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Abstract
A Resilient Overlay Network (RON) is an architecture that allows
distributed Internet applications to detect and recover from path
outages and periods of degraded performance within several sec-
onds, improving over today’s wide-area routing protocols that take
at least several minutes to recover. A RON is an application-layer
overlay on top of the existing Internet routing substrate. The RON
nodes monitor the functioning and quality of the Internet paths
among themselves, and use this information to decide whether to
route packets directly over the Internet or by way of other RON
nodes, optimizing application-specific routing metrics.

Results from two sets of measurements of a working RON de-
ployed at sites scattered across the Internet demonstrate the benefits
of our architecture. For instance, over a 64-hour sampling period in
March 2001 across a twelve-node RON, there were 32 significant
outages, each lasting over thirty minutes, over the 132 measured
paths. RON’s routing mechanism was able to detect, recover, and
route around all of them, in less than twenty seconds on average,
showing that its methods for fault detection and recovery work well
at discovering alternate paths in the Internet. Furthermore, RON
was able to improve the loss rate, latency, or throughput perceived
by data transfers; for example, about 5% of the transfers doubled
their TCP throughput and 5% of our transfers saw their loss prob-
ability reduced by 0.05. We found that forwarding packets via at
most one intermediate RON node is sufficient to overcome faults
and improve performance in most cases. These improvements, par-
ticularly in the area of fault detection and recovery, demonstrate the
benefits of moving some of the control over routing into the hands
of end-systems.

1. Introduction
The Internet is organized as independently operating au-

tonomous systems (AS’s) that peer together. In this architecture,
detailed routing information is maintained only within a single AS
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and its constituent networks, usually operated by some network ser-
vice provider. The information shared with other providers and
AS’s is heavily filtered and summarized using the Border Gateway
Protocol (BGP-4) running at the border routers between AS’s [21],
which allows the Internet to scale to millions of networks.

This wide-area routing scalability comes at the cost of re-
duced fault-tolerance of end-to-end communication between Inter-
net hosts. This cost arises because BGP hides many topological
details in the interests of scalability and policy enforcement, has
little information about traffic conditions, and damps routing up-
dates when potential problems arise to prevent large-scale oscil-
lations. As a result, BGP’s fault recovery mechanisms sometimes
take many minutes before routes converge to a consistent form [12],
and there are times when path outages even lead to significant dis-
ruptions in communication lasting tens of minutes or more [3, 18,
19]. The result is that today’s Internet is vulnerable to router and
link faults, configuration errors, and malice—hardly a week goes
by without some serious problem affecting the connectivity pro-
vided by one or more Internet Service Providers (ISPs) [15].

Resilient Overlay Networks (RONs) are a remedy for some of
these problems. Distributed applications layer a “resilient overlay
network” over the underlying Internet routing substrate. The nodes
comprising a RON reside in a variety of routing domains, and co-
operate with each other to forward data on behalf of any pair of
communicating nodes in the RON. Because AS’s are independently
administrated and configured, and routing domains rarely share in-
terior links, they generally fail independently of each other. As
a result, if the underlying topology has physical path redundancy,
RON can often find paths between its nodes, even when wide-area
routing Internet protocols like BGP-4 cannot.

The main goal of RON is to enable a group of nodes to commu-
nicate with each other in the face of problems with the underlying
Internet paths connecting them. RON detects problems by aggres-
sively probing and monitoring the paths connecting its nodes. If
the underlying Internet path is the best one, that path is used and no
other RON node is involved in the forwarding path. If the Internet
path is not the best one, the RON will forward the packet by way of
other RON nodes. In practice, we have found that RON can route
around most failures by using only one intermediate hop.

RON nodes exchange information about the quality of the paths
among themselves via a routing protocol and build forwarding ta-
bles based on a variety of path metrics, including latency, packet
loss rate, and available throughput. Each RON node obtains the
path metrics using a combination of active probing experiments
and passive observations of on-going data transfers. In our imple-
mentation, each RON is explicitly designed to be limited in size—
between two and fifty nodes—to facilitate aggressive path main-
tenance via probing without excessive bandwidth overhead. This
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Figure 1: The current sixteen-node RON deployment. Five sites
are at universities in the USA, two are European universities
(not shown), three are “broadband” home Internet hosts con-
nected by Cable or DSL, one is located at a US ISP, and five are
at corporations in the USA.

allows RON to recover from problems in the underlying Internet in
several seconds rather than several minutes.

The second goal of RON is to integrate routing and path selec-
tion with distributed applications more tightly than is traditionally
done. This integration includes the ability to consult application-
specific metrics in selecting paths, and the ability to incorporate
application-specific notions of what network conditions constitute a
“fault.” As a result, RONs can be used in a variety of ways. A mul-
timedia conferencing program may link directly against the RON
library, transparently forming an overlay between all participants
in the conference, and using loss rates, delay jitter, or application-
observed throughput as metrics on which to choose paths. An ad-
ministrator may wish to use a RON-based router application to
form an overlay network between multiple LANs as an “Overlay
VPN.” This idea can be extended further to develop an “Overlay
ISP,” formed by linking (via RON) points of presence in different
traditional ISPs after buying bandwidth from them. Using RON’s
routing machinery, an Overlay ISP can provide more resilient and
failure-resistant Internet service to its customers.

The third goal of RON is to provide a framework for the imple-
mentation of expressive routing policies, which govern the choice
of paths in the network. For example, RON facilitates classifying
packets into categories that could implement notions of acceptable
use, or enforce forwarding rate controls.

This paper describes the design and implementation of RON,
and presents several experiments that evaluate whether RON is a
good idea. To conduct this evaluation and demonstrate the ben-
efits of RON, we have deployed a working sixteen-node RON at
sites sprinkled across the Internet (see Figure 1). The RON client
we experiment with is a resilient IP forwarder, which allows us to
compare connections between pairs of nodes running over a RON
against running straight over the Internet.

We have collected a few weeks’ worth of experimental results of
path outages and performance failures and present a detailed analy-
sis of two separate datasets:

�������
with twelve nodes measured in

March 2001 and
�����	�

with sixteen nodes measured in May 2001.
In both datasets, we found that RON was able to route around be-
tween 60% and 100% of all significant outages. Our implementa-
tion takes 18 seconds, on average, to detect and route around a path
failure and is able to do so in the face of an active denial-of-service
attack on a path. We also found that these benefits of quick fault de-
tection and successful recovery are realized on the public Internet

and do not depend on the existence of non-commercial or private
networks (such as the Internet2 backbone that interconnects many
educational institutions); our ability to determine this was enabled
by RON’s policy routing feature that allows the expression and im-
plementation of sophisticated policies that determine how paths are
selected for packets.

We also found that RON successfully routed around performance
failures: in

�������
, the loss probability improved by at least 0.05

in 5% of the samples, end-to-end communication latency reduced
by 40ms in 11% of the samples, and TCP throughput doubled in
5% of all samples. In addition, we found cases when RON’s loss,
latency, and throughput-optimizing path selection mechanisms all
chose different paths between the same two nodes, suggesting that
application-specific path selection techniques are likely to be use-
ful in practice. A noteworthy finding from the experiments and
analysis is that in most cases, forwarding packets via at most one
intermediate RON node is sufficient both for recovering from fail-
ures and for improving communication latency.

2. Related Work
To our knowledge, RON is the first wide-area network overlay

system that can detect and recover from path outages and periods of
degraded performance within several seconds. RON builds on pre-
vious studies that quantify end-to-end network reliability and per-
formance, on IP-based routing techniques for fault-tolerance, and
on overlay-based techniques to enhance performance.

2.1 Internet Performance Studies
Labovitz et al. [12] use a combination of measurement and anal-

ysis to show that inter-domain routers in the Internet may take tens
of minutes to reach a consistent view of the network topology after
a fault, primarily because of routing table oscillations during BGP’s
rather complicated path selection process. They find that during
this period of “delayed convergence,” end-to-end communication
is adversely affected. In fact, outages on the order of minutes cause
active TCP connections (i.e., connections in the ESTABLISHED
state with outstanding data) to terminate when TCP does not re-
ceive an acknowledgment for its outstanding data. They also find
that, while part of the convergence delays can be fixed with changes
to the deployed BGP implementations, long delays and temporary
oscillations are a fundamental consequence of the BGP path vector
routing protocol.

Paxson’s probe experiments show that routing pathologies pre-
vent selected Internet hosts from communicating up to 3.3% of the
time averaged over a long time period, and that this percentage has
not improved with time [18]. Labovitz et al. find, by examining
routing table logs at Internet backbones, that 10% of all considered
routes were available less than 95% of the time, and that less than
35% of all routes were available more than 99.99% of the time [13].
Furthermore, they find that about 40% of all path outages take more
than 30 minutes to repair and are heavy-tailed in their duration.
More recently, Chandra et al. find using active probing that 5%
of all detected failures last more than 10,000 seconds (2 hours, 45
minutes), and that failure durations are heavy-tailed and can last
for as long as 100,000 seconds before being repaired [3]. These
findings do not augur well for mission-critical services that require
a higher degree of end-to-end communication availability.

The Detour measurement study made the observation, using Pax-
son’s and their own data collected at various times between 1995
and 1999, that path selection in the wide-area Internet is sub-
optimal from the standpoint of end-to-end latency, packet loss rate,
and TCP throughput [23]. This study showed the potential long-
term benefits of “detouring” packets via a third node by comparing



the long-term average properties of detoured paths against Internet-
chosen paths.

2.2 Network-layer Techniques
Much work has been done on performance-based and fault-

tolerant routing within a single routing domain, but practical mech-
anisms for wide-area Internet recovery from outages or badly per-
forming paths are lacking.

