
SIGGRAPH 2000 Course Notes

Subdivision for Modeling and Animation

Organizers: Denis Zorin, New York University

Peter Schr̈oder, Caltech

Lecturers

Denis Zorin

Media Research Laboratory

719 Broadway,rm. 1201

New York University

New York, NY 10012

net: dzorin@mrl.nyu.edu

Peter Schr̈oder

Caltech Multi-Res Modeling Group

Computer Science Department 256-80

California Institute of Technology

Pasadena, CA 91125

net: ps@cs.caltech.edu

Tony DeRose

Studio Tools Group

Pixar Animation Studios

1001 West Cutting Blvd.

Richmond, CA 94804

net: derose@pixar.com

Leif Kobbelt

Computer Graphics Group

Max-Planck-Institute for Computer Sciences

Im Stadtwald

66123 Saarbr¨ucken, Germany

net: kobbelt@mpi-sb.mpg.de

Adi Levin

School of Mathematics

Tel-Aviv University

69978 Tel-Aviv Israel

net: adilev@math.tau.ac.il

Wim Sweldens

Bell Laboratories, Lucent Technologies

600 Moutain Avenue

Murray Hill, NJ 07974

net: wim@lucent.com

Schedule

Morning Session: Introductory Material The morning section will focus on the foundations of sub-

division, starting with subdivision curves and moving on to surfaces. We will review and compare a

number of different schemes and discuss the relation between subdivision and splines. The emphasis

will be on properties of subdivision most relevant for applications.

Foundations I: Basic Ideas

Peter Schr¨oder and Denis Zorin

Foundations II: Subdivision Schemes for Surfaces

Denis Zorin

Afternoon Session: Applications and Algorithms The afternoon session will focus on applications

of subdivision and the algorithmic issues practitioners need to address to build efficient, well behaving

systems for modeling and animation with subdivision surfaces.

Implementing Subdivision and Multiresolution Surfaces

Denis Zorin

Combined Subdivision Schemes

Adi Levin

A Variational Approach to Subdivision

Leif Kobbelt

Parameterization, Remeshing, and Compression Using Subdivision

Wim Sweldens

Subdivision Surfaces in the Making of Geri’s Game, A Bug’s Life, and Toy Story 2

Tony DeRose

5

6

Lecturers’ Biographies

Denis Zorin is an assistant professor at the Courant Institute of Mathematical Sciences, New York

University. He received a BS degree from the Moscow Institute of Physics and Technology, a MS degree

in Mathematics from Ohio State University and a PhD in Computer Science from the California Institute

of Technology. In 1997-98, he was a research associate at the Computer Science Department of Stan-

ford University. His research interests include multiresolution modeling, the theory of subdivision, and

applications of subdivision surfaces in Computer Graphics. He is also interested in perceptually-based

computer graphics algorithms. He has published several papers in Siggraph proceedings.

Peter Schr̈oder is an associate professor of computer science at Caltech, Pasadena, where he directs

the Multi-Res Modeling Group. He received a Master’s degree from the MIT Media Lab and a PhD from

Princeton University. For the past 8 years his work has concentrated on exploiting wavelets and mul-

tiresolution techniques to build efficient representations and algorithms for many fundamental computer

graphics problems. His current research focuses on subdivision as a fundamental paradigm for geometric

modeling and rapid manipulation of large, complex geometric models. The results of his work have been

published in venues ranging from Siggraph to special journal issues on wavelets and WIRED magazine,

and he is a frequent consultant to industry, and was recently recognized when he was named a Packard

Foundation Fellow.

Tony DeRose is currently a member of the Tools Group at Pixar Animation Studios. He received a BS

in Physics in 1981 from the University of California, Davis; in 1985 he received a Ph.D. in Computer

Science from the University of California, Berkeley. He received a Presidential Young Investigator award

from the National Science Foundation in 1989. In 1995 he was selected as a finalist in the software

category of the Discover Awards for Technical Innovation.

From September 1986 to December 1995 Dr. DeRose was a Professor of Computer Science and Engi-

neering at the University of Washington. From September 1991 to August 1992 he was on sabbatical

leave at the Xerox Palo Alto Research Center and at Apple Computer. He has served on various techni-

cal program committees including SIGGRAPH, and from 1988 through 1994 was an associate editor of

ACM Transactions on Graphics.

His research has focused on mathematical methods for surface modeling, data fitting, and more recently,

in the use of multiresolution techniques. Recent projects include object acquisition from laser range data

and multiresolution/wavelet methods for high-performance computer graphics.

7

Leif Kobbelt is a senior researcher at the Max-Planck-Institute for computer sciences in Saarbr¨ucken,

Germany. His major research interests include multiresolution and free-form modeling as well as the

efficient handling of polygonal mesh data. He received his habilitation degree from the University of

Erlangen, Germany where he worked from 1996 to 1999. In 1995/96 he spent one post-doc year at the

University of Wisconsin, Madison. He received his master’s (1992) and Ph.D. (1994) degrees from the

University of Karlsruhe, Germany. During the last 7 years he did research in various fields of computer

graphics and CAGD.

Adi Levin has recently completed a PhD in Applied Mathematics at Tel-Aviv University. He received

a BS degree in Applied Mathematics from Tel-Aviv university. In 1999, he was a visiting researcher

at the Caltech Department of Computer Science. His research interests include surface representation

for Computer Aided Geometric Design, the theory and applications of Subdivision methods and ge-

ometric algorithms for Computer Graphics and CAGD. He has published papers in Siggraph’99 and

Siggraph’2000.

Wim Sweldens is a researcher at Bell Laboratories, Lucent Technologies. His work concerns the gen-

eralization of signal processing techniques to complex geometries. He is the inventor of the “lifting

scheme,” a technique for building wavelets and multiresolution transforms on irregularly sampled data

and surfaces in 3D. More recently he worked on parameterization, remeshing, and compression of sub-

division surfaces. He has lectured widely on the use of wavelets and subdivision in computer graphics

and participated in three previous SIGGRAPH courses. MIT’s Technology Review recently selected him

as one of a 100 top young technological innovators. He is the founder and editor-in-chief on the Wavelet

Digest.

8

Contents

1 Introduction 13

2 Foundations I: Basic Ideas 17

2.1 The Idea of Subdivision 18

2.2 Review of Splines . 22

2.2.1 Piecewise Polynomial Curves. 22

2.2.2 Definition of B-Splines. 23

2.2.3 Refinability of B-splines 25

2.2.4 Refinement for Spline Curves . 27

2.2.5 Subdivision for Spline Curves. 29

2.3 Subdivision as Repeated Refinement .. 30

2.3.1 Discrete Convolution . 30

2.3.2 Convergence of Subdivision .. 32

2.3.3 Summary . 35

2.4 Analysis of Subdivision 35

2.4.1 Invariant Neighborhoods 36

2.4.2 Eigen Analysis . 40

2.4.3 Convergence of Subdivision .. 42

2.4.4 Invariance under Affine Transformations. 42

2.4.5 Geometric Behavior of Repeated Subdivision 43

2.4.6 Size of the Invariant Neighborhood 45

2.4.7 Summary . 45

9

3 Subdivision Surfaces 47

3.1 Subdivision Surfaces: an Example . .. 48

3.2 Natural Parameterization of Subdivision Surfaces. 50

3.3 Subdivision Matrix . 53

3.4 Smoothness of Surfaces 56

3.4.1 C1-continuity and Tangent Plane Continuity . 56

3.5 Analysis of Subdivision Surfaces 57

3.5.1 C1-continuity of Subdivision away from Extraordinary Vertices. 58

3.5.2 Smoothness Near Extraordinary Vertices . 60

3.5.3 Characteristic Map . 61

3.6 Piecewise-smooth surfaces and subdivision 63

4 Subdivision Zoo 65

4.1 Overview of Subdivision Schemes . .. 65

4.1.1 Notation and Terminology . 68

4.2 Loop Scheme . 69

4.3 Modified Butterfly Scheme . 72

4.4 Catmull-Clark Scheme 75

4.5 Kobbelt Scheme .. 78

4.6 Doo-Sabin and Midedge Schemes . 79

4.7 Uniform Approach to Quadrilateral Subdivision .. 80

4.8 Comparison of Schemes . 84

4.8.1 Comparison of Dual Quadrilateral Schemes. 86

4.9 Tilings . 89

4.10 Limitations of Stationary Subdivision. 92

5 Implementing Subdivision and Multiresolution Surfaces 105

5.1 Data Structures for Subdivision. 105

5.1.1 Representing Arbitrary Meshes. 105

5.1.2 Hierarchical Meshes: Arrays vs. Trees . 107

5.1.3 Implementations . 109

5.2 Multiresolution Mesh Editing. 117

6 Combined Subdivision Schemes

10

7 Parameterization, Remeshing, and Compression Using Subdivision

8 Interpolatory Subdivision for Quad Meshes

9 A Variational Approach to Subdivision

10 Subdivision Surfaces in the Making of Geri’s Game, A Bug’s Life, and Toy Story 2

11

12

Chapter 1

Introduction

Twenty years ago the publication of the papers by Catmull and Clark [4] and Doo and Sabin [5] marked

the beginning of subdivision for surface modeling. Now we can regularly see subdivision used in movie

production (e.g., Geri’s Game, A Bug’s Life, and Toy Story 2), appear as a first class citizen in commer-

cial modelers and in be a core technology in game engines.

The basic ideas behind subdivision are very old indeed and can be traced as far back as the late 40s and

early 50s when G. de Rham used “corner cutting” to describe smooth curves. It was only recently though

that subdivision surfaces have found their way into wide application in computer graphics and computer

assisted geometric design (CAGD). One reason for this development is the importance of multiresolution

techniques to address the challenges of ever larger and more complex geometry: subdivision is intricately

linked to multiresolution and traditional mathematical tools such as wavelets.

