COS426 Precept8

Rasterizer
Presented by: Riley Simmons-Edler

Rasterizer

* Render a lot of triangles in the image plane
* Projection - orthogonal (naive) or perspective
* Which triangles are in the front? (z buffering)
 How does the triangle react to the light? (reflection model)
* Meshes are coarse. How to cheat our eyes? (interpolation)
 How does the material affect the color? (texture mapping)
* How to add fine details at low cost? (normal mapping)

Render a Pixel

* To render a pixel, we need the following ingredients.

 normal of the pixel in the world coordinate system
(interpolate using the three vertex normals and barycentric
coordinates).

 position of the pixel in the world coordinate system
(interpolate using the three vertex positions and barycentric
coordinates).

* view position (where your camera/eye is, in the world
coordinate system).

* light position(s) (where the light source is, in the world
coordinate system).

* material of the pixel:
e case 1: material is uniform (k_a, k d, k_s, shininess).

e case 2: texture maps. (we need uv coordinates to look up
k a, k d, k_s, shininess of the pixel).

e uv coordinates: (interpolate using the three uv coordnates
and barycentric coordinates).

* All ingredients are essential for Phong reflection model.

GUI & Demo

Push Mesh

I Resolution
I Shading Model
Ambient #000000

Shininess

Close Controls

v Mesh 0

I Mesh File afrhead.obj S

Use Material
Delete

v Mesh 1

I Mesh File afreye.obj
Use Material

Delete

Close Controls

7 FPS (7-80)

Perspective Projection

objects must be on the negative z axis, otherwise cannot be seen.

Center of

Projection /7 >
= lew

Which triangles should we render? -
near and far planes

+

[Song Ho Ahn]

1. n and f are usually positive values. But near plane locates at —n
and far plane locates at —f.

2. if you z,4,, is out side [-f, -n], skip that triangle.

3. project triangle vertices using the projection matrix.

Graphics Projection Transform

* Map x-component of a point to (-1, 1)
 Map y-component of a point to (-1, 1)
 Map z-component of a point from (near, far) to (-1, 1)
e Believe it or not, this matrix does the transformation:

2 +1

T 20 ;Fé ’
mn

0 t—>b t—>b 0

0 0 J+tn 2fn

0

f—n f—n
0 —1 0

Use the Projection Matrix

 What is the fourth dimension?

* This matrix is in homogeneous form and it should be
multiplied with homogeneous coordinates: (x, y, z, 1)”T. Then

you get (x’, y’, Z’, w).

* transform it back -> (x'/w, y'/w, z'/w)

 if z is outside (near, far), don’t do the projection because it
can’t be seen.

2 [
= 20 g;f,)
n
O
0 0 f—n f—n
0 0 —1 0

Changing Camera Pose

* This projection matrix can only be directly used when
the camera coordinate is perfectly aligned with the
world coordinate. What if the camera is moving?

* We represent the pose of the camera in the world space
as: [R]t], also in homogeneous form (4x4 matrix). [R|t]
transforms a point represented in the camera
coordinate system to the world coordinate system.

* But we want to transform a point in the world
coordinate system to the camera coordinate system. So
we simply use inv([R]|t]).

* Concatenate with the previous projection matrix:

2n Lt 0
" [" " e mn T‘_b
e x inv([R|t] (given as viewMat in the code) | 0 & & O
0 0 o 2
f—n f—n
0 0 = 0

Transformation

Xcam (R Rip Rz I X\
Yeam | _ Ry Ryp Rz T « Y
Zcam R31 R3z R3z T: Z |
N1/ Lo o o 1, \1/

/

homogeneous representation.
Why? it’'s easier to concatenate square matrices.

Mixing Projection and
Transformation

2 [
n
vy | 0 = = 0
P 0 0 _fAn 2fn
Z f—n f—n
" 0o 0 -1 0

(R11 Rip Rz 1))
Ry Ry Roz 1y
R31 R332 R3zz T3

L0 0 0 1

_N < X

Barycentric Coordinates

* Any point in the triangle can be represented as a linear
combination of the three vertices

* Qis a linear combination of A2 and A3
* Pis a linear combination of Q and Al

Barycentric Coordinates

°P - (XAl‘l‘ﬁAz‘l‘yAg
cat+pf+y=1
eifanyofa,f,y <0, Pis not in the triangle.

* barycentric coordinate‘i of A, is computed using A, andﬁlA3
1] I

A, Aj

See this article for detailed computation:
https://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

Use Barycentric Coordinates

* Weight average of the values on the 3
coordinates

* Interpolate z coordinate

* Interpolate color

* Interpolate normal direction

* Interpolate texture coordinates

Pipeline of Rendering a Triangle

In the world
coordinate system:
verts[], normals[],
uvs[](optional),
material(optional).

In the world

coordinate system:

verts[], normals|],
uvs[](optional),

material(optional).

In the camera

coordinate system:

projectedVerts|].

—

SN

/

i

«

Pipeline of Rendering a Triangle (Flat
Shader)

For a pixel (x, y) in the
\ bounding box:

o >.
/ 1. determine whether it's
/ inside the triangle

(barycentric
coordinates).if not, go to
the next pixel.

2. use barycentric
coordinates to interpolate
z'/w for the pixel.

3. If z'/w is not smaller(closer)
than zBuffer[x][y], go to the
next pixel.

4. If the pixel survives, render
the pixel!

UV coordinates

* Can be computed automatically (a lot of papers). None
of them is perfect.
* Done by artists.

* Specify where a triangle vertex should map to in the
texture map.

* Not always available! Make sure to check whether uvs|]
Is defined or not.

Q&A

	Slide 1
	Rasterizer
	Render a Pixel
	GUI & Demo
	Perspective Projection
	Which triangles should we render? – near and far planes
	Graphics Projection Transform
	Use the Projection Matrix
	Changing Camera Pose
	Transformation
	Mixing Projection and Transformation
	Barycentric Coordinates
	Barycentric Coordinates
	Use Barycentric Coordinates
	Pipeline of Rendering a Triangle
	Pipeline of Rendering a Triangle (Flat Shader)
	UV coordinates
	Slide 19