Although today’s wide-area BGP-4 routing is based largely on
AS hop-counts, early ARPANET routing was more dynamic, re-
sponding to the current delay and utilization of the network. By
1989, the ARPANET evolved to using a delay- and congestion-
based distributed shortest path routing algorithm [11]. However,
the diversity and size of today’s decentralized Internet necessitated
the deployment of protocols that perform more aggregation and
fewer updates. As a result, unlike some interior routing protocols
within AS’s, BGP-4 routing between AS’s optimizes for scalable
operation over all else.

By treating vast collections of subnetworks as a single entity for
global routing purposes, BGP-4 is able to summarize and aggregate
enormous amounts of routing information into a format that scales
to hundreds of millions of hosts. To prevent costly route oscilla-
tions, BGP-4 explicitly damps changes in routes. Unfortunately,
while aggregation and damping provide good scalability, they in-
terfere with rapid detection and recovery when faults occur. RON
handles this by leaving scalable operation to the underlying Inter-
net substrate, moving fault detection and recovery to a higher layer
overlay that is capable of faster response because it does not have
to worry about scalability.

An oft-cited “solution” to achieving fault-tolerant network con-
nectivity for a small- or medium-sized customer is to multi-home,
advertising a customer network through multiple ISPs. The idea
is that an outage in one ISP would leave the customer connected
via the other. However, this solution does not generally achieve
fault detection and recovery within several seconds because of the
degree of aggregation used to achieve wide-area routing scalabil-
ity. To limit the size of their routing tables, many ISPs will not
accept routing announcements for fewer than 8192 contiguous ad-
dresses (a “/19” netblock). Small companies, regardless of their
fault-tolerance needs, do not often require such a large address
block, and cannot effectively multi-home. One alternative may be
“provider-based addressing,” where an organization gets addresses
from multiple providers, but this requires handling two distinct sets
of addresses on its hosts. It is unclear how on-going connections
on one address set can seamlessly switch on a failure in this model.

2.3 Overlay-based Techniques
Overlay networks are an old idea; in fact, the Internet itself was

developed as an overlay on the telephone network. Several Inter-
net overlays have been designed in the past for various purposes,
including providing OSI network-layer connectivity [10], easing
IP multicast deployment using the MBone [6], and providing IPv6
connectivity using the 6-Bone [9]. The X-Bone is a recent infras-
tructure project designed to speed the deployment of IP-based over-
lay networks [26]. It provides management functions and mecha-
nisms to insert packets into the overlay, but does not yet support
fault-tolerant operation or application-controlled path selection.

Few overlay networks have been designed for efficient fault de-
tection and recovery, although some have been designed for better
end-to-end performance. The Detour framework [5, 22] was mo-
tivated by the potential long-term performance benefits of indirect
routing [23]. It is an in-kernel packet encapsulation and routing
architecture designed to support alternate-hop routing, with an em-

phasis on high performance packet classification and routing. It
uses IP-in-IP encapsulation to send packets along alternate paths.

While RON shares with Detour the idea of routing via other
nodes, our work differs from Detour in three significant ways. First,
RON seeks to prevent disruptions in end-to-end communication in
the face of failures. RON takes advantage of underlying Internet
path redundancy on time-scales of a few seconds, reacting respon-
sively to path outages and performance failures. Second, RON is
designed as an application-controlled routing overlay; because each
RON is more closely tied to the application using it, RON more
readily integrates application-specific path metrics and path selec-
tion policies. Third, we present and analyze experimental results
from a real-world deployment of a RON to demonstrate fast re-
covery from failure and improved latency and loss-rates even over
short time-scales.

An alternative design to RON would be to use a generic overlay
infrastructure like the X-Bone and port a standard network routing
protocol (like OSPF or RIP) with low timer values. However, this
by itself will not improve the resilience of Internet communications
for two reasons. First, a reliable and low-overhead outage detection
module is required, to distinguish between packet losses caused by
congestion or error-prone links from legitimate problems with a
path. Second, generic network-level routing protocols do not utilize
application-specific definitions of faults.

Various Content Delivery Networks (CDNs) use overlay tech-
niques and caching to improve the performance of content delivery
for specific applications such as HTTP and streaming video. The
functionality provided by RON may ease future CDN development
by providing some routing components required by these services.

3. Design Goals
The design of RON seeks to meet three main design goals: (i)

failure detection and recovery in less than 20 seconds; (ii) tighter
integration of routing and path selection with the application; and
(iii) expressive policy routing.

3.1 Fast Failure Detection and Recovery
Today’s wide-area Internet routing system based on BGP-4 does

not handle failures well. From a network perspective, we define
two kinds of failures. Link failures occur when a router or a link
connecting two routers fails because of a software error, hardware
problem, or link disconnection. Path failures occur for a variety of
reasons, including denial-of-service attacks or other bursts of traffic
that cause a high degree of packet loss or high, variable latencies.

Applications perceive all failures in one of two ways: outages or
performance failures. Link failures and extreme path failures cause
outages, when the average packet loss rate over a sustained period
of several minutes is high (about 30% or higher), causing most pro-
tocols including TCP to degrade by several orders of magnitude.
Performance failures are less extreme; for example, throughput, la-
tency, or loss-rates might degrade by a factor of two or three.

BGP-4 takes a long time, on the order of several minutes, to con-
verge to a new valid route after a link failure causes an outage [12].
In contrast, RON’s goal is to detect and recover from outages and
performance failures within several seconds. Compounding this
problem, IP-layer protocols like BGP-4 cannot detect problems
such as packet floods and persistent congestion on links or paths
that greatly degrade end-to-end performance. As long as a link is
deemed “live” (i.e., the BGP session is still alive), BGP’s AS-path-
based routing will continue to route packets down the faulty path;
unfortunately, such a path may not provide adequate performance
for an application using it.
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Figure 2: Internet interconnections are often complex. The dot-
ted links are private and are not announced globally.

3.2 Tighter Integration with Applications
Failures and faults are application-specific notions: network con-

ditions that are fatal for one application may be acceptable for an-
other, more adaptive one. For instance, a UDP-based Internet audio
application not using good packet-level error correction may not
work at all at loss rates larger than 10%. At this loss rate, a bulk
transfer application using TCP will continue to work because of
TCP’s adaptation mechanisms, albeit at lower performance. How-
ever, at loss rates of 30% or more, TCP becomes essentially un-
usable because it times out for most packets [16]. RON allows
applications to independently define and react to failures.

In addition, applications may prioritize some metrics over oth-
ers (e.g., latency over throughput, or low loss over latency) in their
path selection. They may also construct their own metrics to select
paths. A routing system may not be able to optimize all of these
metrics simultaneously; for example, a path with a one-second la-
tency may appear to be the best throughput path, but this degree
of latency may be unacceptable to an interactive application. Cur-
rently, RON’s goal is to allow applications to influence the choice
of paths using a single metric. We plan to explore multi-criteria
path selection in the future.

3.3 Expressive Policy Routing
Despite the need for policy routing and enforcement of accept-

able use and other policies, today’s approaches are primitive and
cumbersome. For instance, BGP-4 is incapable of expressing fine-
grained policies aimed at users or hosts. This lack of precision
not only reduces the set of paths available in the case of a failure,
but also inhibits innovation in the use of carefully targeted policies,
such as end-to-end per-user rate controls or enforcement of accept-
able use policies (AUPs) based on packet classification. Because
RONs will typically run on relatively powerful end-points, we be-
lieve they are well-suited to providing fine-grained policy routing.

Figure 2 shows the AS-level network connectivity between four
of our RON hosts; the full graph for (only) 12 hosts traverses 36
different autonomous systems. The figure gives a hint of the con-
siderable underlying path redundancy available in the Internet—the
reason RON works—and shows situations where BGP’s blunt pol-
icy expression inhibits fail-over. For example, if the Aros-UUNET
connection failed, users at Aros would be unable to reach MIT even
if they were authorized to use Utah’s network resources to get there.
This is because it impossible to announce a BGP route only to par-
ticular users, so the Utah-MIT link is kept completely private.
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Figure 3: The RON system architecture. Data enters the RON
from RON clients via a conduit at an entry node. At each node,
the RON forwarder consults with its router to determine the best
path for the packet, and sends it to the next node. Path selec-
tion is done at the entry node, which also tags the packet, sim-
plifying the forwarding path at other nodes. When the packet
reaches the RON exit node, the forwarder there hands it to the
appropriate output conduit, which passes the data to the client.
To choose paths, RON nodes monitor the quality of their vir-
tual links using active probing and passive observation. RON
nodes use a link-state routing protocol to disseminate the topol-
ogy and virtual-link quality of the overlay network.

4. Design
The conceptual design of RON, shown in Figure 3, is quite sim-

ple. RON nodes, deployed at various locations on the Internet,
form an application-layer overlay to cooperatively route packets
for each other. Each RON node monitors the quality of the Internet
paths between it and the other nodes, and uses this information to
intelligently select paths for packets. Each Internet path between
two nodes is called a virtual link. To discover the topology of the
overlay network and obtain information about all virtual links in
the topology, every RON node participates in a routing protocol
to exchange information about a variety of quality metrics. Most
of RON’s design supports routing through multiple intermediate
nodes, but our results (Section 6) show that using at most one inter-
mediate RON node is sufficient most of the time. Therefore, parts
of our design focus on finding better paths via a single intermediate
RON node.

4.1 Software Architecture
Each program that communicates with the RON software on a

node is a RON client. The overlay network is defined by a sin-
gle group of clients that collaborate to provide a distributed service
or application. This group of clients can use service-specific rout-
ing metrics when deciding how to forward packets in the group.
Our design accommodates a variety of RON clients, ranging from
a generic IP packet forwarder that improves the reliability of IP
packet delivery, to a multi-party conferencing application that in-
corporates application-specific metrics in its route selection.