Constructing surfaces through subdivision elegantly addresses many issues that computer graphics

practitioners are confronted with

• Arbitrary Topology: Subdivision generalizes classical spline patch approaches to arbitrary topol-

ogy. This implies that there is no need for trim curves or awkward constraint management between

patches.

• Scalability: Because of its recursive structure, subdivision naturally accommodates level-of-detail

rendering and adaptive approximation with error bounds. The result are algorithms which can

make the best of limited hardware resources, such as those found on low end PCs.

• Uniformity of Representation: Much of traditional modeling uses either polygonal meshes or

spline patches. Subdivision spans the spectrum between these two extremes. Surfaces can behave

13

as if they are made of patches, or they can be treated as if consisting of many small polygons.

• Numerical Stability: The meshes produced by subdivision have many of the nice properties fi-

nite element solvers require. As a result subdivision representations are also highly suitable for

many numerical simulation tasks which are of importance in engineering and computer animation

settings.

• Code Simplicity: Last but not least the basic ideas behind subdivision are simple to implement and

execute very efficiently. While some of the deeper mathematical analyses can get quite involved

this is of little concern for the final implementation and runtime performance.

In this course and its accompanying notes we hope to convince you, the reader, that in fact the above

claims are true!

The main focus or our notes will be on covering the basic principles behind subdivision; how subdivi-

sion rules are constructed; to indicate how their analysis is approached; and, most importantly, to address

some of the practical issues in turning these ideas and techniques into real applications. As an extra

bonus in this year’s edition of the subdivision course we are including code for triangle and quadrilateral

based subdivision schemes.

The following 2 chapters will be devoted to understanding the basic principles. We begin with some

examples in the curve, i.e., 1D setting. This simplifies the exposition considerably, but still allows us to

introduce all the basic ideas which are equally applicable in the surface setting. Proceeding to the surface

setting we cover a variety of different subdivision schemes and their properties.

With these basics in place we proceed to the second, applications oriented part, covering algorithms

and implementations addressing

• Implementing Subdivision and Multiresolution Surfaces: Subdivision can model smooth sur-

faces, but in many applications one is interested in surfaces which carry details at many levels of

resolution. Multiresolution mesh editing extends subdivision by including detail offsets at every

level of subdivision, unifying patch based editing with the flexibility of high resolution polyhe-

dral meshes. In this part, we will focus on implementation concerns common for subdivision and

multiresolution surfaces based on subdivision.

• Combined Subdivision Schemes:This section will present a class of subdivision schemes called

“Combined Subdivision Schemes.” These are subdivision schemes whose limit surfaces can sat-

isfy prescribed boundary conditions. Every combined subdivision scheme consists of an ordinary

subdivision scheme that operates in the interior of the mesh, and special rules that operate near

14

tagged edges of the mesh and take into consideration the given boundary conditions. The limit

surfaces are smooth and they satisfy the boundary conditions. Particular examples of combined

subdivision schemes will be presented and their applications discussed.

• Parameterization, Remeshing, and Compression Using Subdivision:Subdivision methods typ-

ically use a simple mesh refinement procedure such as triangle or quadrilateral quadrisection. It-

erating this refinement step starting from a coarse, arbitrary connectivity control mesh generates

semi-regular meshes. However, meshes coming from scanning devices are fully irregular and do

not have semi-regular connectivity. In order to use multiresolution and subdivision based algo-

rithms for such meshes they first need to be remeshed onto semi-regular connectivity. In this

section we show how to use mesh simplification to build a smooth parameterization of dense irreg-

ular connectivity meshes and to convert them to semi-regular connectivity. The method supports

both fully automatic operation as well as user defined point and edge constraints. We also show

how semi-regular meshes can be compressed using a wavelet and zero-tree based algorithm.

• A Variational Approach to Subdivision: Surfaces generated using subdivision have certain or-

ders of continuity. However, it is well known from geometric modeling that high quality surfaces

often require additional optimization (fairing). In the variational approach to subdivision, refined

meshes are not prescribed by static rules, but are chosen so as to minimize some energy functional.

The approach combines the advantages of subdivision (arbitrary topology) with those of variational

design (high quality surfaces). This section will describe the theory of variational subdivision and

highly efficient algorithms to construct fair surfaces.

• Subdivision Surfaces in the Making of Geri’s Game, A Bug’s Life, and Toy Story 2:Geri’s

Game is a 3.5 minute computer animated film that Pixar completed in 1997. The film marks the

first time that Pixar has used subdivision surfaces in a production. In fact, subdivision surfaces

were used to model virtually everything that moves. Subdivision surfaces went on to play a major

role the feature films ’A Bug’s Life’ and ’Toy Story 2’ from Disney/Pixar. This section will

describe what led Pixar to use subdivision surfaces, discuss several issues that were encountered

along the way, and present several of the solutions that were developed.

Beyond these Notes

One of the reasons that subdivision is enjoying so much interest right now is that it is very easy to

implement and very efficient. In fact it is used in many computer graphics courses at universities as a

15

homework exercise. The mathematical theory behind it is very beautiful, but also very subtle and at times

technical. We are not treating the mathematical details in these notes, which are primarily intended for

the computer graphics practitioners. However, for those interested in the theory there are many pointers

to the literature.

These notes as well as other materials such as presentation slides, applets and code are available on

the web athttp://www.mrl.nyu.edu/dzorin/sig00course/ and all readers are encouraged

to explore the online resources.

16

Chapter 2

Foundations I: Basic Ideas

Peter Schr¨oder, Caltech

In this chapter we focus on the 1D case to introduce all the basic ideas and concepts before going

on to the 2D setting. Examples will be used throughout to motivate these ideas and concepts. We

begin initially with an example from interpolating subdivision, before talking about splines and their

subdivision generalizations.

Figure 2.1:Example of subdivision for curves in the plane. On the left 4 points connected with straight

line segments. To the right of it a refined version: 3 new points have been inserted “inbetween” the old

points and again a piecewise linear curve connecting them is drawn. After two more steps of subdivision

the curve starts to become rather smooth.

17

2.1 The Idea of Subdivision

We can summarize the basic idea of subdivision as follows:

Subdivision defines a smooth curve or surface as the limit of a sequence of successive re-

finements.

Of course this is a rather loose description with many details as yet undetermined, but it captures the

essence.

Figure 2.1 shows an example in the case of a curve connecting some number of initial points in the

plane. On the left we begin with 4 points connected through straight line segments. Next to it is a refined

version. This time we have the original 4 points and additionally 3 more points “inbetween” the old

points. Repeating the process we get a smoother looking piecewise linear curve. Repeating once more

the curve starts to look quite nice already. It is easy to see that after a few more steps of this procedure

the resulting curve would be as well resolved as one could hope when using finite resolution such as that

offered by a computer monitor or a laser printer.

Figure 2.2: Example of subdivision for a surface, showing 3 successive levels of refinement. On the

left an initial triangular mesh approximating the surface. Each triangle is split into 4 according to a

particular subdivision rule (middle). On the right the mesh is subdivided in this fashion once again.

An example of subdivision for surfaces is shown in Figure 2.2. In this case each triangle in the original

mesh on the left is split into 4 new triangles quadrupling the number of triangles in the mesh. Applying

the same subdivision rule once again gives the mesh on the right.

18

Both of these examples show what is known as interpolating subdivision. The original points remain

undisturbed while new points are inserted. We will see below that splines, which are generally not

interpolating, can also be generated through subdivision. Albeit in that case new points are insertedand

old points are moved in each step of subdivision.

How were the new points determined? One could imagine many ways to decide where the new points

should go. Clearly, the shape and smoothness of the resulting curve or surface depends on the chosen

rule. Here we list a number of properties that we might look for in such rules:

• Efficiency: the location of new points should be computed with a small number of floating point

operations;

• Compact support: the region over which a point influences the shape of the final curve or surface

should be small and finite;

• Local definition: the rules used to determine where new points go should not depend on “far

away” places;

• Affine invariance: if the original set of points is transformed, e.g., translated, scaled, or rotated,

the resulting shape should undergo the same transformation;

• Simplicity: determining the rules themselves should preferably be an offline process and there

should only be a small number of rules;

• Continuity: what kind of properties can we prove about the resulting curves and surfaces, for

example, are they differentiable?

For example, the rule used to construct the curve in Figure 2.1 computed new points by taking a weighted

average of nearby old points: two to the left and two to the right with weights 1/16(−1,9,9,−1) respec-

tively (we are ignoring the boundaries for the moment). It is very efficient since it only involves 4

multiplies and 3 adds (per coordinate); has compact support since only 2 neighbors on either side are

involved; its definition is local since the weights do not depend on anything in the arrangement of the

points; the rule is affinely invariant since the weights used sum to 1; it is very simple since only 1 rule is

used (there is one more rule if one wants to account for the boundaries); finally the limit curves one gets

by repeating this process ad infinitum areC1.

Before delving into the details of how these rules are derived we quickly compare subdivision to other

possible modeling approaches for smooth surfaces: traditional splines, implicit surfaces, and variational

surfaces.

19

1. Efficiency: Computational cost is an important aspect of a modeling method. Subdivision is

easy to implement and is computationally efficient. Only a small number of neighboring old

points are used in the computation of the new points. This is similar to knot insertion methods

found in spline modeling, and in fact many subdivision methods are simply generalization of knot

insertion. On the other hand implicit surfaces, for example, are much more costly. An algorithm

such as marching cubes is required to generate the polygonal approximation needed for rendering.

Variational surfaces can be even worse: a global optimization problem has to be solved each time

the surface is changed.

