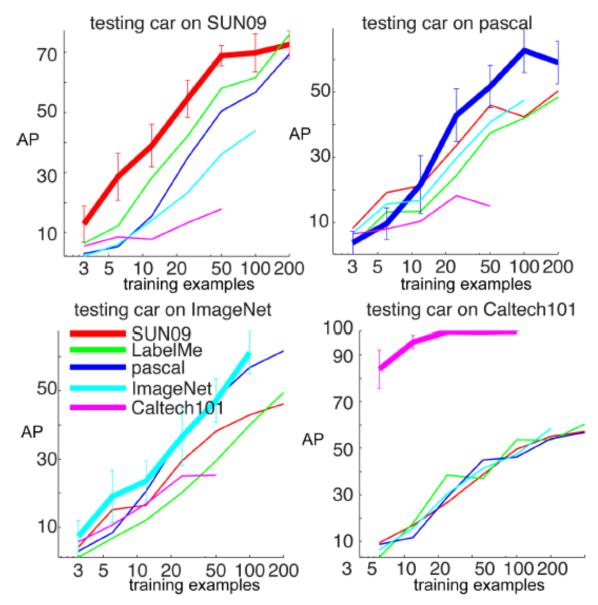
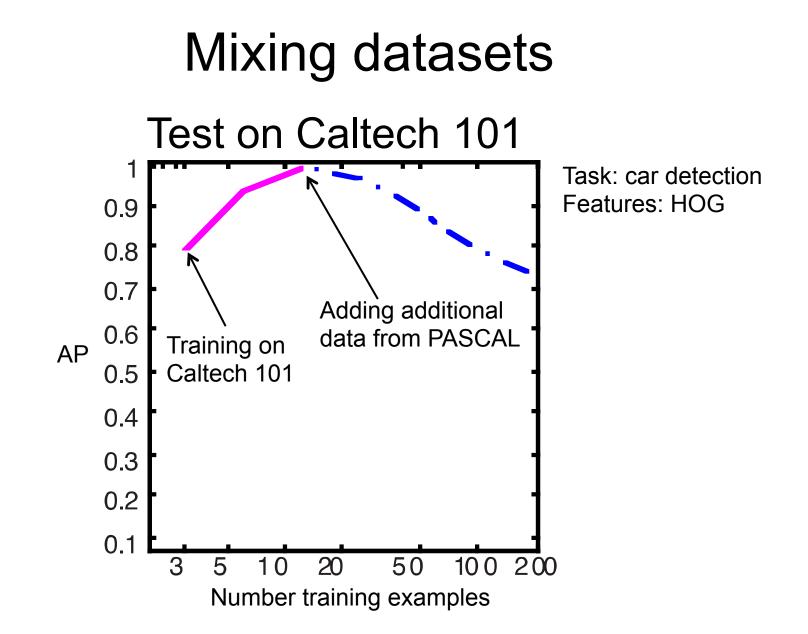


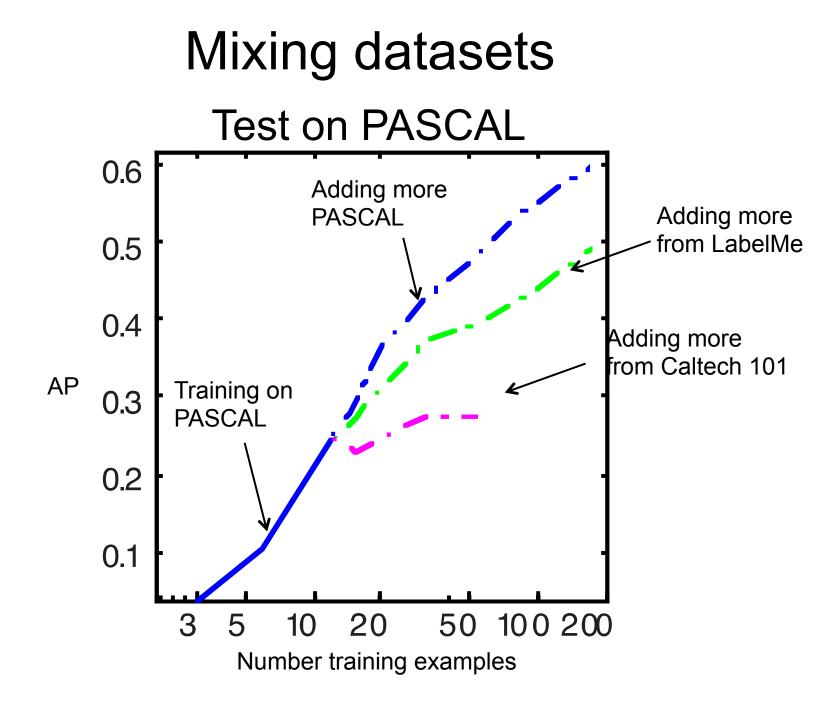
Figure 6. Cross-dataset generalization for "car" detection as function of training data