A RON client interacts with RON across an API called a conduit,
which the client uses to send and receive packets. On the data path,
the first node that receives a packet (via the conduit) classifies it
to determine the type of path it should use (e.g., low-latency, high-
throughput, etc.). This node is called the entry node: it determines
a path from its topology table, encapsulates the packet into a RON
header, tags it with some information that simplifies forwarding
by downstream RON nodes, and forwards it on. Each subsequent
RON node simply determines the next forwarding hop based on the
destination address and the tag. The final RON node that delivers
the packet to the RON application is called the exit node.

The conduits access RON via two functions:

1. send(pkt, dst, via ron) allows a node to forward
a packet to a destination RON node either along the RON or



using the direct Internet path. RON’s delivery, like UDP, is
best-effort and unreliable.

2. recv(pkt, via ron) is a callback function that is
called when a packet arrives for the client program. This
callback is invoked after the RON conduit matches the type
of the packet in the RON header to the set of types pre-
registered by the client when it joins the RON. The RON
packet type is a demultiplexing field for incoming packets.

The basic RON functionality is provided by the forwarder
object, which implements the above functions. It also provides a
timer registration and callback mechanism to perform periodic op-
erations, and a similar service for network socket data availability.

Each client must instantiate a forwarder and hand to it two mod-
ules: a RON router and a RON membership manager. The RON
router implements a routing protocol. The RON membership man-
ager implements a protocol to maintain the list of members of a
RON. By default, RON provides a few different RON router and
membership manager modules for clients to use.

RON routers and membership managers exchange packets using
RON as their forwarding service, rather than over direct IP paths.
This feature of our system is beneficial because it allows these mes-
sages to be forwarded even when some underlying IP paths fail.

4.2 Routing and Path Selection
Routing is the process of building up the forwarding tables that

are used to choose paths for packets. In RON, the entry node
has more control over subsequent path selection than in traditional
datagram networks. This node tags the packet’s RON header with
an identifier that identifies the flow to which the packet belongs;
subsequent routers attempt to keep a flow ID on the same path it
first used, barring significant link changes. Tagging, like the IPv6
flow ID, helps support multi-hop routing by speeding up the for-
warding path at intermediate nodes. It also helps tie a packet flow
to a chosen path, making performance more predictable, and pro-
vides a basis for future support of multi-path routing in RON. By
tagging at the entry node, the application is given maximum control
over what the network considers a “flow.”

The small size of a RON relative to the Internet allows it to main-
tain information about multiple alternate routes and to select the
path that best suits the RON client according to a client-specified
routing metric. By default, it maintains information about three
specific metrics for each virtual link: (i) latency, (ii) packet loss
rate, and (iii) throughput, as might be obtained by a bulk-transfer
TCP connection between the end-points of the virtual link. RON
clients can override these defaults with their own metrics, and the
RON library constructs the appropriate forwarding table to pick
good paths. The router builds up forwarding tables for each com-
bination of policy routing and chosen routing metric.

4.2.1 Link-State Dissemination
The default RON router uses a link-state routing protocol to dis-

seminate topology information between routers, which in turn is
used to build the forwarding tables. Each node in an

�
-node RON

has
�����

virtual links. Each node’s router periodically requests
summary information of the different performance metrics to the�����

other nodes from its local performance database and dis-
seminates its view to the others.

This information is sent via the RON forwarding mesh itself, to
ensure that routing information is propagated in the event of path
outages and heavy loss periods. Thus, the RON routing protocol
is itself a RON client, with a well-defined RON packet type. This
leads to an attractive property: The only time a RON router has

incomplete information about any other one is when all paths in
the RON from the other RON nodes to it are unavailable.

4.2.2 Path Evaluation and Selection
The RON routers need an algorithm to determine if a path is still

alive, and a set of algorithms with which to evaluate potential paths.
The responsibility of these metric evaluators is to provide a number
quantifying how “good” a path is according to that metric. These
numbers are relative, and are only compared to other numbers from
the same evaluator. The two important aspects of path evaluation
are the mechanism by which the data for two links are combined
into a single path, and the formula used to evaluate the path.

Every RON router implements outage detection, which it uses
to determine if the virtual link between it and another node is still
working. It uses an active probing mechanism for this. On de-
tecting the loss of a probe, the normal low-frequency probing is re-
placed by a sequence of consecutive probes, sent in relatively quick
succession spaced by ���
	���
 �
����
�	���� seconds. If 	���������
 ������

���
probes in a row elicit no response, then the path is considered
“dead.” If even one of them gets a response, then the subsequent
higher-frequency probes are canceled. Paths experiencing outages
are rated on their packet loss rate history; a path having an out-
age will always lose to a path not experiencing an outage. The
	���������
 ������

��� and the frequency of probing ( ���
	���
 ������
�������� )
permit a trade-off between outage detection time and the bandwidth
consumed by the (low-frequency) probing process (Section 6.2 in-
vestigates this).

By default, every RON router implements three different routing
metrics: the latency-minimizer, the loss-minimizer, and the TCP
throughput-optimizer. The latency-minimizer forwarding table is
computed by computing an exponential weighted moving average
(EWMA) of round-trip latency samples with parameter � . For any
link � , its latency estimate �! �"$# is updated as:

�! �"$#&%��(')�! �"$#+*-, �.� �0/1'32&4)5 63 �798:�;4�# (1)

We use �=<?>
@ A , which means that 10% of the current latency
estimate is based on the most recent sample. This number is similar
to the values suggested for TCP’s round-trip time estimator [20].
For a RON path, the overall latency is the sum of the individual
virtual link latencies: �! �"CB3D)E;FG<�H #!I B3D)E;F �! �" # .

To estimate loss rates, RON uses the average of the last JK< � >�>
probe samples as the current average. Like Floyd et al. [7], we
found this to be a better estimator than EWMA, which retains some
memory of samples obtained in the distant past as well. It might be
possible to further improve our estimator by unequally weighting
some of the J samples [7].

Loss metrics are multiplicative on a path: if we assume that
losses are independent, the probability of success on the entire path
is roughly equal to the probability of surviving all hops individu-
ally: �!L�6�63M� �"N4 BOD)EPF < �Q�SR #!I BOD)EPF , �Q� �!L�6�6)M� �"N4)#P/ .

RON does not attempt to find optimal throughput paths, but
strives to avoid paths of low throughput when good alternatives are
available. Given the time-varying and somewhat unpredictable na-
ture of available bandwidth on Internet paths [2, 19], we believe this
is an appropriate goal. From the standpoint of improving the reli-
ability of path selection in the face of performance failures, avoid-
ing bad paths is more important than optimizing to eliminate small
throughput differences between paths. While a characterization of
the utility received by programs at different available bandwidths
may help determine a good path selection threshold, we believe that
more than a 50% bandwidth reduction is likely to reduce the util-
ity of many programs. This threshold also falls outside the typical
variation observed on a given path over time-scales of tens of min-



utes [2]. We therefore concentrate on avoiding throughput faults of
this order of magnitude.

Throughput-intensive applications typically use TCP or TCP-
like congestion control, so the throughput optimizer focuses on this
type of traffic. The performance of a bulk TCP transfer is a func-
tion of the round-trip latency and the packet loss rate it observes.
Throughput optimization combines the latency and loss metrics us-
ing a simplified version of the TCP throughput equation [16], which
provides an upper-bound on TCP throughput. Our granularity of
loss rate detection is 1%, and the throughput equation is more sen-
sitive at lower loss rates. We set a minimum packet loss rate of 2%
to prevent an infinite bandwidth and to prevent large route oscilla-
tions from single packet losses. The formula used is:

6��OL�M�4 <
� � @ �
M�" "1' � 8 (2)

where 8 is the one-way end-to-end packet loss probability and M�"C"
is the end-to-end round-trip time estimated from the hop-by-hop
samples as described above.

The non-linear combination of loss and round-trip time makes
this scoring difficult to optimize with standard shortest-path algo-
rithms; for instance, the TCP throughput between nodes � and �
via a node � is not usually the smaller of the TCP throughputs be-
tween � and � and � and � . While more complicated search algo-
rithms can be employed to handle this, RON routing currently takes
advantage of the resulting simplicity when only single-intermediate
paths are considered to obtain throughput-optimized paths.

Our probe samples give us the two-way packet loss probability,
from which we estimate the one-way loss probability by (unrealis-
tically, for some paths) assuming symmetric loss rates and solving
the resulting quadratic equation. Assuming that losses are indepen-
dent on the two paths ���	� and �
��� , then the maximum
absolute error in the one-way loss rate estimate occurs when all
of the loss is in only one direction, resulting in an error equal to# ��
�
��������������� . Assuming a minimum loss rate of 2% ensures that,
when choosing between two high-quality links, our loss rate esti-
mate is within 50% of the true value. At large loss rates, highly
asymmetric loss patterns cause this method to disregard a poten-
tially good path because the reverse direction of that path has a
high loss rate. However, the benefits of avoiding the high loss rate
path seem to outweigh the cost of missing one good link, but we in-
tend to remedy this problem soon by explicitly estimating one-way
loss rates.

This method of throughput comparison using Equation 2 is not
without faults. For instance, a slow but relatively unused bottle-
neck link on a path would almost never observe packet losses, and
none of our probes would be lost. The equation we use would pre-
dict an unreasonably high bandwidth estimate. One way of tack-
ling this would be to send pairs of probe packets to estimate an
upper-bound on link bandwidth,while another might be to use non-
invasive probes to predict throughput [8].

Oscillating rapidly between multiple paths is harmful to applica-
tions sensitive to packet reordering or delay jitter. While each of
the evaluation metrics applies some smoothing, this is not enough
to avoid “flapping” between two nearly equal routes: RON routers
therefore employ hysteresis. Based on an analysis of 5000 snap-
shots from a RON node’s link-state table, we chose to apply a sim-
ple 5% hysteresis bonus to the “last good” route for the three met-
rics. This simple method appears to provide a reasonable trade-off
between responsiveness to changes in the underlying paths and un-
necessary route flapping.