2. Arbitrary topology: It is desirable to build surfaces of arbitrary topology. This is a great strength

of implicit modeling methods. They can even deal withchangingtopology during a modeling

session. Classic spline approaches on the other hand have great difficulty with control meshes of

arbitrary topology. Here, “arbitrary topology” captures two properties. First, the topological genus

of the mesh and associated surface can be arbitrary. Second, the structure of the graph formed by

the edges and vertices of the mesh can be arbitrary; specifically, each vertex may be of arbitrary

degree.

These last two aspects are related: if we insist on all vertices having degree 4 (for quadrilateral)

control meshes, or having degree 6 (for triangular) control meshes, the Euler characteristic for a

planar graph tells us that such meshes can only be constructed if the overall topology of the shape

is that of the infinite plane, the infinite cylinder, or the torus. Any other shape, for example a

sphere, cannot be built from a quadrilateral (triangular) control mesh having vertices of degree 4

(6).

When rectangular spline patches are used in arbitrary control meshes, enforcing higher order con-

tinuity at extraordinary vertices becomes difficult and considerably increases the complexity of the

representation (see Figure 2.3 for an example of points not having valence 4). Implicit surfaces

can be of arbitrary topological genus, but the genus, precise location, and connectivity of a surface

are typically difficult to control. Variational surfaces can handle arbitrary topology better than

any other representation, but the computational cost can be high. Subdivision can handle arbitrary

topology quite well without losing efficiency; this is one of its key advantages. Historically sub-

division arose when researchers were looking for ways to address the arbitrary topology modeling

challenge for splines.

3. Surface features:Often it is desirable to control the shape and size of features, such as creases,

grooves, or sharp edges. Variational surfaces provide the most flexibility and exact control for cre-

20

Figure 2.3:A mesh with two extraordinary vertices, one with valence 6 the other with valence 3. In the

case of quadrilateral patches the standard valence is 4. Special efforts are required to guarantee high

order of continuity between spline patches meeting at the extraordinary points; subdivision handles such

situations in a natural way.

ating features. Implicit surfaces, on the other hand, are very difficult to control, since all modeling

is performed indirectly and there is much potential for undesirable interactions between different

parts of the surface. Spline surfaces allow very precise control, but it is computationally expen-

sive and awkward to incorporate features, in particular if one wants to do so in arbitrary locations.

Subdivision allows more flexible controls than is possible with splines. In addition to choosing

locations of control points, one can manipulate the coefficients of subdivision to achieve effects

such as sharp creases or control the behavior of the boundary curves.

4. Complex geometry:For interactive applications, efficiency is of paramount importance. Because

subdivision is based on repeated refinement it is very straightforward to incorporate ideas such

as level-of-detail rendering and compression for the internet. During interactive editing locally

adaptive subdivision can generate just enough refinement based on geometric criteria, for example.

For applications that only require the visualization of fixed geometry, other representations, such

as progressive meshes, are likely to be more suitable.

Since most subdivision techniques used today are based upon and generalize splines we begin with

a quick review of some basic facts of splines which we will need to understand the connection between

splines and subdivision.

21

2.2 Review of Splines

2.2.1 Piecewise Polynomial Curves

Splines are piecewise polynomial curves of some chosen degree. In the case of cubic splines, for exam-

ple, each polynomial segment of the curve can be written as

x(t) = ai
3t

3 + ai
2t

2 + ai
1t + ai

0

y(t) = bi
3t

3 + bi
2t

2 + bi
1t + bi

0,

where(a,b) are constant coefficients which control the shape of the curve over the associated segment.

This representation uses monomials (t3, t2, t1, t0), which are restricted to the given segment, as basis

functions.

-4 -3 -2 -1 0 1 2 3 4
-0.5

0.0

0.5

1.0

Figure 2.4:Graph of the cubic B-spline. It is zero for the independent parameter outside the interval

[−2,2].

Typically one wants the curve to have some order of continuity along its entire length. In the case of

cubic splines one would typically wantC2 continuity. This places constraints on the coefficients(a,b)

of neighboring curve segments. Manipulating the shape of the desired curves through these coefficients,

while maintaining the constraints, is very awkward and difficult. Instead of using monomials as the basic

building blocks, we can write the spline curve as a linear combination of shiftedB-splines, each with a

coefficient known as acontrol point

x(t) = ∑xiB(t− i)

y(t) = ∑yiB(t− i).

The new basis functionB(t) is chosen in such a way that the resulting curves are always continuous and

that the influence of a control point is local. One way to ensure higher order continuity is to use basis

22

functions which are differentiable of the appropriate order. Since polynomials themselves are infinitely

smooth, we only have to make sure that derivatives match at the points where two polynomial segments

meet. The higher the degree of the polynomial, the more derivatives we are able to match. We also

want the influence of a control point to be maximal over a region of the curve which is close to the

control point. Its influence should decrease as we move away along the curve and disappear entirely at

some distance. Finally, we want the basis functions to be piecewise polynomial so that we can represent

any piecewise polynomial curve of a given degree with the associated basis functions. B-splines are

constructed to exactly satisfy these requirements (for a cubic B-spline see Figure 2.4) and in a moment

we will show how they are constructed.

The advantage of using this representation rather than the earlier one of monomials, is that the conti-

nuity conditions at the segment boundaries are already “hardwired” into the basis functions. No matter

how we move the control points, the spline curve will always maintain its continuity, for example,C2 in

the case of cubic B-splines.1 Furthermore, moving a control point has the greatest effect on the part of

the curve near that control point, and no effect whatsoever beyond a certain range. These features make

B-splines a much more appropriate tool for modeling piecewise polynomial curves.

Note: When we talk about curves, it is important to distinguish the curve itself and the graphs of the

coordinate functions of the curve, which can also be thought of as curves. For example, a curve can

be described by equationsx(t) = sin(t), y(t) = cos(t). The curve itself is a circle, but the coordinate

functions are sinusoids. For the moment, we are going to concentrate on representing the coordinate

functions.

2.2.2 Definition of B-Splines

There are many ways to derive B-splines. Here we choose repeated convolution, since we can see from

it directly how splines can be generated through subdivision.

We start with the simplest case: piecewise constant coordinate functions. Any piecewise constant

function can be written as

x(t) = ∑xiB
i
0(t),

1The differentiability of the basis functions guarantees the differentiability of the coordinate functions of the curve. How-

ever, it does not guarantee the geometric smoothness of the curve. We will return to this distinction in our discussion of

subdivision surfaces.

23

whereB0(t) is the box function defined as

B0(t) = 1 if 0≤ t < 1

= 0 otherwise,

and the functionsBi
0(t) = B0(t− i) are translates ofB0(t). Furthermore, let us represent the continuous

convolution of two functionsf (t)andg(t) with

(f ⊗g)(t) =
∫

f (s)g(t−s)ds.

A B-spline basis function of degreen can be obtained by convolving the basis function of degreen−1

with the boxB0(t).2 For example, the B-spline of degree 1 is defined as the convolution ofB0(t) with

itself

B1(t) =
∫

B0(s)B0(t−s)ds.

Graphically (see Figure 2.5), this convolution can be evaluated by sliding one box function along the

coordinate axis from minus to plus infinity while keeping the second box fixed. The value of the con-

volution for a given position of the moving box is the area under the product of the boxes, which is just

the length of the interval where both boxes are non-zero. At first the two boxes do not have common

support. Once the moving box reaches 0, there is a growing overlap between the supports of the graphs.

The value of the convolution grows witht until t = 1. Then the overlap starts decreasing, and the value

of the convolution decreases down to zero att = 2. The functionB1(t) is the linear hat function as shown

in Figure 2.5.

We can compute the B-spline of degree 2 convolvingB1(t) with the boxB0(t) again

B2(t) =
∫

B1(s)B0(t−s)ds.

In this case, the resulting curve consists of three quadratic segments defined on intervals(0,1), (1,2) and

(2,3). In general, by convolvingl times, we can get a B-spline of degreel

Bl (t) =
∫

Bl−1(s)B0(t−s)ds.

Defining B-splines in this way a number of important properties immediately follow. The first concerns

the continuity of splines

2Thedegreeof a polynomial is the highest order exponent which occurs, while theorder counts the number of coefficients

and is 1 larger. For example, a cubic curve is of degree 3 and order 4.

24

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 2.5:The definition of degree 1 B-Spline B1(t) (right side) through convolution of B0(t) with itself

(left side).

Theorem 1 If f (t) is Ck-continuous, then(B0⊗ f)(t) is Ck+1-continuous.

This is a direct consequence of convolution with a box function. From this it follows that the B-spline of

degreen isCn−1 continuous because the B-spline of degree 1 isC0-continuous.

2.2.3 Refinability of B-splines

Another remarkable property of B-splines is that they obey arefinement equation. This is the key

observation to connect splines and subdivision. The refinement equation for B-splines of degreel is

25

given by

Bl(t) =
1
2l

l+1

∑
k=0

(
l + 1

k

)
Bl (2t−k). (2.1)

In other words, the B-spline of degreel can be written as a linear combination oftranslated(k) and

dilated (2t) copies of itself. For a function to be refinable in this way is a rather special property. As an

example of the above equation at work consider the hat function shown in Figure 2.5. It is easy to see that

it can be written as a linear combination of dilated hat functions with weights(1/2,1,1/2) respectively.

The property of refinability is the key to subdivision and so we will take a moment to prove it. We

start by observing that the box function, i.e., the B-spline of degree 0 can be written in terms of dilates

and translates of itself

B0(t) = B0(2t)+ B0(2t−1), (2.2)

which is easily checked by direct inspection. Recall that we defined the B-spline of degreel as

Bl(t) =
l⊗

i=0

B0(t) =
l⊗

i=0

(B0(2t)+ B0(2t−1)) (2.3)

This expression can be “multiplied” out by using the following properties of convolution for functions

f (t), g(t), andh(t)

f (t)⊗ (g(t)+ h(t)) = f (t)⊗g(t)+ f (t)⊗h(t) linearity

f (t− i)⊗g(t−k) = m(t− i−k) time shift

f (2t)⊗g(2t) = 1
2m(2t) time scaling

wherem(t) = f (t)⊗g(t). These properties are easy to check by substituting the definition of convolution

and amount to simple change of variables in the integration.

