COS 426 : Precept 5
Working with Half-Edge
Agenda

- How to tackle implementation of more advanced features
- Specific discussion
 - Truncate
 - Extrude
 - Triangle Subdivision
 - Bevel(?)
 - Quad Subdivision(?)
How do I start?

- Some of the operations are tricky to implement!
- Think locally - independence of operations
 - Modifying a vertex/edge/face should not influence other primitives
- Start small
 - Just work on one primitive at a time
- Decouple topology and geometry
 - What are necessary topological changes?
 - What are necessary geometrical changes?
 - Apply geometrical change after topological
Caution is advised

- Need to think ahead
 - What data might change?
 - Do you need to store it beforehand?
- Pen and paper!
 - Draw things out, make sure you understand what is happening
- Count!
 - After applying your operation how many new vertices you expect to see?
Truncate

- Corners of the shape are cutoff
- Main primitive
 - Vertex
- How many new vertices?
 - +2 per vertex
- How many new faces?
 - +1 per vertex
Truncate - topology

- Start locally - just consider single vertex
- Need to add two new vertices, and a single new face

Start

2 x SplitEdge

Split Face
Truncate - topology

- Start locally - just consider single vertex
- Need to add two new vertices, and a single new face

Those were only topological changes! New blue vertices should be simply put at the location of the green one!
Truncate - geometry

- We need to move vertices along halfedges
 - You may want to store the respective offset vectors per vertex before hand
 - As you modify one vertex lengths of edges will change!
Extrude

- Each face is moved along its normal, with new faces stitched to original face position

- Main primitive
 - Face
 - How many new vertices?
 - \(+n \) per \(n \)-gon
 - How many new faces?
 - \(+n \) per \(n \)-gon
Extrude - topology

• Again, following figures are for illustration only, new vertices should be added at a location of the old ones!
Extrude - topology

- Extrude is bit harder - you need to perform adding new geometry and relinking manually.

- Desired:
Extrude - topology

- Let’s change notation a bit, introduce old and new vertices
Let’s change notation a bit, introduce old and new vertices:

\[\text{nv}_i = \text{splitEdgeMakeVert}(\text{ov}_i, \text{ov}_{i+1}, 0); \]
Extrude - topology

nf_i = splitFaceMakeEdge();
Extrude - topology

Want to connect up the new vertices

\[nf_5 = \text{splitFaceMakeEdge}(f, nv_0, nv_3); \]
Extrude - topology

Want to delete old edge

Should be stored before hand

\[\text{he}_4 = \text{old_halfedges}[0]; \]

\[\text{joinFaceKillEdgeSimple(}\text{he}_6); \]
Extrude - geometry

- Actually, very simple

- Move each nv_i by $factor \times f.normal$
Triangle Topology

- Each face becomes 4 faces, by splitting all edges in half
- Assumes all triangles!
 - Call your Filters.triangulate();
- Main primitive
 - Face
- How many new vertices?
 - +1 per edge
- How many new faces?
 - +3 per face
TriTop - topology

- Need to split all edges!

- Create list of half edges
 - Half of them, when splitting halfedge, opposite will also be split

- Join new vertices around a face
 - Determine whether a vertex is old or new by index in vertices array

- All new will be added to the end of the array!
TriTop - topology

- SplitEdge for each half edge in pre-computed list
- SplitFace per each face, joining new vertices
TriTop - geometry

- None - we’re done!

- For Loop Subdivision - store array of new positions for each vertex, where you will write positions calculated according to weight rules

- After done with topology, update positions!

\[\beta = \begin{cases}
\frac{3}{8n} & n > 3 \\
\frac{3}{16} & n = 3
\end{cases} \]
Optional features

- Bevel
- Quad Subdivision
- We will just gloss over those
Bevel

- Let’s think about required topology.

Each vertex becomes a face

Each edge becomes a face
Bevel topology

Start with truncate

Cut a triangle

Relink original edge
Bevel - topology

- Select half edges that join truncated points

- Caution when selecting half-edges to perform split
 - Make sure you’re not double counting

- Moving an edge requires manual relinking
Bevel - geometry

• All new vertices are at location of the respective original vertex

• Can move them towards the centroid of the main face
Quad Topology

- n-gon to quad split
 - Split each edge (SplitEdge)
 - Join 2 new vertices (SplitFace)
 - Split newly create edge (SplitEdge)
 - Join rest of new vertices (SplitFace)
 - Move to interior vertex to centroid location
Quad Topology

Start

SplitEdge

SplitFace

SplitEdge

SplitFace

Move
Quad Subdivision

- Three classes
 - Old vertices
 - Midpoints
 - Centroids

Scott Schaefer