4.2.3 Performance Database
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Figure 4: The RON performance database.

To make good routing decisions RON needs to have detailed per-
formance information. It is impractical to send large performance
histories to all participants in the RON. A reliable performance
repository must handle participants that crash, reboot, or rejoin the
RON. Measurement data is often noisy, and different clients may
have different ways in which they will use that data; for instance,
an outage detector may want to know if any packets were success-
fully sent in the last 15 seconds, but a throughput improver may
be interested in a longer-term packet loss average. Therefore, the
system needs a flexible summarization mechanism.

To support these requirements, each RON node or local group
of nodes uses a separate performance database to store samples
(Figure 4). The database is a generalization of SPAND [24],
supporting different data types and summarization mechanisms.
Sources of information and clients that use it agree on a class
name for the data and the meaning of the values inserted into
the database. The probes insert data into the database by calling
pdb update(class, src, dst, type, value). The
src and dst fields contain the IP addresses of the sampled data.

4.3 Policy Routing
RON allows users or administrators to define the types of traffic

allowed on particular network links. In traditional Internet policy
routing, “type” is typically defined only by the packet’s source and
destination addresses [4]; RON generalizes this notion to include
other information about the packet. RON separates policy routing
into two components: classification and routing table formation.

When a packet enters the RON, it is classified and given a policy
tag; this tag is used to perform lookups in the appropriate set of
routing tables at each RON router. A separate set of routing tables
is constructed for each policy by re-running the routing computa-
tion, removing the links disallowed by the corresponding policy.
The routing computation computes the shortest path from the RON
node to all other nodes, for any given metric. This construction
applies to multi-hop or single-hop indirection; because a standard
shortest-paths algorithm may not work for all metrics (specifically,
TCP throughput), our implementation, described in Section 5.2, is
specific to single-hop indirection. The result of running the table
construction is the multi-level routing tables shown in Figure 5.

The construction of these routing tables and the production of
packet tags is facilitated by the policy classifier component. The
policy classifier produces the permits function that determines if
a given policy is allowed to use a particular virtual link. It also pro-
vides a conduit-specific data classifier module that helps the RON
node decide which policy is appropriate for the incoming packet.
For example, if packets from a commercial site are not allowed to
go across the Internet2 educational backbone, and we received a
packet from such a site at an MIT RON node, the data classifier
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Figure 6: The RON packet header. The routing flags and flow
ID are set by the input conduit. The packet type is a demul-
tiplexing key indicating the appropriate conduit or protocol at
the receiver.

module would determine which policy to use and set the corre-
sponding tag on the packet. Subsequent RON nodes examine the
policy tag instead of reclassifying the packet.

We have designed two policy mechanisms: exclusive cliques and
general policies. In an exclusive clique, only data originating from
and destined to other members of the clique may traverse inter-
clique links. This mimics, for instance, the “educational only” pol-
icy on the Internet2 backbone. This policy classifier takes only a
list of networks and subnet masks to match against.

Our general policy component is more powerful; it accepts a
BPF-like packet matcher [14], and a list of links that are denied
by this policy. It returns the first policy that matches a packet’s
fields to the stored BPF-based information. We do not currently
address policy composition, although users may create composed
versions of their own policies using the general policy component.
In Section 7, we discuss possible abuse of AUPs and network tran-
sit policies.

4.4 Data Forwarding
The forwarder at each RON node examines every incoming

packet to determine if it is destined for a local client or a remote
destination. If it requires further delivery, the forwarder passes the
RON packet header to the routing table, as shown in Figure 5.

The RON packet header is shown in Figure 6. It is inspired by the
design of IPv6 [17]. Because RON needs to support more than sim-
ply IP-in-IP encapsulation, RON uses its own header. RON does
not fragment packets, but does inform applications if they exceed
the Maximum Transmission Unit (MTU). As in IPv6, applications
must perform end-to-end path MTU discovery. RON also provides

a policy tag that is interpreted by the forwarders to decide which
network routing policies apply to the packet. If the packet is des-
tined for the local node, the forwarder uses the packet type field to
demultiplex the packet to the RON client.

If the packet’s flow ID has a valid flow cache entry, the forwarder
short-cuts the routing process with this entry. Otherwise, the rout-
ing table lookup occurs in three stages. The first stage examines the
policy tag, and locates the proper routing preference table. There is
one routing preference table for each known policy tag. Policy ad-
herence supersedes all other routing preferences. Next, the lookup
procedure examines the routing preference flags to find a compat-
ible route selection metric for the packet. The flags are examined
from the right, and the first flag understood by the router directs
the packet to the next table. All RON routers understand the ba-
sic system metrics of latency, loss, and throughput; this provides
a way for a shared RON environment to support users who may
also have client-defined metrics, and still provide them with good
default metrics. A lookup in the routing preference table leads to
a hash table of next-hops based upon the destination RON node.
The entry in the next-hop table is returned to the forwarder, which
places the packet on the network destined for the next hop.

4.5 Bootstrap and Membership Management
In addition to allowing clients to define their own membership

mechanisms, RON provides two system membership managers: a
simple static membership mechanism that loads its peers from a
file, and a dynamic announcement-based, soft-state membership
protocol. To bootstrap the dynamic membership protocol, a new
node needs to know the identity of at least one peer in the RON.
The new node uses this neighbor to broadcast its existence using a
flooder, which is a special RON client that implements a general-
purpose, resilient flooding mechanism using a RON forwarder.

The main challenge in the dynamic membership protocol is to
avoid confusing a path outage to a node from its having left the
RON. Each node builds up and periodically (every five minutes on
average in our implementation) floods to all other nodes its list of
peer RON nodes. If a node has not heard about a peer in sixty
minutes, it assumes that the peer is no longer participating in the
RON. Observe that this mechanism allows two nodes in the same
RON to have a non-functioning direct Internet path for long periods
of time: as long as there is some path in the RON between the two
nodes, neither will think that the other has left.

The overhead of broadcasting is minuscule compared to the traf-
fic caused by active probing and routing updates, especially given
the limited size of a RON. The resulting robustness is high: each
node receives up to

� � �
copies of the peer list sent from a given

other node. This redundancy causes a node to be deleted from an-
other node’s view of the RON only if the former node is genuinely
partitioned for over an hour from every other node in the RON. A
RON node will re-bootstrap from a well-known peer after a long
partition.

5. Implementation
The RON system is implemented at user-level as a flexible set

of C++ libraries to which user-level RON clients link. Each client
can pick and choose the components that best suits its needs. To
provide a specific example of a client using the RON library, we
describe the implementation of resilient IP forwarder. This for-
warder improves IP packet delivery without any modification to
the transport protocols and applications running at end-nodes. The
architecture of the resilient IP forwarder is shown in Figure 7.

RON uses UDP to forward data, since TCP’s reliable byte-stream
is mismatched to many RON clients, and IP-based encapsulation
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would restrict its application-specific forwarding capabilities. The
RON core services run without special kernel support or elevated
privileges. The conduit at the entry node is the client’s gateway to
the RON, and classifies every packet. This classification is client-
specific; it labels the packet with information that decides what
routing metric is later used to route the packet. As an example,
a RON IP forwarder conduit might label DNS and HTTP traffic
as “latency-sensitive” and FTP traffic as “throughput-intensive,”
which would cause the downstream RON forwarders to use the
appropriate routing metric for each packet type. Non-entry RON
nodes route the packet based only on the attached label and desti-
nation of the packet.

This design ensures that all client- and application-specific rout-
ing functions occur only at the entry and exit conduits, and that for-
warding inside the RON is independent of client-specific logic. In
addition to reducing the per-packet overhead at intermediate nodes,
it also localizes the client-specific computation required on each
packet. This means, for example, that a RON node implementing
an IP forwarder may also participate in an overlay with a confer-
encing application, and help improve the reliability of data delivery
for the conference. The conference node conduits implement the
application-specific methods that label packets to tell the IP for-
warder which routing metrics to use for conference packets.

5.1 The IP Forwarder
We implemented the resilient IP forwarder using FreeBSD’s di-

vert sockets to automatically send IP traffic over the RON, and emit
it at the other end. The resilient IP forwarder provides classifica-
tion, encapsulation, and decapsulation of IP packets through a spe-
cial conduit called the ip conduit (top of Figure 7).

5.2 Routers
RON routers implement the router virtual interface, which

has only a single function call, lookup(pkt *mypkt). The
RON library provides a trivial static router, and a dynamic router
that routes based upon different metric optimizations. The dynamic
router is extensible by linking it with a different set of metric de-
scriptions. Metric descriptions provide an evaluation function that
returns the “score” of a link, and a list of metrics that the routing
table needs to generate and propagate. The implementation’s rout-
ing table creation is specific to single-hop indirection, which also
eliminates the need for the flow cache. The following algorithm
fills in the multi-level routing table at the bottom of Figure 7:

MAKEROUTINGTABLE(POLICIES, METRICS, PEERS)
foreach � in POLICIES

foreach � in METRICS

foreach � 4�6O" in PEERS

foreach � L 8 in PEERS

if � .permits ,P7 4���� L 8:/
AND � .permits ,�� L 8���� 4�63"$/
	
6��.<�� .eval ,P7 4��
� L 8��
� 4�6O" / ;
if 6������34�6O" 6��OL�M�4�	
�34�6O" 6��OL�M�4 <�6 � ;
2 4�� " � L 8 <�� L 8 ;�

�
table[ � ][ � ][ � 4�6O" ] < 2&4�� " � L 8 ;

We have implemented the clique classifier discussed in Sec-
tion 4.3, and are implementing a general policy classifier. Both
provide classifiers for the resilient IP forwarder.