For example, in the case ofB1 we get

B1(t) = B0(t)⊗B0(t)

= (B0(2t)+ B0(2t−1))⊗ (B0(2t)+ B0(2t−1))

= B0(2t)⊗B0(2t)+ B0(2t)⊗B0(2t−1)+ B0(2t−1)⊗B0(2t)+ B0(2t−1)⊗B0(2t−1)

=
1
2

B1(2t)+
1
2

B1(2t−1)+
1
2

B1(2t−1)+
1
2

B1(2t−1−1)

=
1
2

(B1(2t)+ 2B1(2t−1)+ B1(2t−2))

=
1
21

2

∑
k=0

(
2
k

)
B1(2t−k).

26

The general statement for B-splines of degreel now follows from the binomial theorem

(x+ y)l+1 =
l+1

∑
k=0

(
l + 1

k

)
xl+1−kyk,

with B0(2t) in place ofx andB0(2t−1) in place ofy.

2.2.4 Refinement for Spline Curves

With this machinery in hand let’s revisit spline curves. Let

γ(t) =

[
x(t)

y(t)

]
= ∑

i

piB
i
l(t)

be such a spline curve of degreel with control points(xi ,yi)
T = pi ∈ R2. Since we don’t want to worry

about boundaries for now we leave the index seti unspecified. We will also drop the subscriptl since the

degree, whatever it might be, is fixed for all our examples. Due to the definition ofBi(t) = B(t− i) each

control point exerts influence over a small part of the curve with parameter valuest ∈ [i, i + l].

Now considerp, the vector of control points of a given curve:

p =

...

p−2

p−1

p0

p1

p2
...

and the vectorB(t), which has as its elements the translates of the functionB as defined above

B(t) =
[
. . . B(t + 2) B(t + 1) B(t) B(t−1) B(t−2) . . .

]
.

In this notation we can denote our curve asB(t)p.

Using the refinement relation derived earlier, we can rewrite each of the elements ofB in terms of its

dilates

B(2t) =
[
. . . B(2t + 2) B(2t + 1) B(2t) B(2t−1) B(2t−2) . . .

]
,

27

using a matrixS to encode the refinement equations

B(t) = B(2t)S.

The entries ofSare given by Equation 2.1

S2i+k,i = sk =
1
2l

(
l + 1

k

)
.

The only non-zero entries in each column are the weights of the refinement equation, while successive

columns are copies of one another save for a shift down by two rows.

We can use this relation to rewriteγ(t)

γ(t) = B(t)p = B(2t)Sp.

It is still the same curve, but described with respect to dilated B-splines, i.e., B-splines whose support is

half as wide and which are spaced twice as dense. We performed a change from the old basisB(t) to the

new basisB(2t) and concurrently changed the old control pointsp to the appropriate new control points

Sp. This process can be repeated

γ(t) = B(t)p0

= B(2t)p1 = B(2t)Sp0

...

= B(2j t)p j = B(2j t)Sjp0,

from which we can define the relationship between control points at different levels of subdivision

p j+1 = Sp j ,

whereS is our infinite subdivision matrix.

Looking more closely at one component,i, of our control points we see that

pj+1
i = ∑

l

Si,l pj
l .

To find out exactly whichsk is affecting which term, we can divide the above into odd and even entries.

For the odd entries we have

pj+1
2i+1 = ∑

l

S2i+1,l pj
l = ∑

l

s2(i−l)+1 pj
l

28

and for the even entries we have

pj+1
2i = ∑

l

S2i,l pj
l = ∑

l

s2(i−l) pj
l .

From which we essentially get two different subdivision rules one for the newevencontrol points of the

curve and one for the newodd control points. As examples of the above, let us consider two concrete

cases. For piecewise linear subdivision, the basis functions are hat functions. The odd coefficients are1
2

and 1
2, and a lone 1 for the even point. For cubic splines the odd coefficients turn out to be1

2 and 1
2, while

the even coefficients are18, 6
8, and1

8.

Another way to look at the distinction between even and odd is to notice that odd points at levelj +1

are newly inserted, while even points at levelj + 1 correspond directly to the old points from levelj.

In the case of linear splines the even points are in fact thesameat level j + 1 as they were at levelj.

Subdivision schemes that have this property will later be calledinterpolating, since points, once they

have been computed, will never move again. In contrast to this consider cubic splines. In that case even

points at levelj + 1 are local averages of points at levelj so thatpj+1
2i 6= pj

i . Schemes of this type will

later be calledapproximating.

2.2.5 Subdivision for Spline Curves

In the previous section we saw that we can refine the control point sequence for a given spline by multi-

plying the control point vectorp by the matrixS, which encodes the refinement equation for the B-spline

used in the definition of the curve. What happens if we keep repeating this process over and over, gen-

erating ever denser sets of control points? It turns out the control point sequence converges to the actual

spline curve. The speed of convergence is geometric, which is to say that the difference between the

curve and its control points decreases by a constant factor on every subdivision step. Loosely speaking

this means that the actual curve is hard to distinguish from the sequence of control points after only a

few subdivision steps.

We can turn this last observation into an algorithm and the core of the subdivision paradigm. Instead

of drawing the curve itself on the screen we draw the control polygon, i.e., the piecewise linear curve

through the control points. Applying the subdivision matrix to the control points defines a sequence of

piecewise linear curves which quickly converge to the spline curve itself.

In order to make these observations more precise we need to introduce a little more machinery in the

next section.

29

2.3 Subdivision as Repeated Refinement

2.3.1 Discrete Convolution

The coefficientssk of the B-spline refinement equation can also be derived from another perspective,

namely discrete convolution. This approach mimics closely the definition of B-splines through continu-

ous convolution. Using this machinery we can derive and check many useful properties of subdivision

by looking at simple polynomials.

Recall that the generating function of a sequenceak is defined as

A(z) = ∑
k

akz
k,

whereA(z) is thez-transform of the sequenceak. This representation is closely related to the discrete

Fourier transform of a sequence by restricting the argumentz to the unit circle,z= exp(iθ). For the case

of two coefficient sequencesak andbk their convolution is defined as

ck = (a⊗b)k = ∑
n

ak−nbn.

In terms of generating functions this can be stated succinctly as

C(z) = A(z)B(z),

which comes as no surprise since convolution in the time domain is multiplication in the Fourier domain.

The main advantage of generating functions, and the reason why we use them here, is that manip-

ulations of sequences can be turned into simple operations on the generating functions. A very useful

example of this is the next observation. Suppose we have two functions that each satisfy a refinement

equation

f (t) = ∑
k

ak f (2t−k)

g(t) = ∑
k

bk g(2t−k).

In that case the convolutionh = f ⊗g of f andg also satisfies a refinement equation

h(t) = ∑
k

ck h(2t−k),

30

whose coefficientsck are given by the convolution of the coefficients of the individual refinement equa-

tions

ck =
1
2∑

i

ak−i bi .

With this little observation we can quickly find the refinement equation, and thus the coefficients of the

subdivision matrixS, by repeated multiplication of generating functions. Recall that the box function

B0(t) satisfies the refinement equationB0(t) = B0(2t) + B0(2t − 1). The generating function of this

refinement equation isA(z) = (1+ z) since the only non-zero terms of the refinement equation are those

belonging to indices 0 and 1. Now recall the definition of B-splines of degreel

Bl (t) =
l⊗

k=0

B0(t),

from which we immediately get the associated generating function

S(z) =
1
2l (1+ z)l+1.

The valuessk used for the definition of the subdivision matrix are simply the coefficients of the various

powers ofz in the polynomialS(z)

S(z) =
1
2l

l+1

∑
k=0

(
l + 1

k

)
zk,

where we used the binomial theorem to expandS(z). Note how this matches the definition ofsk in

Equation 2.1.

Recall Theorem 1, which we used to argue that B-splines of degreen areCn−1 continuous. That same

theorem can now be expressed in terms of generating functions as follows

Theorem 2 If S(z) defines a convergent subdivision scheme yielding a Ck-continuous limit function then
1
2(1+ z)S(z) defines a convergent subdivision scheme with Ck+1-continuous limit functions.

We will put this theorem to work in analyzing a given subdivision scheme by peeling off as many fac-

tors of 1
2(1+ z) as possible, while still being able to prove that the remainder converges to a continuous

limit function. With this trick in hand all we have left to do is establish criteria for the convergence of

a subdivision scheme to a continuous function. Once we can verify such a condition for the subdivi-

sion scheme associated with B-spline control points we will be justified in drawing the piecewise linear

approximations of control polygons as approximations for the spline curve itself. We now turn to this

task.

31

2.3.2 Convergence of Subdivision

There are many ways to talk about the convergence of a sequence of functions to a limit. One can use

different norms and different notions of convergence. For our purposes the simplest form will suffice,

uniform convergence.

We say that a sequence of functionsfi defined on some interval[a,b] ⊂ R converges uniformlyto a

limit function f if for all ε> 0 there exists ann0 > 0 such that for alln> n0

max
t∈[a,b]

| f (t)− fn(t)|< ε.

Or in words, as of a certain index (n0) all functions in the sequence “live” within anε sized tube around

the limit function f . This form of convergence is sufficient for our purposes and it has the nice prop-

erty that if a sequence of continuous functions converges uniformly to some limit functionf , that limit

function is itself continuous.

