COS426 Precept 8

Rasterizer

Presented by: Riley Simmons-Edler
Rasterizer

• Render a lot of triangles in the image plane
 • Projection – orthogonal (naïve) or perspective
 • Which triangles are in the front? (z buffering)
 • How does the triangle react to the light? (reflection model)
 • Meshes are coarse. How to cheat our eyes? (interpolation)
 • How does the material affect the color? (texture mapping)
 • How to add fine details at low cost? (normal mapping)
Render a Pixel

• To render a pixel, we need the following ingredients.
 • normal of the pixel in the world coordinate system (interpolate using the three vertex normals and barycentric coordinates).
 • position of the pixel in the world coordinate system (interpolate using the three vertex positions and barycentric coordinates).
 • view position (where your camera/eye is, in the world coordinate system).
 • light position(s) (where the light source is, in the world coordinate system).
 • material of the pixel:
 • case 1: material is uniform (k_a, k_d, k_s, shininess).
 • case 2: texture maps. (we need uv coordinates to look up k_a, k_d, k_s, shininess of the pixel).
 • uv coordinates: (interpolate using the three uv coordinates and barycentric coordinates).
• All ingredients are essential for Phong reflection model.
GUI & Demo

COS426 Assignment 3B
Rendering: Rasterization

Student Name <NetID>
Perspective Projection

objects must be on the negative z axis, otherwise cannot be seen.
Which triangles should we render? – near and far planes

1. n and f are usually positive values. But near plane locates at $-n$ and far plane locates at $-f$.
2. if you z_{cam} is out side $[-f, -n]$, skip that triangle.
3. project triangle vertices using the projection matrix.
Graphics Projection Transform

• Map x-component of a point to (-1, 1)
• Map y-component of a point to (-1, 1)
• Map z-component of a point from (near, far) to (-1, 1)
• Believe it or not, this matrix does the transformation:

$$\begin{pmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{t-b} & 0 \\
0 & \frac{2n}{t-b} & \frac{r-l}{t-b} & 0 \\
0 & 0 & \frac{f+n}{f-n} & \frac{2fn}{f-n} \\
0 & 0 & -1 & 0 \\
\end{pmatrix}$$
Use the Projection Matrix

• What is the fourth dimension?
 • This matrix is in homogeneous form and it should be multiplied with homogeneous coordinates: \((x, y, z, 1)^T\). Then you get \((x', y', z', w)\).
 • transform it back -> \((x'/w, y'/w, z'/w)\)
 • if \(z\) is outside (near, far), don’t do the projection because it can’t be seen.

\[
\begin{pmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{r-l}{t+b} & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n} \\
0 & 0 & -1 & 0
\end{pmatrix}
\]
Changing Camera Pose

• This projection matrix can only be directly used when the camera coordinate is perfectly aligned with the world coordinate. What if the camera is moving?

• We represent the pose of the camera in the world space as: \([R|t]\), also in homogeneous form (4x4 matrix). \([R|t]\) transforms a point represented in the camera coordinate system to the world coordinate system.

• But we want to transform a point in the world coordinate system to the camera coordinate system. So we simply use \(\text{inv}(\[R|t]\)).

• Concatenate with the previous projection matrix:

\[
\begin{pmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{t-b} & 0 \\
0 & \frac{2n}{t-b} & \frac{t+b}{f+n} & 0 \\
0 & 0 & -1 & -2fn
\end{pmatrix}
\]

• \(x \text{ inv}([R|t])\) (given as viewMat in the code)
Transformation

$$\begin{pmatrix} x_{cam} \\ y_{cam} \\ z_{cam} \\ 1 \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13} & T_x \\ R_{21} & R_{22} & R_{23} & T_y \\ R_{31} & R_{32} & R_{33} & T_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

homogeneous representation.
Why? it’s easier to concatenate square matrices.
Mixing Projection and Transformation

\[
\begin{pmatrix}
x' \\
y' \\
z' \\
w
\end{pmatrix} =
\begin{pmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{t-b} & 0 \\
0 & \frac{2n}{t-b} & \frac{r+l}{t-b} & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n} \\
0 & 0 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
R_{11} & R_{12} & R_{13} & T_x \\
R_{21} & R_{22} & R_{23} & T_y \\
R_{31} & R_{32} & R_{33} & T_z \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
1
\end{pmatrix}
\]

\[w = -z_{cam}!\]
Barycentric Coordinates

• Any point in the triangle can be represented as a linear combination of the three vertices
 • Q is a linear combination of A2 and A3
 • P is a linear combination of Q and A1
Barycentric Coordinates

- \(P = \alpha A_1 + \beta A_2 + \gamma A_3 \)
- \(\alpha + \beta + \gamma = 1 \)
- if any of \(\alpha, \beta, \gamma < 0 \), \(P \) is not in the triangle.
- barycentric coordinate of \(A_1 \) is computed using \(A_2 \) and \(A_3 \)

See this article for detailed computation:
https://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/
Use Barycentric Coordinates

• Weight average of the values on the 3 coordinates
 • Interpolate z coordinate
 • Interpolate color
 • Interpolate normal direction
 • Interpolate texture coordinates
Pipeline of Rendering a Triangle

In the world coordinate system: verts[], normals[], uvs[] (optional), material (optional).

In the camera coordinate system: projectedVerts[].
Pipeline of Rendering a Triangle (Flat Shader)

For a pixel \((x, y)\) in the bounding box:

1. determine whether it’s inside the triangle (barycentric coordinates). If not, go to the next pixel.
2. use barycentric coordinates to interpolate \(z'/w\) for the pixel.
3. If \(z'/w\) is not smaller (closer) than \(z\text{Buffer}[x][y]\), go to the next pixel.
4. If the pixel survives, render the pixel!
UV coordinates

• Can be computed automatically (a lot of papers). None of them is perfect.
• Done by artists.
• Specify where a triangle vertex should map to in the texture map.
• Not always available! Make sure to check whether uvs[] is defined or not.
Q&A