5.3 Monitoring Virtual Links
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ID 5: time 10

ID 5: time 15
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Figure 8: The active prober’s probing mechanism. With three
packets, both participants get an RTT sample without requir-
ing synchronized clocks.

Each RON node in an
�

-node RON monitors its
� � �

virtual links using randomized periodic probes. The active
prober component maintains a copy of a peers table with a
next probe time field per peer. When this field expires, the
prober sends a small UDP probe packet to the remote peer. Each
probe packet has a random 64-bit ID. The process used by the
prober is shown in Figure 8. When a node receives an initial probe
request from a peer, it sends response 1 to that peer, and resets its
probe timer for that peer. When the originating node sees response
1, it sends response 2 back to the peer, so that both sides get reach-
ability and RTT information from 3 packets.

The probing protocol is implemented as a RON client, which
communicates with performance database (implemented as a stand-
alone application running on the Berkeley DB3 backend) using a
simple UDP-based protocol.



RON was able to successfully detect and recover from
100% (in

����� �
) and 60% (in

����� �
) of all complete

outages and all periods of sustained high loss rates of
30% or more.

6.2

RON takes 18 seconds, on average, to route around a
failure and can do so in the face of a flooding attack.

6.2

RON successfully routed around bad throughput fail-
ures, doubling TCP throughput in 5% of all samples.

6.3

In 5% of the samples, RON reduced the loss probability
by 0.05 or more.

6.3

Single-hop route indirection captured the majority of
benefits in our RON deployment, for both outage recov-
ery and latency optimization.

6.4

Table 1: Major results from measurements of the RON testbed.

6. Evaluation
The goal of the RON system is to overcome path outages and per-

formance failures, without introducing excessive overhead or new
failure modes. In this section, we present an evaluation of how
well RON meets these goals. We evaluate the performance of the
resilient IP forwarder, which uses RON for outage detection and
loss, latency, and throughput optimization.

Our evaluation has three main parts to it. First, we study
RON’s ability to detect outages and recover quickly from them.
Next, we investigate performance failures and RON’s ability to im-
prove the loss rate, latency, and throughput of badly performing
paths. Finally, we investigate two important aspects of RON’s rout-
ing, showing the effectiveness of its one-intermediate-hop strategy
compared to more general alternatives and the stability of RON-
generated routes. Table 1 summarizes our key findings.

6.1 Methodology
Most of our results come from experiments with a wide-area

RON deployed at several Internet sites. There are
� , �=� � / differ-

ent paths between the hosts in an
�

-site RON deployment. Table 2
shows the location of sites for our experiments. We analyze two
distinct datasets—

����� �
with

� < ���
nodes and 132 distinct

paths, and
����� �

with
� < ���

nodes and 240 distinct paths. In����� �
, traceroute data shows that 36 different AS’s were tra-

versed, with at least 74 distinct inter-AS links; for
����� �

, 50 AS’s
and 118 inter-AS links were traversed. The

� , �
�
/ scaling of path

diversity suggests that even small numbers of confederating hosts
expose a large number of Internet paths to examination [18, 19].
We do not claim that our experiments and results are typical or rep-
resentative of anything other than our deployment, but present and
analyze them to demonstrate the kinds of gains one might realize
with RONs.

Several of our host sites are Internet2-connected educational
sites, and we found that this high-speed experimental network
presents opportunities for path improvement not available in the
public Internet. To demonstrate that our policy routing module
works, and to make our measurements closer to what Internet hosts
in general would observe, all the measurements reported herein
were taken with a policy that prohibited sending traffic to or from
commercial sites over the Internet2. Therefore, for instance, a
packet could travel from Utah to Cornell to NYU, but not from
Aros to Utah to NYU. This is consistent with the AUP of Internet2
that precludes commercial traffic. As a result, in our measurements,
all path improvements involving a commercial site came from only

Name Description
Aros ISP in Salt Lake City, UT
CCI .com in Salt Lake City, UT

Cisco-MA .com in Waltham, MA
* CMU Pittsburgh, PA

* Cornell Ithaca, NY
Lulea Lulea University, Sweden

MA-Cable MediaOne Cable in Cambridge, MA
* MIT Cambridge, MA
CA-T1 .com in Foster City, CA
* NYU New York, NY
* Utah Salt Lake City, UT
VU-NL Vrije Univ., Amsterdam, Netherlands

Additional hosts used in dataset
����� �

OR-DSL DSL in Corvallis, OR
NC-Cable MediaOne Cable in Durham, NC

PDI .com in Palo Alto, CA
Mazu .com in Boston, MA

Table 2: The hosts in our sixteen-node RON deployment, which
we study in detail to determine the effectiveness of RON in
practice. Asterisks indicate U.S. Universities on the Internet2
backbone. The two European universities, Lulea and VU-NL
are classified as non-Internet2.

commercial links, and never from the more reliable Internet2 links.
The raw measurement data used in this paper consists of probe

packets, throughput samples, and traceroute results. To probe,
each RON node independently repeated the following steps:

1. Pick a random node, � .
2. Pick a probe-type from one of 	���� M�4 � " �N�! �"N4)2 �	� �N�!L�6�6 � using

round-robin selection. Send a probe to node � .
3. Delay for a random time interval between 1 and 2 seconds.
This characterizes all

� , � � � / paths. For
����� �

, we analyze
10.9 million packet departure and arrival times, collected over 64
hours between 21 March 2001 and 23 March 2001. This produces
2.6 million individual RTT, one-way loss, and jitter data samples,
for which we calculated time-averaged samples averaged over a
30-minute duration.1 We also took 8,855 throughput samples from
1 MByte bulk transfers (or 30 seconds, whichever came sooner),
recording the time at which each power of two’s worth of data was
sent and the duration of the transfer.

����� �
data was collected

over 85 hours from 7 May 2001 and 11 May 2001, and consists of
13.8 million packet arrival and departure times. Space constraints
allow us to present only the path outage analysis of

����� �
, but the

performance failure results from
����� �

are similar to
����� �

[1].
Most of the RON hosts were Intel Celeron/733-based machines

running FreeBSD, with 256MB RAM and 9GB of disk space. The
processing capability of a host was never a bottleneck in any of
our wide-area experiments. Our measurement data is available at
http://nms.lcs.mit.edu/ron/.

6.2 Overcoming Path Outages
Precisely measuring a path outage is harder than one might think.

One possibility is to define an outage as the length of time during
which no packets get through the path. As a yardstick, we could
use ranges of time in which TCP implementations will time out
and shut down a connection; these vary from about 120 seconds�
Some hosts came and went during the study, so the number of

samples in the averages is not always as large as one might expect
if all hosts were continually present. More details are available in
the documentation accompanying the data.



(e.g., some Solaris versions) to 511 seconds (e.g., most BSDs).
This gives us a metric that characterizes when batch applications
will fail; from our own experience, we believe that most users run-
ning interactive applications have a far lower threshold for declar-
ing their Internet connectivity “dead.”

The problem with this small time-scale definition is that robustly
measuring it and differentiating between a high packet loss rate and
true disconnections is hard. However, since distributed applications
suffer in either case, we assert that it is operationally useful to de-
fine a path outage as the length of time over which the packet loss-
rate is larger than some threshold. We define L�� "  ��
4�,�� �P8 / < �

if
the observed packet loss rate averaged over an interval � is larger
than 8 on the path, and 0 otherwise. For values of � on the order of
several minutes, a measured value of 8 larger than 30% degrades
TCP performance by orders of magnitude, by forcing TCP into fre-
quent timeout-based retransmissions [16].
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Figure 9: Packet loss rate averaged over 30-minute intervals
for direct Internet paths vs. RON paths for the

����� �
dataset.

There are 32 points above the 8 < >
@ � horizontal line, and 20
points above 8 <�>�@ � , including overlapping points. In contrast,
RON’s loss optimizing router avoided these failures and never
experienced a 30-minute loss-rate larger than 30%.

How often is L�� "$ ��
4�,�� �!8 / < �
, and how often is RON able to

route around these situations? Figure 9 shows a scatterplot of the
improvement in loss-rate, averaged over � < �	� >�> s achieved by
RON for the

����� �
measurements. To identify outages consider

the 32 points above the 8 < >�@ � line parallel to the horizontal axis,
which signifies a condition bad enough to kill most applications.
There are no points to the right of the 8 < >
@ � line parallel to the
vertical axis. The scatterplot conceals most of the data in the lower-
left corner; we will revisit this data in the form of a CDF (Figure 11)
in the next section.

The precise number of times L�� "$ ��
4�,�� �!8 / was equal to 1 for
�S< �	� >�> s is shown in Table 3. These statistics are obtained by
calculating 13,650 30-minute loss-rate averages of a 51-hour subset
of the

����� �
packet trace, involving 132 different communication

paths. We count a “RON Win” if the time-averaged loss rate on
the Internet was 
 8 % and the loss rate with RON was � 8 %; “No
Change” and “RON Loss” are analogously defined. We find that the
number of complete communication outages was 10 in this dataset,
which means that there were 10 instances when the sampled paths
had a 100% loss rate. The numbers in this table are not the num-
ber of link or routing failures observed in the Internet across the
sampled paths; the number of such failures could have been lower

(e.g., multiple 30-minute averaged samples with a 100% loss rate
may have been the result of the same problem) or higher (e.g., a
time-averaged loss rate of 50% could have resulted from multiple
link outages of a few minutes each).

We emphasize that Internet2 paths were never used to improve a
non-Internet2 connection’s performance. In fact, the vast majority
of the problems corrected by RON involved only commercial Inter-
net connections, as is shown [in brackets] by the number of outages
when we remove all Internet2 paths from consideration.