Dataset Value

Table 3. "Market Value" for a "car" sample across datasets

	SUN09 market	LabelMe market	PASCAL market	ImageNet market	Caltech101 market			
1 SUN09 is worth	1 SUN09	0.91 LabelMe	0.72 pascal	0.41 ImageNet	0 Caltech			
1 LabelMe is worth	0.41 SUN09	1 LabelMe	0.26 pascal	0.31 ImageNet	0 Caltech			
1 pascal is worth	0.29 SUN09	0.50 LabelMe	1 pascal	0.88 ImageNet	0 Caltech			
1 ImageNet is worth	0.17 SUN09	0.24 LabelMe	0.40 pascal	1 ImageNet	0 Caltech			
1 Caltech101 is worth	0.18 SUN09	0.23 LabelMe	0 pascal	0.28 ImageNet	1 Caltech			
Basket of Currencies	0.41 SUN09	0.58 LabelMe	0.48 pascal	0.58 ImageNet	0.20 Caltech			





Negative Set Bias

task	Negative Set:	Positive Set:	SUN09	LabelMe	PASCAL	ImageNet	Caltech101	MSRC	Mean
"car"	self		67.6	62.4	56.3	60.5	97.7	74.5	70.0
detection	all		53.8	51.3	47.1	65.2	97.7	70.0	64.1
aelection	percent drop		20%	18%	16%	-8%	0%	6%	8%
"person"	self		67.4	68.6	53.8	60.4	100	76.7	71.1
-	all		52.2	58.0	42.6	63.4	100	71.5	64.6
detection	percent drop		22%	15%	21%	-5%	0%	7%	9%

Table 2. Measuring Negative Set Bias.

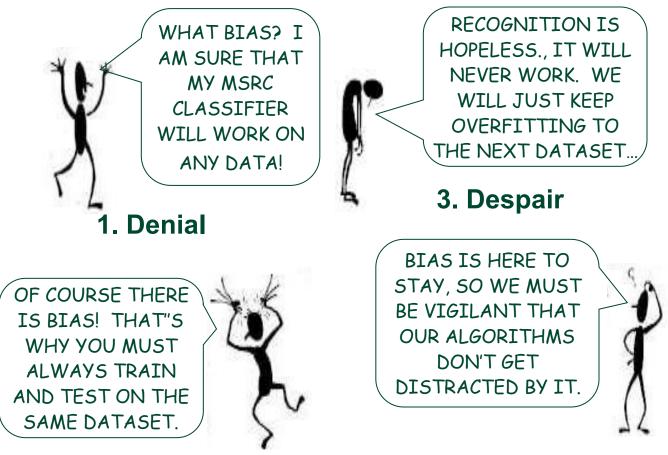
Not all the bias comes from the appearance of the objects we care about

Summary (from 2011)

- Our best-performing techniques just don't work in the real world
 - e.g., try a person detector on Hollywood film
 - but new datasets (PASCAL, ImageNet) are better than older ones (MSRC, Caltech)
- The classifiers are inherently designed to overfit to type of data it's trained on.

but larger datasets are getting better

Four Stages of Dataset Grief



2. Machine Learning

4. Acceptance

Lessons that still apply in 2018

- Datasets are bigger but still very biased
- Specific insights about particular datasets less relevant, but overall message still critical
 - Also, exemplary analysis paper!
- Some work since then
 - Undoing the damage of dataset bias (Khosla et al. <u>https://</u> people.csail.mit.edu/khosla/papers/eccv2012_khosla.pdf)
 - A deeper look at dataset bias (Tommasi et al. <u>https://arxiv.org/pdf/</u> <u>1505.01257.pdf</u>)
 - What makes ImageNet good for transfer learning (Huh et al. <u>https://arxiv.org/pdf/1608.08614.pdf</u>)
 - Work on domain adaptation/transfer learning
 - Work on fairness in machine learning