For later use we introduce some norm symbols

‖ f (t)‖ = sup
t
| f (t)|

‖p‖ = sup
i
|pi |

‖S‖ = sup
i

∑
k

|Sik|,

which are compatible in the sense that, for example,‖Sp‖ ≤ ‖S‖‖p‖.
The sequence of functions we want to analyze now are the control polygons as we refine them with

the subdivision ruleS. Recall that the control polygon is the piecewise linear curve through the control

pointsp j at level j. Independent of the subdivision ruleSwe can use the linear B-splines to define the

piecewise linear curve through the control points asPj(t) = B1(2j t)p j .

One way to show that a given subdivision schemeS converges to a continuous limit function is to

prove that (1) the limit

P∞(t) = lim
j→∞

Pj(t)

exists for allt and (2) that the sequencePj(t) converges uniformly. In order to show this property we

need to make the assumption that all rows of the matrixSsum to 1, i.e., the odd and even coefficients of

the refinement relation separately sum to 1. This is a reasonable requirement since it is needed to ensure

the affine invariance of the subdivision process, as we will later see. In matrix notation this meansS1= 1,

or in other words, the vector of all 1’s is an eigenvector of the subdivision matrix with eigenvalue 1. In

32

terms of generating functions this meansS(−1) = 0, which is easily verified for the generating functions

we have seen so far.

Recall that the definition of continuity in the function setting is based on differences. We sayf (t)

is continuous att0 if for any ε > 0 there exists aδ > 0 so that| f (t0)− f (t)| < ε as long as|t0− t| < δ.

The corresponding tool in the subdivision setting is the difference between two adjacent control points

pj
i+1− pj

i = (∆p j)i . We will show that if the differences between neighboring control points shrink fast

enough, the limit curve will exist and be continuous:

Lemma 3 If ‖∆p j‖ < cγ j for some constant c> 0 and a shrinkage factor0< γ < 1 for all j > j0 ≥ 0

then Pj(t) converges to a continuous limit function P∞(t).

Proof: Let S be the subdivision rule at hand,p1 = Sp0 andS1 be the subdivision rule for B-splines of

degree 1. Notice that the rows ofS−S1 sum to 0

(S−S1)1 = S1−S11 = 1−1 = 0.

This implies that there exists a matrixD such thatS−S1 = D∆, where∆ computes the difference of

adjacent elements(∆)ii = −1, (∆)i,i+1 = 1, and zero otherwise. The entries ofD are given asDi j =

−∑ j
k=i(S−S1)ik. Now consider the difference between two successive piecewise linear approximations

of the control points

‖Pj+1(t)−Pj(t)‖ = ‖B1(2j+1t)p j+1−B1(2
j t)p j‖

= ‖B1(2j+1t)Sp j −B1(2
j+1t)S1p j‖

= ‖B1(2j+1t)(S−S1)p j‖
≤ ‖B1(2j+1t)‖‖D∆p j‖
≤ ‖D‖‖∆p j‖
≤ ‖D‖cγ j .

This implies that the telescoping sumP0(t)+∑ j
k=0(Pk+1−Pk)(t) converges to a well defined limit func-

tion since the norms of each summand are bounded by a constant times a geometric termγ j . Let P∞(t)

as j→ ∞, then

‖P∞(t)−Pj(t)‖< ‖D‖c
1− γ

γ j ,

since the latter is the tail of a geometric series. This implies uniform convergence and thus continuity of

P∞(t) as claimed.

33

How do we check such a condition for a given subdivision scheme? Suppose we had a derived

subdivision schemeD for the differences themselves

∆p j+1 = D∆p j ,

defined as the scheme that satisfies

∆S= D∆.

Or in words, we are looking for adifference scheme Dsuch that taking differences after subdivision is

the same as applying the difference scheme to the differences. DoesD always exist? The answer is yes

if S is affinely invariant, i.e.,S(−1) = 0. This follows from the following argument. MultiplyingSby ∆
computes a matrix whose rows are differences of adjacent rows inS. Since odd and even numbered rows

of Seach sum to one, the rows of∆Smust each sum to zero. Now the existence of a matrixD such that

∆S= D∆ follows as in the argument above.

Given this difference schemeD all we would have to show is that some powerm> 0 of D has norm

less than 1,‖Dm‖= γ< 1. In that case‖∆p j‖< c(γ1/m) j . (We will see in a moment that the extra degree

of freedom provided by the parameterm is needed in some cases.)

As an example, let us check this condition for cubic B-splines. Recall thatB3(z) = 1
8(1+ z)4, i.e.,

pj+1
2i+1 =

1
8

(4pj
i + 4pj

i+1)

pj+1
2i =

1
8

(pj
i−1 + 6pj

i + pj
i+1).

Taking differences we have

(∆p j+1)2i = pj+1
2i+1− pj+1

2i =
1
8

(−pj
i−1−2pj

i + 3pj
i+1)

=
1
8

(3(pj
i+1− pj

i)+ 1(pj
i − pj

i−1)) =
1
8

(3(∆p j)i + 1(∆p j)i−1),

and similarly for the odd entries so thatD(z) = 1
8(1+z)3, from which we conclude that‖D‖= 1

2, and that

the subdivision scheme for cubic B-splines converges uniformly to a continuous limit function, namely

the B-spline itself.

Another example, which is not a spline, is the so called 4 point scheme [6]. It was used to create

the curve in Figure 2.1, which is interpolating rather than approximating as is the case with splines. The

generating function for the 4 point scheme is

S(z) =
1
16

(−z−3 + 4z−2−z−1)(1+ z)4

34

Recall that each additional factor of1
2(1+z) in the generating function increases the order of continuity of

the subdivision scheme. If we want to show that the limit function of the 4 point scheme is differentiable

we need to show that18(−z−3 + 4z−2− z−1)(1+ z)3 converges to a continuous limit function. This in

turn requires thatD(z) = 1
8(−z−3 +4z−2−z−1)(1+z)2 satisfy a norm estimate as before. The rows ofD

have non-zero entries of(1
4,

1
4), and(−1

8 ,
6
8,
−1
8) respectively. Thus‖D‖= 1, which is not strong enough.

However, with a little bit more work one can show that‖D2‖ = 3
4, so that indeed the 4 point scheme is

C1.

In general, the difficult part is to find a set of coefficients for which subdivision converges. There

is no general method to achieve this. Once a convergent subdivision scheme is found, one can always

obtain a desired order of continuity by convolving with the box function.

2.3.3 Summary

So far we have considered subdivision only in the context of splines where the subdivision rule, i.e., the

coefficients used to compute a refined set of control points, was fixed and everywhere the same. There

is no pressing reason for this to be so. We can create a variety of different curves by manipulating the

coefficients of the subdivision matrix. This could be done globally or locally. I.e., we could change the

coefficients within a subdivision level and/or between subdivision levels. In this regard, splines are just

a special case of the more general class of curves, subdivision curves. For example, at the beginning of

this chapter we briefly outlined an interpolating subdivision method, while spline based subdivision is

approximating rather than interpolating.

Why would one want to draw a spline curve by means of subdivision? In fact there is no sufficiently

strong reason for using subdivision in one dimension and none of the commercial line drawing packages

do so, but the argument becomes much more compelling in higher dimensions as we will see in later

chapters.

In the next section we use the subdivision matrix to study the behavior of the resulting curve at a point

or in the neighborhood of a point. We will see that it is quite easy, for example, to evaluate the curve

exactly at a point, or to compute a tangent vector, simply from a deeper understanding of the subdivision

matrix.

2.4 Analysis of Subdivision

In the previous section we have shown that uniform spline curves can be thought of as a special case of

subdivision curves. So far, we have seen only examples for which we use a fixed set of coefficients to

35

compute the control points everywhere. The coefficients define the appearance of the curve, for example,

whether it is differentiable or has sharp corners. Consequently it is possible to control the appearance of

the curve by modifying the subdivision coefficients locally. So far we have not seen a compelling reason

to do so in the 1D setting. However, in the surface setting it will be essential to change the subdivision

rule locally around extraordinary vertices to ensure maximal order of continuity. But before studying this

question we once again look at the curve setting first since the treatment is considerably easier to follow

in that setting.

To study properties such as differentiability of the curve (or surface) we need to understand which

of the control points influences the neighborhood of the point of interest. This notion is captured by the

concept of invariant neighborhoods to which we turn now.

2.4.1 Invariant Neighborhoods

Suppose we want to study the limit curve of a given subdivision scheme in the vicinity of a particular

control point.3 To determinelocal properties of a subdivision curve, we do not need the whole infinite

vector of control points or the infinite matrix describing subdivision of the entire curve. Differentiability,

for example, is a local property of a curve. To study it we need consider only an arbitrarily small piece

of the curve around the origin. This leads to the question of which control points influence the curve in

the neighborhood of the origin?

As a first example consider cubic B-spline subdivision. There is one cubic segment to the left of the

origin with parameter valuest ∈ [−1,0] and one segment to the right with parameter ranget ∈ [0,1].

Figure 2.6 illustrates that we need 5 control points at the coarsest level to reach any point of the limit

curve which is associated with a parameter value between−1 and 1, no matter how close it is to the

origin. We say that theinvariant neighborhoodhas size 5. This size depends on the number of non-zero

entries in each row of the subdivision matrix, which is 2 for odd points and 3 for even points. The latter

implies that we need one extra control point to the left of−1 and one to the right of 1.

Another way to see this argument is to consider the basis functions associated with a given subdivision

scheme. Once those are found we can find all basis functions overlapping a region of interest and their

control points will give us the control set for that region. How do we find these basis functions in the set-

ting when we don’t necessarily produce B-splines through subdivision? The argument is straightforward

3Here and in the following we assume that the point of interest is the origin. This can always be achieved through renum-

bering of the control points.