Loss Rate RON Win No Change RON Loss
10% 526 [517] 58 [51] 47 [45]
20% 142 [140] 4 [3] 15 [15]
30% 32 [32] 0 0
40% 23 [23] 0 0
50% 20 [20] 0 0
60% 19 [19] 0 0
70% 15 [15] 0 0
80% 14 [14] 0 0
90% 12 [12] 0 0
100% 10 [10] 0 0

Table 3: Outage data for
����� �

. A “RON win” at 8 % means
that the loss rate of the direct Internet path was 
 8 % and
the RON loss rate was ��8 %. Numbers in brackets show the
contribution to the total outage number after eliminating all
the (typically more reliable) Internet2 paths, which reflects the
public Internet better.

The numbers and percentage of outages for
����� �

(Table 4)
are noticeably higher than in

����� �
, showing the variability of

path reliability in the Internet today.
����� �

had 34,000 30-minute
samples, about 2.5X more samples than

����� �
.

Loss Rate RON Win No Change Ron Loss
10% 557 165 113
20% 168 112 33
30% 131 84 18
40% 110 75 7
50% 106 69 7
60% 100 62 5
70% 93 57 1
80% 87 54 0
90% 85 48 2
100% 67 45 1

Table 4: Outage data for
����� �

.

These results show that RON offers substantial improvements
during a large fraction of outages, but is not infallible in picking
the best path at lower outage rates when 8 is between 0 and 20%.
However, in

�������
, RON’s outage detection and path selection

machinery was able to successfully route around all the outage sit-
uations! This is especially revealing because it suggests that all
the outages in

�������
were not on “edge” links connecting the site

to the Internet, but elsewhere where path diversity allowed RON
to provide connectivity. In

����� �
, about 60% of the serious out-

age situations were overcome; the remaining 40% were almost all
due to individual sites being unreachable from any other site in the
RON.2
�
The one situation where RON made things worse at a 100% loss
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Figure 10: The lower figure shows an outage from Cisco-
MA to most places on the Internet. Each notch represents a
5-minute loss rate sample; the notches on the horizontal axis
at the bottom show the a 10-minute outage. RON was able to
route around the outage, because Cisco-MA’s packet loss rate
to MIT was relatively unaffected during this time.

One way to view our data is to observe that in
����� �

there are
a total of 13,650/2 = 6,825 “path hours” represented. There were
5 “path-hours” of complete outage (100% loss rate) and 16 hours
of TCP-perceived outage ( 
 ��> % loss rate); RON routed around
all these situations. Similarly,

����� �
represents 17,000 path-hours

with 56 path-hours of complete outage and 1,314 hours of TCP-
perceived outage. RON was able to route around 33 path-hours
of complete outage and 56.5p ath-hours of TCP-perceived outage,
amounting to about 60% of complete outages and 53% of TCP-
perceived outages.

We also encountered numerous outages of shorter duration (typ-
ically three or more minutes, consistent with BGP’s detection and
recovery time scales), and were able to recover around them faster.
As one example of outage recovery, see Figure 10, which shows a
10-minute interval when no packets made it between Cisco-MA
and most of the Internet (notice the few notches on the horizontal
axis of the lower figure). Among our RON sites, the only site to
which it had any connectivity at this time was MIT. RON was able
to detect this and successfully route packets between Cisco-MA
and the commercial RON sites. The combination of the Internet2
policy and consideration of only single-hop indirection meant that
this RON could not provide connectivity between Cisco-MA and
other non-MIT educational institutions. This is because paths like
Cisco-MA � MIT � CMU were precluded by policy, while valid
paths like Cisco-MA � MIT � NC-Cable � CMU were not con-
sidered because they were too long.

6.2.1 Overhead and Outage Detection Time
The implementation of the resilient IP forwarder adds about 220

rate was when the direct path to an almost-partitioned site had a
99% loss rate!
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Figure 11: The cumulative distribution function (CDF) of the
improvement in loss rate achieved by RON. The samples detect
unidirectional loss, and are averaged over � < �	� >�> s intervals.

microseconds of latency to packet delivery, and increases the mem-
ory bandwidth required to forward data. This overhead is primarily
due to the use of divert sockets to obtain data. We do not envision
our (untuned) prototype being used on high-speed links, although
it is capable of forwarding at up to 90 Mbps [1].

The frequency of routing and probing updates leads to a trade-
off between overhead and responsiveness to a path failure. Us-
ing the protocol shown in Figure 8 RON probes every other node
every ���
	���
 ������
�������� seconds, plus a random jitter of up to�
� ���
	���
 ������
�������� extra seconds. Thus, the average time between
two probes is

�
� ���
	���
 ������
�������� seconds. If a probe is not re-

turned within ���
	���
 �
�)��

	���� seconds, we consider it lost. A
RON node sends a routing update to every other RON node ev-
ery �
	���������� ������
�������� seconds on average. Our implementation
uses the following values:

����	���
 ������
�������� 12 seconds
����	���
 �
����

	)��� 3 seconds
�
	)���
����� ������
�������� 14 seconds

When a probe loss occurs, the next probe packet is sent immedi-
ately, up to a maximum of 3 more “quick” probes. After 4 con-
secutive probe losses, we consider the path down. This process
detects an outage in a minimum of

��� ���
	���
 �
����
�	����9< ���
sec-

onds (when the scheduled probe is sent right after an outage occurs)
and a maximum of ���
	���
 ������
�������� *

�
� ����	���
 ������
�������� * ���

���
	���
 ������

	����K< ���
seconds. The average outage detection time

is ,��	 /O,�
� /C���
	���
 ������
�������� * �
� ���
	���
 �
����

	����9< � A seconds.
Sending packets through another node introduces a potential new

failure coupling between the communicating nodes and the indi-
rect node that is not present in ordinary Internet communications.
To avoid inducing outages through nodes crashing or going of-
fline, RON must be responsive in detecting a failed peer. Recov-
ering from a remote virtual-link failure between the indirect host
and the destination requires that the indirect host detect the virtual
link failure and send a routing update. Assuming small transmis-
sion delays, a single remote virtual-link failure takes on average
an additional amount of time between 0 and �
	����
�)��� ������
��������
seconds; on average this is a total of about 19 + 7 = 26 seconds.
High packet loss rates on Internet paths to other hosts and mul-
tiple virtual-link failures can increase this duration. The time to
detect a failed path suggests that passive monitoring of in-use links



will improve the single-virtual-link failure recovery case consider-
ably, since the traffic flowing on the virtual link can be treated as
“probes.”

RON probe packets are � < � A bytes long. The probe traffic
(see Figure 8) received at each node in an

�
-node RON is about���������	� ��


�
���������� ��������������� bytes/sec. RON routing traffic has � < � > bytes of

header information, plus � < � > bytes of information to describe
the path to each peer. Thus, each node sees

����� ��
 ����!#"%$&����� ��
'
� ��(�� ����) ���������������
bytes/sec of routing traffic. The bandwidth consumed by this traffic
for different RON sizes with our default timer intervals is shown
below:

10 nodes 20 nodes 30 nodes 40 nodes 50 nodes
2.2Kbps 6.6Kbps 13.32Kbps 22.25Kbps 33Kbps

For a RON of
� < ��> nodes, about 30 Kbps of active probing

overhead allows recovery between 12 and 25 seconds. Combining
probing and routing traffic, delaying updates to consolidate routing
announcements, and sending updates only when virtual link prop-
erties change past some threshhold could all be used to reduce the
amount of overhead traffic. However, the

� , �
�
/ growth in total

traffic is caused by the need to guarantee that all
� , �

�
/ virtual

links in the RON are monitored.
We believe that this overhead is reasonable for several classes

of applications that require recovery from failures within several
seconds. 30 Kbps is typically less than 10% of the bandwidth of
today’s “broadband” Internet links, and is the cost of achieving the
benefits of fault recovery in RON. However, we are currently de-
veloping techniques that will preserve these recovery times without
consuming as much bandwidth.3

6.2.2 Handling Packet Floods
To measure recovery time under controlled conditions and evalu-

ate the effectiveness of RON in routing around a flood-induced out-
age, we conducted tests on the Utah Network Emulation Testbed,
which has Intel PIII/600MHz machines on a quiescent 100Mbps
switched Ethernet with Intel Etherexpress Pro/100 interfaces. The
network topology emulated three hosts connected in a triangle, with
256 Kbps, 30 ms latency links between each pair. Indirect routing
was possible through the third node, but the latencies made it less
preferable than the direct path.

Figure 12 shows the receiver-side TCP sequence traces of three
bulk transfers. The leftmost trace is an uninterrupted TCP transfer,
which finishes in about 34 seconds. The middle trace shows the
transfer running over RON, with a flooding attack beginning at 5
seconds. RON recovers relatively quickly, taking about 13 seconds
to reroute the connection through the third node after which the
connection proceeds normally. This is consistent with our expecta-
tion of recovery between 12 and 25 seconds. The rightmost trace
(the horizontal dots) shows the non-RON TCP connection during
the flooding attack. Because TCP traffic was still getting through
at a very slow rate, BGP would not have marked this link as down.
Had it been able to do so, an analysis of the stability of BGP in
congested networks suggests that BGP recovery times are at least
an order of magnitude larger than RON’s [25]—and even so, it is
likely that a BGP route change would simply end up carrying the
flooding traffic along the new links.
�
Our opinion is that this overhead is not necessarily excessive.

Many of the packets on today’s Internet are TCP acknowledgments,
typically sent for every other TCP data segment. These “overhead”
packets are necessary for reliability and congestion control; simi-
larly, RON’s active probes may be viewed as “overhead” that help
achieve rapid recovery from failures.
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Figure 12: A receiver-side TCP sequence trace of a connection
rerouted by RON during a flooding attack on its primary link.
RON recovers in about 13 seconds. Without RON, the con-
nection is unable to get packets through at more than a crawl,
though the link is still technically “working.”

