COS426 Precept8

Rasterizer

Presented by: Riley Simmons-Edler

Rasterizer

- Render a lot of triangles in the image plane
 - Projection orthogonal (naïve) or perspective
 - Which triangles are in the front? (z buffering)
 - How does the triangle react to the light? (reflection model)
 - Meshes are coarse. How to cheat our eyes? (interpolation)
 - How does the material affect the color? (texture mapping)
 - How to add fine details at low cost? (normal mapping)

Render a Pixel

- To render a pixel, we need the following ingredients.
 - normal of the pixel in the world coordinate system (interpolate using the three vertex normals and barycentric coordinates).
 - position of the pixel in the world coordinate system (interpolate using the three vertex positions and barycentric coordinates).
 - view position (where your camera/eye is, in the world coordinate system).
 - light position(s) (where the light source is, in the world coordinate system).
 - material of the pixel:
 - case 1: material is uniform (k_a, k_d, k_s, shininess).
 - case 2: texture maps. (we need uv coordinates to look up k_a, k_d, k_s, shininess of the pixel).
 - uv coordinates: (interpolate using the three uv coordnates and **barycentric coordinates**).
- All ingredients are essential for Phong reflection model.

GUI & Demo

COS426 Assignment 3B Rendering: Rasterization

Switch to: Writeup

Student Name <NetID>

Perspective Projection

objects must be on the negative z axis, otherwise cannot be seen.

Which triangles should we render? – near and far planes

1. n and f are usually positive values. But near plane locates at –n and far plane locates at –f.

- 2. if you z_{cam} is out side [-f, -n], skip that triangle.
- 3. project triangle vertices using the projection matrix.

Graphics Projection Transform

- Map x-component of a point to (-1, 1)
- Map y-component of a point to (-1, 1)
- Map z-component of a point from (near, far) to (-1, 1)
- Believe it or not, this matrix does the transformation:

$$\begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

Use the Projection Matrix

- What is the fourth dimension?
 - This matrix is in homogeneous form and it should be multiplied with homogeneous coordinates: (x, y, z, 1)^T. Then you get (x', y', z', w).
 - transform it back -> (x'/w, y'/w, z'/w)
 - if z is outside (near, far), don't do the projection because it can't be seen.

$$\begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{pmatrix}$$

Changing Camera Pose

- This projection matrix can only be directly used when the camera coordinate is perfectly aligned with the world coordinate. What if the camera is moving?
- We represent the pose of the camera in the world space as: [R|t], also in homogeneous form (4x4 matrix). [R|t] transforms a point represented in the camera coordinate system to the world coordinate system.
- But we want to transform a point in the world coordinate system to the camera coordinate system. So we simply use inv([R|t]).
- Concatenate with the previous projection matrix:
 - x inv([R|t] (given as viewMat in the code)

$$\begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{pmatrix}$$

Transformation

homogeneous representation.

Why? it's easier to concatenate square matrices.

Mixing Projection and Transformation

$$w = -z_{cam}!$$

Barycentric Coordinates

- Any point in the triangle can be represented as a linear combination of the three vertices
 - Q is a linear combination of A2 and A3
 - P is a linear combination of Q and A1

Barycentric Coordinates

•
$$P = \alpha A_1 + \beta A_2 + \gamma A_3$$

- $\alpha + \beta + \gamma = 1$
- if any of α , β , $\gamma < 0$, P is not in the triangle.
- barycentric coordinate of A_1 is computed using A_2 and A_3

See this article for detailed computation:

https://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

Use Barycentric Coordinates

- Weight average of the values on the 3 coordinates
 - Interpolate z coordinate
 - Interpolate color
 - Interpolate normal direction
 - Interpolate texture coordinates

Pipeline of Rendering a Triangle

In the world coordinate system: verts[], normals[], uvs[](optional), material(optional).

In the world coordinate system: verts[], normals[], uvs[](optional), material(optional). In the camera coordinate system: projectedVerts[].

Pipeline of Rendering a Triangle (Flat Shader)

For a pixel (x, y) in the bounding box:

- determine whether it's inside the triangle (barycentric coordinates).if not, go to the next pixel.
- use barycentric coordinates to interpolate z'/w for the pixel.
- If z'/w is not smaller(closer) than zBuffer[x][y], go to the next pixel.
- 4. If the pixel survives, render the pixel!

UV coordinates

- Can be computed automatically (a lot of papers). None of them is perfect.
- Done by artists.
- Specify where a triangle vertex should map to in the texture map.
- Not always available! Make sure to check whether uvs[] is defined or not.