36

1 2-1-2 0

-1 10

4
161

4

Figure 2.6: In the case of cubic B-spline subdivision the invariant neighborhood is of size 5. It takes

5 control points at the coarsest level to determine the behavior of the subdivision limit curve over the

two segments adjacent to the origin. At each level we need one more control point on the outside of

the interval t∈ [−1,1] in order to continue on to the next subdivision level. 3 initial control points for

example would not be enough.

and also applies to surfaces. Recall that the subdivision operator is linear, i.e.,

Pj(t) = B1(2j t)Sjp0

= B1(2j t)Sj

(
∑
i

p0
i (ei)

0

)
= ∑

i

p0
i B1(2j t)Sj(ei)

0

= ∑
i

p0
i ϕ j

i (t)

In this expressionei
0 stands for the vector consisting of all 0s except a single 1 in positioni. In other

37

words the final curve is always a linear combination with weightsp0
i of fundamental solutions

lim
j→∞

ϕ j
i (t) = ϕi(t).

If we used the same subdivision weights throughout the domain it is easy to see thatϕi(t) = ϕ(t −
i), i.e., there is a single functionϕ(t) such that all curves produced through subdivision from some

initial sequence of pointsp0 are linear combinations of translates ofϕ(t). This function is called the

fundamental solution of the subdivision scheme. Questions such as differentiability of the limit curve

can now be studied by examining this one function

ϕ(t) = lim
j→∞

Sj(e0)0.

For example, we can read off from the support of this function how far the influence of a control point

will be felt. Similarly, the shape of this function tells us something about how the curve (or surface) will

change when we pull on a control point. Note that in the surface case the rules we apply will depend on

the valence of the vertex in question. In that case we won’t get only a single fundamental solution, but a

different one for each valence. More on this later.

With this we can revisit the argument for the size of the invariant neighborhood. The basis functions

of cubic B-spline subdivision have support width of 4 intervals. If we are interested in a small open

neighborhood of the origin we notice that 5 basis functions will overlap that small neighborhood. The

fact that the central 5 control points control the behavior of the limit curve at the origin holds independent

of the level. With the central 5 control points at levelj we can compute the central 5 control points at

level j + 1. This implies that in order to study the behavior of the curve at the origin all we have to

analyze is a small 5×5 subblock of the subdivision matrix
pj+1
−2

pj+1
−1

pj+1
0

pj+1
1

pj+1
2

=
1
8

1 6 1 0 0

0 4 4 0 0

0 1 6 1 0

0 0 4 4 0

0 0 1 6 1

pj
−2

pj
−1

pj
0

pj
1

pj
2

 .

The 4 point subdivision scheme provides another example. This time we do not have recourse to

splines to argue the properties of the limit curve. In this case each basis function has a support ranging

over 6 intervals. An easy way to see this is to start with the sequencee0
0, i.e., a single 1 at the origin

surrounded by zeros. Repeatedly applying subdivision we can see that no points outside the original

[−3,3] interval will become non-zero. Consequently for the invariant neighborhood of the origin we

38

-2-3 -1 0 321

1

-1 9 -1
16

0-1

9

Figure 2.7:In the case of the 4 point subdivision rule the invariant neighborhood is of size 7. It takes 7

control points at the coarsest level to determine the behavior of the subdivision limit curve over the two

segments adjacent to the origin. One extra point at pj
2 is needed to compute pj+1

1 . The other is needed

to compute pj+1
3 , which requires pj3. Two extra points on the left and right result in a total of 7 in the

invariant neighborhood.

need to consider 3 basis functions to the left, the center function, and 3 basis functions to the right. The

4 point scheme has an invariant neighborhood of 7 (see Figure 2.7). In this case the local subdivision

39

matrix is given by

pj+1
−3

pj+1
−2

pj+1
−1

pj+1
0

pj+1
1

pj+1
2

pj+1
3

=

1
16

−1 9 9 −1 0 0 0

0 0 16 0 0 0 0

0 −1 9 9 −1 0 0

0 0 0 16 0 0 0

0 0 −1 9 9 −1 0

0 0 0 0 16 0 0

0 0 0 −1 9 9 −1

pj+1
−3

pj+1
−2

pj+1
−1

pj+1
0

pj+1
1

pj+1
2

pj+1
3

Since the local subdivision matrix controls the behavior of the curve in a neighborhood of the origin,

it comes as no surprise that many properties of curves generated by subdivision can be inferred from

the properties of the local subdivision matrix. In particular, differentiability properties of the curve are

related to the eigen structure of the local subdivision matrix to which we now turn. From now on the

symbolSwill denote thelocal subdivision matrix.

2.4.2 Eigen Analysis

Recall from linear algebra that aneigenvectorx of the matrixM is a non-zero vector such thatMx = λx,

whereλ is a scalar. We say thatλ is theeigenvaluecorresponding to the right eigenvectorx.

Assume the local subdivision matrixShas sizen×n and has real eigenvectorsx0,x1, . . . ,xn−1, which

form a basis, with corresponding real eigenvaluesλ0 ≥ λ1 ≥ . . . ≥ λn−1. For example, in the case of

cubic splinesn = 5 and

(λ0,λ1,λ2,λ3,λ4) = (1,
1
2
,
1
4
,
1
8
,
1
8

)

(x0,x1,x2,x3,x4) =

1 −1 1 1 0

1 −1
2

2
11 0 0

1 0 − 1
11 0 0

1 1
2

2
11 0 0

1 1 1 0 1

 .

40

Given these eigenvectors we have

S(x0,x1,x2,x3,x4) = (x0,x1,x2,x3,x4)

λ0 0 0 0 0

0 λ1 0 0 0

0 0 λ2 0 0

0 0 0 λ3 0

0 0 0 0 λ4

SX = XD

X−1SX = D.

The rowsx̃i of X−1 are called left eigenvectors since they satisfyx̃iS= λi x̃i , which can be seen by

multiplying the last equality withX−1 on the right.

Note: not all subdivision schemes have only real eigenvalues or a complete set of eigenvectors. For

example, the 4 point scheme has eigenvalues

(λ0,λ1,λ2,λ3,λ4,λ5,λ6) = (1,
1
2
,
1
4
,
1
4
,
1
8
,− 1

16
,− 1

16
),

but it does not have a complete set of eigenvectors. These degeneracies are the cause of much technical

difficulty in the theory of subdivision. To keep our exposition simple and communicate the essential

ideas we will ignore these cases and assume from now on that we have a complete set of eigenvectors.

In this setting we can write any vectorp of lengthn as a linear combination of eigenvectors:

p =
n−1

∑
i=0

aixi ,

where theai are given by the inner productsai = x̃i · p. This decomposition works also when the entries

of p aren 2-D points(or 3-D points in the case of surfaces) rather than single numbers. In this case each

“coefficient” ai is a 2-D (3-D) point. The eigenvectorsx0, . . . ,xn−1 are simply vectors ofn real numbers.

In the basis of eigenvectors we can easily compute the result of application of the subdivision matrix

to a vector of control points, that is, the control points on the next level

Sp0 = S
n−1

∑
i=0

aixi

=
n−1

∑
i=0

aiSxi by linearity ofS

=
n−1

∑
i=0

aiλixi

41

Applying S j times, we obtain

p j = Sjp0 =
n−1

∑
i=0

aiλ
j
i xi .

2.4.3 Convergence of Subdivision

If λ0 > 1, thenSjx0 would grow without bound asj increased and subdivision would not be convergent.

Hence, we can see that in order for the sequenceSjp0 to converge at all, it is necessary that all eigenvalues

are at most 1. It is also possible to show that only a single eigenvalue may have magnitude 1 [33].

A simple consequence of this analysis is that we can compute the limit position directly in the eigen

basis

P∞(0) = lim
j→∞

Sjp0 = lim
j→∞

n−1

∑
i=0

aiλ j
i xi = a0,

since all eigen components|λi|< 1 decay to zero. For example, in the case of cubic B-spline subdivision

we can compute the limit position ofpj
i asa0 = x̃0 ·p j , which amounts to

p∞
i = a0 =

1
6

(pj
i−1 + 4pj

i + pj
i+1).

Note that this expression is completely independent of the levelj at which it is computed.

2.4.4 Invariance under Affine Transformations

If we moved all the control points simultaneously by the same amount, we would expect the curve defined

by these control points to move in the same way as a rigid object. In other words, the curve should be

invariant under distance-preserving transformations, such as translation and rotation. It follows from

linearity of subdivision that if subdivision is invariant with respect to distance-preserving transforma-

tions, it also should be invariant under any affine transformations. The family of affine transformations

in addition to distance-preserving transformations, contains shears.

Let 1 be ann-vector of 1’s anda∈R2 a displacement in the plane (see Figure 2.8) Then1·a represents

a displacement of our seven points by a vectora. Applying subdivision to the transformed points, we get

S(p j + 1·a) = Sp j + S(1·a) by linearity ofS

= p j+1 + S(1·a).

42

a

Figure 2.8:Invariance under translation.

From this we see that for translational invariance we need

S(1·a) = 1·a

Therefore,1 should be the eigenvector ofSwith eigenvalueλ0 = 1.

Recall that when proving convergence of subdivision we assumed that1 is an eigenvector with eigen-

value 1. We now see that this assumption is satisfied by any reasonable subdivision scheme. It would be

rather unnatural if the shape of the curve changed as we translate control points.

2.4.5 Geometric Behavior of Repeated Subdivision

If we assume thatλ0 is 1, and all other eigenvalues are less than 1, we can choose our coordinate system

in such a way thata0 is the origin inR2. In that case we have

p j =
n−1

∑
i=1

aiλ j
i xi

Dividing both sides byλ j
1, we obtain

1

λ j
1

p j = a1x1 +
n−1

∑
i=2

ai

(
λi

λ1

) j

xi .