The flooding was only in one direction (the direction of the for-
ward data traffic). RON still routed the returning ACK traffic along
the flooded link; if BGP had declared the link “dead,” it would have
eliminated a perfectly usable (reverse) link. This experiment also
shows an advantage of the independent, client-specific nature of
RON: By dealing only with its own “friendly” traffic, RON route
changes can avoid re-routing flooding traffic in a way that a general
BGP route change may not be able to.

6.3 Overcoming Performance Failures
In this section we analyze

����� �
in detail for the improvements

in loss-rate, latency, and throughput provided by RON. We also
mention the higher-order improvements observed in

����� �
.

6.3.1 Loss Rate
Figure 11 summarizes the

����� �
observed loss rate results, pre-

viously shown as a scatterplot in Figure 9, as a CDF. RON im-
proved the loss rate by more than 0.05 a little more than 5% of the
time. A 5% improvement in loss rate (in absolute terms) is substan-
tial for applications that use TCP. Upon closer analysis, we found
that the outage detection component of RON routing was instru-
mental in detecting bad situations promptly and in triggering a new
path.

This figure also shows that RON does not always improve perfor-
mance. There is a tiny, but noticeable, portion of the CDF to the left
of the

� >
@ > � region, showing that RON can make loss rates worse
too. There are two reasons for this: First, RON uses a longer-term
average of packet loss rate to determine its low-loss routes, and
it may mispredict for a period after link loss rates change. Sec-
ond, and more importantly, the RON router uses bi-directional in-
formation to optimize uni-directional loss rates. For instance, we
found that the path between MIT and CCI had a highly asymmet-
ric loss rate, which led to significant improvements due to RON
on the MIT � CCI path, but also infrequent occurrences when the
loss rate on the CCI � MIT path was made worse by RON. This in-
dicates that we should modify our loss-rate estimator to explicitly
monitor uni-directional loss rates.

In
����� �

, 5% of the samples experienced a 0.04 improvement
in loss rate.



6.3.2 Latency
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Internet latency. The clustering and banding of the samples
shows that the latency improvements shown in Figure 13 come
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Figure 13 shows the CDF of 39,683 five-minute-averaged round-
trip latency samples, collected across the 132 communicating paths
in
�������

.4 The bold RON line is generally above the dotted In-
ternet line, showing that RON reduces communication latency in
many cases despite the additional hop and user-level encapsulation.
RON improves latency by tens to hundreds of milliseconds on the
slower paths: 11% of the averaged samples saw improvements of
40 ms or more. Figure 14 shows the same data as a scatterplot of
Internet round-trip latencies against the direct Internet paths. The
points in the scatterplot appear in clustered bands, showing the im-
provements achieved on different node pairs at different times. This
shows that the improvements of Figure 13 are not on only one or a
small number of paths.

In
����� �

, 8.2% of the averaged samples saw improvements of
40 ms or more.

�

During long outages, RON may find paths when a direct path is
non-existent; we eliminated 113 such samples.

6.3.3 TCP Throughput
RON also improves TCP throughput between communicating

nodes in many cases. RON’s throughput-optimizing router does
not attempt to detect or change routes to obtain small changes in
throughput, since underlying Internet throughput is not particularly
stable on most paths; rather, it seeks to obtain at least a 50% im-
provement in throughput on a RON path.

To compare a throughput-optimized RON path to the direct Inter-
net path, we repeatedly took four sequential throughput samples—
two with RON and two without—on all 132

����� �
paths, and

compared the ratio of the average throughput achieved by RON
to the average throughput achieved directly over the Internet. Fig-
ure 15 shows the distribution of these ratios. Out of 2,035 paired
quartets of throughput samples, only 1% received less than 50%
of the direct-path throughput with RON, while 5% of the samples
doubled their throughput. In fact, 2% of the samples increased their
throughput by more than a factor of five, and 9 samples improved
by a factor of 10 during periods of intermittent Internet connectivity
failures.
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Figure 15: CDF of the ratio of throughput achieved via RON
to that achieved directly via the Internet shown for 2,035 sam-
ples. RON markedly improved throughput in near-outage con-
ditions.

6.4 RON Routing Behavior
We instrumented a RON node to output its link-state routing ta-

ble every 14 seconds on average, with a random jitter to avoid pe-
riodic effects. We analyzed a 16-hour time-series trace containing
5,616 individual snapshots of the table, corresponding to 876,096
different pairwise routes.

6.4.1 RON Path Lengths
Our outage results show that RON’s single-hop indirection

worked well for avoiding problematic paths. If there is a problem
with the direct Internet path between two nodes 6 and " , it is often
because some link � , 6 �$"N/ between them is highly congested or is
not working. As long as there is even one RON node, � , such that
the Internet path between 6 and � , and the Internet path between �
and " , do not go through �C, 6�� " / , then RON’s single-hop indirection
will suffice. Of course, if all paths from 6 to the other RON nodes
traverse � , 6 �$"N/ , or if the paths from every RON node to " traverse
� , 6 �$"N/ , then the RON cannot overcome the outage of � , 6 �$" / . How-



ever, if the intersection of the set of nodes in the RON reachable
from 6 without traversing � , 6 �C" / , and the set of nodes in the RON
from which " can be reached without traversing �C, 6�� " / , is not null,
then single-hop indirection will overcome this failure. We found
that the underlying Internet topology connecting the deployed RON
nodes had enough redundancy such that when faults did not occur
on a solitary “edge” link connecting a site to the Internet, the inter-
section of the above sets was usually non-null. However, as noted
in Section 6.2, policy routing could make certain links unusable
and the consideration of longer paths will provide better recovery.

Single-hop indirection suffices for a latency-optimizing RON
too. We found this by comparing single-hop indirection with a
general shortest-paths algorithm on the link-state trace5. The di-
rect Internet path provided the best average latency about

� � @ ��� of
the time. In addition, the remaining � � @ ��� of the time when RON’s
overlay routing was involved, the shortest path involved only one
intermediate node essentially all the time: about 98%.

The following simple (and idealized) model provides an expla-
nation. Consider a source node 6 and a destination node " in a
RON with

�
other nodes. Denote by 8 
 the probability that the

lowest-latency path between node 6 and another node in the RON
is the direct Internet path between them. Similarly, denote by 8�� the
probability that the lowest-latency path between node � ,��<�6�/ in the
RON and " is the direct link connecting them. We show that even
small values of these probabilities, under independence assump-
tions (which are justufiable if RON nodes are in different AS’s),
lead to at most one intermediate hop providing lowest-latency paths
most of the time.

The probability that a single-intermediate RON path is optimal
(for latency) given that the direct path is not optimal is given by�9� R���
	 � , �9� 8 
 8�� / , since this can only happen if none of the
other

�
nodes has a direct-Internet shortest path from 6 and to " .

This implies that the probability that either the direct path, or a
single-hop intermediate path is the optimal path between 6 and "
is
� � , � � 8 
 / R���
	 � , � � 8 
 8�� / . In our case, 8 
 and 8�� are both

around >
@ � , and
�

is 10 or more, making this probability close to
1. In fact, even relatively small values of 8 
 and 8�� cause this to
happen; if 8 
�
 8�� 
 ��� � � , then the optimal path is either the
direct path or has one intermediate RON hop with probability at
least

� � , �.� 8
�

 / �

" �
< � � , � � ��� � / �

" �

 � � 4

���
, which

can be made arbitrarily close to 1 for suitable � .

6.4.2 RON Route Stability
As a dynamic, measurement-based routing system, RON creates

the potential for instability or route flapping. We simulated RON’s
path selection algorithms on the link-state trace to investigate route
stability. The “Changes” column of Table 5 shows the number of
path changes that occurred as a function of the hysteresis before
triggering a path change. The other columns show the persistence
of each RON route, obtained by calculating the number of con-
secutive samples over which the route remained unchanged. The
average time between samples was 14 seconds.

The median run-length at 5% hysteresis was 5, about 70 seconds.
The sampling frequency of the link-state information does not pre-
clude undetected interim changes, but the longer run-lengths indi-
cate reasonable stability with good probability. 5% and 10% hys-
teresis values appear to provide a good trade-off between stability
and responsiveness. The “random process” row shows the expected
number of route changes if the routes were flapping at random.

6.4.3 Application-specific Path Selection�
We did not analyze the effects of the no-Internet2 policy here, and

only considered latency optimization without outage avoidance.

Hysteresis # Changes Avg Med Max
0% 26205 19.3 3 4607
5% 21253 24 5 3438
10% 9436 49 10 4607
25% 4557 94 17 5136
50% 2446 138 25 4703
Random process 260,000 2 1 � 16

Table 5: Number of path changes and run-lengths of routing
persistence for different hysteresis values.

There are situations where RON’s latency-, loss-, and
throughput-optimizing routers pick different paths. As an exam-
ple, RON was able to find a lower-latency path between CCI and
MA-Cable that had nearly three times the loss rate:

CCI � MA-Cable MIT � Cisco-MA
Direct 112ms, 0.77% loss 38ms, 12.1% loss
Lat-Opt 100ms, 2.9% loss 43ms, 10.5% loss
Loss-Opt 114ms, 0.6% loss 189ms, 3.62%

In contrast, between MIT and Cisco-MA, RON’s latency opti-
mizer made the latency worse because the outage detector was
triggered frequently. The loss-optimizing router reduced the loss
rate significantly, but at the cost of a five-fold increase in latency.
The existence of these trade-offs (although we do not know how
frequently they occur in the global Internet), and the lack of a
single, obvious, optimal path reinforces our belief that a flexible,
application-informed routing system can benefit applications.