43

"zooming in" on the
left hand side curves
enlarged versions of

to each other center vertex

zoom factor 8

zoom factor 4

zoom factor 2

zoom factor 1

displaced relative
subdivision

successive levels of

Figure 2.9:Repeatedly applying the subdivision matrix to our set of n control points results in the control

points converging to a configuration aligned with the tangent vector. The various subdivision levels have

been offset vertically for clarity.

If we assume that|λ2|, . . . , |λn−1|< |λ1|, the sum on the right approaches zero asj→ ∞. In other words

the term corresponding toλ1 will “dominate” the behavior of the vector of control points. In the limit,

we get a set ofn points arranged along the vectora1. Geometrically, this is a vector tangent to our curve

at the center point (see Figure 2.9).

Just as in the case of computing the limit point of cubic B-spline subdivision by computinga0 we can

compute the tangent vector atpj
i by computinga1 = x̃1 ·p j

t∞
i = a1 = pj

i+1− pj
i−1.

If there were two equal eigenvalues, sayλ1 = λ2, as j increases, the points in the limit configuration

will be linear combinations of two vectorsa1 anda2, and in general would not be on the same line. This

indicates that there will be no tangent vector at the central point. This leads us to the following condition,

that, under some additional assumptions, is necessary for the existence of a tangent

All eigenvalues of S exceptλ0 = 1 should be less thanλ1.

44

2.4.6 Size of the Invariant Neighborhood

We have argued above that the size of the invariant neighborhood for cubic splines is 5 (7 for the 4pt

scheme). This was motivated by the question of which basis functions overlap a finite sized, however

small, neighborhood of the origin. Yet, when we computed the limit position as well as the tangent

vector for the cubic spline subdivision we used left eigenvectors, whose non-zero entries did not extend

beyond the immediate neighbors of the vertex at the origin. This turns out to be a general observation.

While the larger invariant neighborhood is needed foranalysis, we can actually get away with a smaller

neighborhood if we are only interested incomputationof point positions and tangents at those points

corresponding to one of the original vertices. The value of the subdivision curve at the center point only

depends on those basis functions which are non-zero at that point. In the case of cubic spline subdivision

there are only 3 basis functions with this property. Similarly the first derivatives at the origin of the basis

functions centered at -2 and +2 are zero as well. Hence the derivative only depends on the immediate

neighbors as well. This must be so since the subdivision scheme isC1. The basis functions have zero

derivative at the edge of their support byC1-continuity assumption, because outside of the support the

derivative is identically zero.

For curves this distinction does not make too much of a difference in terms of computations, but

in the case of surfaces life will be much easier if we can use a smaller invariant neighborhood for the

computation of limit positions and tangents. For example, for Loop’s scheme we will be able to use

a 1-ring (only immediate neighbors) rather than a 2-ring. For the Butterfly scheme we will find that a

2-ring, rather than a 3-ring is sufficient to compute tangents.

2.4.7 Summary

For our subdivision matrixSwe desire the following characteristics

• the eigenvectors should form a basis;

• the first eigenvalueλ0 should be 1;

• the second eigenvalueλ1 should be less than 1;

• all other eigenvalues should be less thanλ1.

45

46

Chapter 3

Subdivision Surfaces

Denis Zorin, New York University

In this chapter we review the basic principles of subdivision surfaces. These principles can be applied

to a variety of subdivision schemes described in Chapter 4: Doo-Sabin, Catmull-Clark, Loop, Modified

Butterfly, Kobbelt, Midedge.

Some of these schemes were around for a while: the 1978 papers of Doo and Sabin and Catmull and

Clark were the first papers describing subdivision algorithms for surfaces. Other schemes are relatively

new. Remarkably, during the period from 1978 until 1995 little progress was made in the area. In

fact, until Reif’s work [26] onC1-continuity of subdivision most basic questions about the behavior

of subdivision surfaces near extraordinary vertices were not answered. Since then there was a steady

stream of new theoretical and practical results: classical subdivision schemes were analyzed [28, 18],

new schemes were proposed [39, 11, 9, 19], and general theory was developed forC1 andCk-continuity

of subdivision [26, 20, 35, 37]. Smoothness analysis was performed in some form for almost all known

schemes, for all of them, definitive results were obtained during the last 2 years only.

One of the goals of this chapter is to provide an accessible introduction to the mathematics of subdi-

vision surfaces (Sections 3.4 and 3.5). Building on the material of the first chapter, we concentrate on

the few general concepts that we believe to be of primary importance: subdivision surfaces as parametric

surfaces,C1-continuity, eigen structure of subdivision matrices, characteristic maps.

The developments of recent years have convinced us of the importance of understanding the mathe-

matical foundations of subdivision. A Computer Graphics professional who wishes to use subdivision,

probably is not interested in the subtle points of a theoretical argument. However, understanding the

47

general concepts that are used to construct and analyze subdivision schemes allows one to choose the

most appropriate subdivision algorithm or customize one for a specific application.

3.1 Subdivision Surfaces: an Example

One of the simplest subdivision schemes is theLoop scheme, invented by Charles Loop [16]. We will

use this scheme as an example to introduce some basic features of subdivision for surfaces.

The Loop scheme is defined for triangular meshes. The general pattern of refinement, which we call

vertex insertion, is shown in Figure 3.1.

Figure 3.1: Refinement of a triangular mesh. New vertices are shown as black dots. Each edge of the

control mesh is split into two, and new vertices are reconnected to form 4 new triangles, replacing each

triangle of the mesh.

Like most (but not all) other subdivision schemes, this scheme is based on a spline basis function,

called the three-directional quartic box spline. Unlike more conventional splines, such as the bicubic

spline, the three-directional box spline is defined on the regulartriangular grid; the generating polyno-

mial for this spline is

S(z1,z2) =
1
16

(1+ z1)2 (1+ z2)2 (1+ z1z2)2 .

Note that the generating polynomial for surfaces has two variables, while the generating polynomials for

curves described in Chapter 2, had only one. This spline basis function isC2-continuous. Subdivision

rules for it are shown in Figure 3.2.

In one dimension, once a spline basis is chosen, all the coefficients of the subdivision rules that are

48

1

8

3

88

1

8

3

8

1

16

1

16

1

16

1

16

1

16

1

16

10
16

Figure 3.2: Subdivision coefficients for a three directional box spline.

needed to generate a curve are completely determined. The situation is radically different and more

complex for surfaces. The structure of the control polygon for curves is always very simple: the vertices

are arranged into a chain, and any two pieces of the chain of the same length always have identical

structure. For two-dimensional meshes, the local structure of the mesh may vary: the number of edges

connected to a vertex may be different from vertex to vertex. As a result the rules derived from the spline

basis function may be applied only to parts of the mesh that are locally regular; that is, only to those

vertices that have a valence of 6 (in the case of triangular schemes). In other cases, we have to design

new rules for vertices with different valences. Such vertices are calledextraordinary.

For the time being, we consider only meshes without a boundary. Note that the quartic box spline

rule used to compute the control point inserted at an edge (Figure 3.2,left) can be applied anywhere. The

only rule that needs modification is the rule used to compute new positions of control points inherited

from the previous level.

Loop proposed to use coefficients shown in Figure 3.3. It turns out that this choice of coefficients

guarantees that the limit surface of the scheme is “smooth.”

Note that these new rules only influence local behavior of the surface near extraordinary vertices. All

vertices inserted in the course of subdivision are always regular, i.e., have valence 6.

This example demonstrates the main challenge in the design of subdivision schemes for surfaces:

one has to define additional rules for irregular parts of the mesh in such a way that the limit surfaces

have desired properties, in particular, are smooth. In this chapter one of our main goals is to describe

the conditions that guarantee that a subdivision scheme produces smooth surfaces. We start with defin-

49

Figure 3.3: Loop scheme: coefficients for extraordinary vertices. The choice ofβ is not unique;

Loop [16] suggests1k(5/8− (3
8 + 1

4 cos2π
k)2).

ing subdivision surfaces more rigorously (Section 3.2), and defining subdivision matrices (Section 3.3).

Subdivision matrices have many applications, including computing limit positions of the points on the

surface, normals, and explicit evaluation of the surface (Chapter 4). Next, we define more precisely what

a smooth surface is (Section 3.4), introducing two concepts of geometric smoothness—tangent plane

continuityandC1-continuity. Then we explain how it is possible to understand local behavior of sub-

division near extraordinary vertices using characteristic maps (Section 3.5). In Chapter 4 we discuss a

variety of subdivision rules in a systematic way.

3.2 Natural Parameterization of Subdivision Surfaces

The subdivision process produces a sequence of polyhedra with increasing numbers of faces and vertices.

Intuitively, the subdivision surface is the limit of this sequence. The problem is that we have to define

what we mean by the limit more precisely. For this, and many other purposes, it is convenient to represent

subdivision surfaces as functions defined on some parametric domain with values inR3. In the regular

case, the plane or a part of the plane is the domain. However, for arbitrary control meshes, it might be

impossible to parameterize the surface continuously over a planar domain.

Fortunately, there is a simple construction that allows one to use theinitial control mesh, or more

precisely, the corresponding polygonal complex, as the domain for the surface.

50

Parameterization over the initial control mesh. We start with the simplest case: suppose the initial

control mesh is a simple polyhedron, i.e., it does not have self-intersections.

Suppose each time we apply the subdivision rules to compute the finer control mesh, we also apply

midpoint subdivision to a copy of the initial control polyhedron (see Figure 3.4). This means that we

leave the old vertices where they are, and insert new vertices splitting each edge in two. Note that

each control point that we insert in the mesh using subdivision corresponds to a point in the midpoint-

subdivided polyhedron. Another important fact is that midpoint subdivision does not alter the control

polyhedron regarded as a set of points; and no new vertices inserted by midpoint subdivision can possibly

coincide.