7. Discussion
This section discusses three common criticisms of RONs relating

to routing policy, scalability, and operation across Network Address
Translators (NATs) and firewalls.

RON creates the possibility of misuse or violation of AUPs and
BGP transit policies. RON provides a flexible policy mechanism
that allows users to implement better network policies than those
permitted by BGP. Because RONs are deployed between small
groups of cooperating entities, they cannot be used to find “back-
doors” into networks without the permission of an authorized user
of that network. Users who violate network policy today are dealt
with at a human level, and that should remain unchanged with RON
deployment. On the positive side, if an Overlay ISP buys band-
width from traditional ISPs and routes data using a RON, it can
express and enforce sophisticated policy routes.

Preventing misuse of an established RON requires cryptographic
authentication and access controls that we have not yet imple-
mented. However, participating in a RON implies trust that the
other participants will forward your data correctly and will not
abuse your forwarding. We believe that when RONs are small
enough that the consequences of forming a RON with a malicious
entity can be resolved at an administrative (rather than technolog-
ical) level, but the widespread deployment of RONs may require
other mechanisms to detect misbehaving RON peers.

Although the design we present scales to about 50 nodes, we as-
sert that many important distributed applications can benefit from
it. A corporation with tens of sites around the world could greatly
improve the reachability between its sites by using a RON-based
VPN, without using expensive dedicated links. Multi-person col-
laborations are often smaller than a hundred participants, and a
RON-based conferencing application could provide better avail-
ability and performance to the participants.



One potential criticism of RON is that while they may work well
in limited settings, they may not when they start to become widely
popular. We have shown in this paper that the RON design trades
scalability for improved reliability because it enables the aggressive
maintenance and exploration of alternate paths, facilitating prompt
outage detection and recovery. If RONs become popular, we do not
expect this fundamental trade-off to change, but we expect to see
many RONs co-existing and competing on Internet paths. Under-
standing the interactions between them and investigating routing
stability in an Internet with many RONs is an area for future work.

NATs cause two problems for RON. The first problem relates
to naming—a host behind a NAT does not usually have a globally
reachable IP address or DNS name. One way to solve this prob-
lem is to cache a “reply to” address/port pair for the host behind a
NAT; when a RON node receives a packet from another whose IP
address (not globally visible) is � , but whose RON address says it
comes from the globally visible address � and port 8 , the receiving
node creates an entry that says “To reach RON node � , send to �
at port 8 .” The RON probe traffic will suffice to keep the NAT’s
port-mapping entry alive. The second problem posed by NATs is
that if two hosts are both behind NATs, they may not be able to
communicate directly. RON will perceive this as an outage, and
attempt to route around it. This will establish connectivity between
the said hosts, but may result in sub-optimal routing.

8. Conclusion
This paper showed that a Resilient Overlay Network (RON) can

greatly improve the reliability of Internet packet delivery by de-
tecting and recovering from outages and path failures more quickly
than current inter-domain routing protocols. A RON works by de-
ploying nodes in different Internet routing domains, which cooper-
atively route packets for each other. Each RON is an application-
layer overlay network; nodes in a RON monitor the quality of the
underlying Internet between themselves and use this information
to route packets according to application-specified routing metrics
either via a direct Internet path or by way of other RON nodes.

We studied the benefits of RON by evaluating two datasets col-
lected from our sixteen-node wide-area deployment. We found
that RON was able to overcome 100% (in

����� �
) and 60% (in����� �

) of the several hundred significant observed outages. Our
implementation takes 18 seconds, on average, to detect and recover
from a fault, significantly better than the several minutes taken by
BGP-4. RONs also overcome performance failures, substantially
improving the loss rate, latency, and TCP throughput of badly per-
forming Internet paths. A noteworthy finding from our experiments
is that forwarding packets via at most one intermediate RON node
is sufficient both for fault recovery and for latency improvements.

These results suggest that RON is a good platform on which a
variety of resilient distributed Internet applications may be devel-
oped. In addition, we believe that the RON platform will allow
researchers developing new routing protocols to test and evaluate
their schemes under real-world conditions.

Acknowledgments
We are grateful to all the people and institutions who hosted RON
sites: M. Biesele, K. Bot, M. Chang, M. Cutler, J. Finley, J. Jung, L.
Larzon, D. Mazieres, N. Miller, C. North, C. Pohlabel, R. van Re-
nesse, M. Sanders, S. Shira, and E. Sit. We thank Jay Lepreau and
his group for the Utah Network Emulation Testbed. We also thank
David Karger for several useful discussions on RON. John Jannotti,
David Tennenhouse (our shepherd), and the SOSP reviewers pro-
vided useful comments that improved this paper.

References
[1] ANDERSEN, D. G. Resilient Overlay Networks. Master’s thesis,

Massachusetts Institute of Technology, May 2001.
[2] BALAKRISHNAN, H., SESHAN, S., STEMM, M., AND KATZ, R.

Analyzing Stability in Wide-Area Network Performance. In Proc.
ACM SIGMETRICS (Seattle, WA, June 1997), pp. 2–12.

[3] CHANDRA, B., DAHLIN, M., GAO, L., AND NAYATE, A.
End-to-end WAN Service Availability. In Proc. 3rd USITS (San
Francisco, CA, 2001), pp. 97–108.

[4] CLARK, D. Policy Routing in Internet Protocols. Internet
Engineering Task Force, May 1989. RFC 1102.

[5] COLLINS, A. The Detour Framework for Packet Rerouting. Master’s
thesis, University of Washington, Oct. 1998.

[6] ERIKSSON, H. Mbone: The Multicast Backbone. Communications
of the ACM 37, 8 (1994), 54–60.

[7] FLOYD, S., HANDLEY, M., PADHYE, J., AND WIDMER, J.
Equation-Based Congestion Control for Unicast Applications. In
Proc. ACM SIGCOMM (Stockholm, Sweden, Sept. 2000), pp. 43–54.

[8] GOYAL, M., GUERIN, R., AND RAJAN, R. Predicting TCP
Throughput From Non-invasive Data. (Unpublished,
http://www.seas.upenn.edu:
8080/˜guerin/publications/TCP_model.pdf).

[9] GUARDINI, I., FASANO, P., AND GIRARDI, G. IPv6 Operational
Experience within the 6bone. In Proc. Internet Society (INET) Conf.
(Yokohama, Japan, July 2000). http://www.isoc.org/
inet2000/cdproceedings/1e/1e_1.htm.

[10] HAGENS, R., HALL, N., AND ROSE, M. Use of the Internet as a
Subnetwork for Experimentation with the OSI Network Layer.
Internet Engineering Task Force, Feb 1989. RFC 1070.

[11] KHANNA, A., AND ZINKY, J. The Revised ARPANET Routing
Metric. In Proc. ACM SIGCOMM (Austin, TX, Sept. 1989),
pp. 45–56.

[12] LABOVITZ, C., AHUJA, A., BOSE, A., AND JAHANIAN, F. Delayed
Internet Routing Convergence. In Proc. ACM SIGCOMM
(Stockholm, Sweden, September 2000), pp. 175–187.

[13] LABOVITZ, C., MALAN, R., AND JAHANIAN, F. Internet Routing
Instability. IEEE/ACM Transactions on Networking 6, 5 (1998),
515–526.

[14] MCCANNE, S., AND JACOBSON, V. The BSD Packet Filter: A New
Architecture for User-Level Packet Capture. In Proc. Winter ’93
USENIX Conference (San Diego, CA, Jan. 1993), pp. 259–269.

[15] The North American Network Operators’ Group mailing list archive.
http://www.cctec.com/maillists/nanog/.

[16] PADHYE, J., FIROIU, V., TOWSLEY, D., AND KUROSE, J.
Modeling TCP Throughput: A Simple Model and its Empirical
Validation. In Proc. ACM SIGCOMM (Vancouver, Canada,
September 1998), pp. 303–323.

[17] PARTRIDGE, C. Using the Flow Label Field in IPv6. Internet
Engineering Task Force, 1995. RFC 1809.

[18] PAXSON, V. End-to-End Routing Behavior in the Internet. In Proc.
ACM SIGCOMM ’96 (Stanford, CA, Aug. 1996), pp. 25–38.

[19] PAXSON, V. End-to-End Internet Packet Dynamics. In Proc. ACM
SIGCOMM (Cannes, France, Sept. 1997), pp. 139–152.

[20] POSTEL, J. B. Transmission Control Protocol. Internet Engineering
Task Force, September 1981. RFC 793.

[21] REKHTER, Y., AND LI, T. A Border Gateway Protocol 4 (BGP-4).
Internet Engineering Task Force, 1995. RFC 1771.

[22] SAVAGE, S., ANDERSON, T., ET AL. Detour: A Case for Informed
Internet Routing and Transport. IEEE Micro 19, 1 (Jan. 1999), 50–59.

[23] SAVAGE, S., COLLINS, A., HOFFMAN, E., SNELL, J., AND
ANDERSON, T. The End-to-End Effects of Internet Path Selection.
In Proc. ACM SIGCOMM (Boston, MA, 1999), pp. 289–299.

[24] SESHAN, S., STEMM, M., AND KATZ, R. H. SPAND: Shared
Passive Network Performance Discovery. In Proc. 1st USITS
(Monterey, CA, December 1997), pp. 135–146.

[25] SHAIKH, A., KALAMPOUKAS, L., VARMA, A., AND DUBE, R.
Routing Stability in Congested Networks: Experimentation and
Analysis. In Proc. ACM SIGCOMM (Stockholm, Sweden, 2000),
pp. 163–174.

[26] TOUCH, J., AND HOTZ, S. The X-Bone. In Proc. 3rd Global
Internet Mini-Conference (Sydney, Australia, Nov. 1998), pp. 75–83.