Figure 3.4:Natural parameterization of the subdivision surface

We will use the second copy of the control polyhedron as our domain. We denote it asK, when it is

regarded as a polyhedron with identified vertices, edges and faces, and|K| when it is regarded simply as

a subset ofR3.

51

Important remark on notation: we will refer to the points computed by subdivision ascontrol

points; the wordvertex is reserved for the vertices of the polyhedron that serves as the domain and

new vertices added to it by midpoint subdivision. We will use the letterv to denote vertices, andpj(v) to

denote the control point corresponding tov after j subdivision steps.

As we repeatedly subdivide, we get a mapping from a denser and denser subset of the domain to the

control points of a finer and finer control mesh. At each step, we linearly interpolate between control

vertices, and regard the mesh generated by subdivision as a piecewise linear function on the domainK.

Now we have the same situation that we had for curves: a sequence of piecewise linear functions defined

on a common domain. If this sequence of functions converges uniformly, the limit is a mapf from |K|
into R3. This is the limit surface of subdivision.

An important fact about the parameterization that we have just constructed is that for a regular mesh

the domain can be taken to be the plane with a regular triangular grid. If in the regular case the subdivision

scheme reduces to spline subdivision, our parameterization is precisely the standard(u,v) parameteriza-

tion of the spline, which is guaranteed to be smooth.

To understand the general idea, this definition is sufficient, and a reader not interested in the sub-

tle details can proceed to the next section and assume from now on that the initial mesh has no self-

intersections.

General case. The crucial fact that we needed to parameterize the surface over its control polyhedron

was the absence of self-intersections. Otherwise, it could happen that a vertex on the control polyhedron

has more than one control point associated with it.

In general, we cannot rely on this assumption: quite often control meshes have self-intersections or

coinciding control points. We can observe though that the positions of vertices of the control polyhedron

are of no importance for our purposes: we can deform it in any way we want. In many cases, this

is sufficient to eliminate the problem with self intersections; however, there are cases when the self-

intersection cannot be removed by any deformation (example: Klein bottle, Figure 3.5). It is always

possible to do that if we place our mesh in a higher-dimensional space; in fact, 4 dimensions are always

enough.

This leads us to the following general choice of the domain: a polyhedron with no self-intersections,

possibly in four-dimensional space. The polyhedron has to have the same structure as the initial control

mesh of the surface, that is, there is a one-to-one correspondence between vertices, edges and faces of

the domain and the initial control mesh. Note that now we are completely free to chose the control points

of the initial mesh any way we like.

52

Figure 3.5: The surface (Klein bottle) has an intersection that cannot be removed in 3D.

3.3 Subdivision Matrix

An important tool both for understanding and using subdivision is thesubdivision matrix, similar to

the subdivision matrix for the curves introduced in Chapter 2. In this section we define the subdivision

matrix and discuss how it can be used to compute tangent vectors and limit positions of points. Another

application of subdivision matrices is explicit evaluation of subdivision surfaces described in Chapter 4.

Subdivision matrix. Similarly to the one-dimensional case, the subdivision matrix relates the con-

trol points in a fixed neighborhood of a vertex on two sequential subdivision levels. Unlike the one-

dimensional case, there is not a single subdivision matrix for a given surface subdivision scheme: a

separate matrix is defined for each valence.

For the Loop scheme control points for only two rings of vertices around an extraordinary vertexB

define f (U) completely. We will call the set of vertices in these two rings thecontrol setof U .

Let pj
0 be the value at levelj of the control point corresponding toB. Assign numbers to the vertices

in the two rings (there are 3k vertices). Note thatU j andU j+1 are similar: one can establish a one-to-one

correspondence between the vertices simply by shrinkingU j by a factor of 2. Enumerate the vertices

in the rings; there are 3k vertices, plus the vertex in the center. Letpj
i , i = 1. . .3k be the corresponding

control points.

By definition of the control set, we can compute all valuespj+1
i from the valuespj

i . Because we only

consider subdivision which computes finer levels by linear combination of points from the coarser level,

53

5

3 9

41

6

8

7

5

6

7

8

2

2

04

93

0 1

Figure 3.6:The Loop subdivision scheme near a vertex of degree 3. Note that3×3+ 1 = 10 points in

two rings are required.

the relation between the vectors of pointsp j+1 andp j is given by a(3k+ 1)× (3k+ 1) matrix:
pj+1

0
...

pj+1
3k

 = S

pj

0
...

pj
3k

 .
It is important to remember that each component ofpj is a point in the three-dimensional space. The

matrix S is the subdivision matrix, which, in general, can change from level to level. We consider only

schemes for which it is fixed. Such schemes are calledstationary.

We can now rewrite each of the coordinate vectors in terms of the eigenvectors of the matrixS(com-

pare to the use of eigen vectors in the 1D setting). Thus,

p0 = ∑
i

aixi

and

p j = (S) jp0 = ∑
i

(λi)
jaixi

where thexi are the eigenvectors ofS, and theλi are the corresponding eigenvalues, arranged in non

increasing order. As discussed for the one-dimensional case,λ0 has to be 1 for all subdivision schemes,

in order to guarantee invariance with respect to translations and rotations. Furthermore, all stable, con-

verging subdivision schemes will have all the remainingλi less than 1.

54

Subdominant eigenvalues and eigenvectorsIt is clear that as we subdivide, the behavior ofp j , which

determines the behavior of the surface in the immediate vicinity of our point of interest, will depend only

on the eigenvectors corresponding to the largest eigenvalues ofS.

To proceed with the derivation, we will assume for simplicity thatλ = λ1 = λ2 > λ3. We will call

λ1 andλ2 subdominant eigenvalues. Furthermore, we leta0 = 0; this corresponds to choosing the origin

of our coordinate system in the limit position of the vertex of interest (just as we did in the 1D setting).

Then we can write

p j

(λ) j = a1x1 + a2x2 + a3

(
λ3

λ

) j

x3 . . . (3.1)

where the higher-order terms disappear in the limit.

This formula is very important, and deserves careful consideration. Recall thatp j is a vector of 3k+1

3D points, whilexi are vectors of 3k+ 1 numbers. Hence the coefficientsai in the decomposition above

have to be 3D points.

This means that, up to a scaling by(λ) j , the control set forf (U) approaches a fixed configuration.

This configuration is determined byx1 andx2, which depend only on the subdivision scheme, and ona1

anda2 which depend on the initial control mesh.

Each vertex inp j for sufficiently largej is a linear combination ofa1 anda2, up to a vanishing term.

This indicates thata1 anda2 span the tangent plane. Also note that if we apply an affine transformA,

taking a1 anda2 to coordinate vectorse1 ande2 in the plane, then, up to a vanishing term, the scaled

configuration will be independent of the initial control mesh. The transformed configuration consists of

2D points with coordinates(x1i ,x2i), i = 0. . .3k, which depend on the subdivision matrix.

Informally, this indicates that up to a vanishing term, all subdivision surfaces generated by a scheme

differ near an extraordinary point only by an affine transform. In fact, this is not quite true: it may happen

that a particular configuration(x1,i ,x2,i), i = 0. . .3k does not generate a surface patch, but, say, a curve.

In that case, the vanishing terms will have influence on the smoothness of the surface.

Tangents and limit positions. We have observed that similar to the one-dimensional case, the coef-

ficientsa0 a1 anda2 in the decomposition 3.1 are the limit position of the control point for the central

vertex v0, and two tangents respectively. To compute these coefficients, we need corresponding left

eigenvectors:

a0 = (l0,p), a1 = (l1,p), a0 = (l2,p)

55

Similarly to the one-dimensional case, the left eigenvectors can be computed using only a smaller

submatrix of the full subdivision matrix. For example, for the Loop scheme we need to consider the

k+ 1× k + 1 matrix acting on the control points of 1-neighborhood of the central vertex, not on the

points of the 2-neighborhood.

In the descriptions of subdivision schemes in the next section we describe these left eigenvectors

whenever information is available.

3.4 Smoothness of Surfaces

Intuitively, we call a surface smooth, if, at a close distance, it becomes indistinguishable from a plane.

Before discussing smoothness of subdivision surfaces in greater detail, we have to define more precisely

what we mean by a surface, in a way that is convenient for analysis of subdivision.

The discussion in the section is somewhat informal; for a more rigorous treatment, see [26, 25, 35],

3.4.1 C1-continuity and Tangent Plane Continuity

Recall that we have defined the subdivision surface as a functionf : |K| → R3 on a polyhedron. Now

we can formalize our intuitive notion of smoothness, namely local similarity to a piece of the plane. A

surface is smooth at a pointx of its domain|K|, if for a sufficiently small neighborhoodUx of that point

the imagef (Ux) can be smoothly deformed into a planar disk. More precisely,

Definition 1 A surface f: |K| → R3 is C1-continuous, if for every point x∈ |K| there exists a regular

parameterizationπ : D→ f (Ux) of f(Ux) over a unit disk D in the plane, where Ux is the neighborhood

in |K| of x. Aregular parameterizationπ is one that is continuously differentiable, one-to-one, and has

a Jacobi matrix of maximum rank.

The condition that the Jacobi matrix ofp has maximum rank is necessary to make sure that we have no

degeneracies, i.e., that we really do have a surface, not a curve or point. Ifp = (p1, p2, p3) and the disc

is parameterized byx1 andx2, the condition is that the matrix
∂p1
∂x1

∂p1
∂x2

∂p2
∂x1

∂p2
∂x2

∂p3
∂x1

∂p3
∂x2

have maximal rank (2).

56

There is another, weaker, definition of smoothness, which is often useful. This definition captures the

intuitive idea that the tangent plane to a surface changes continuously near a smooth point. Recall that a

tangent plane is uniquely characterized by its normal. This leads us to the following definition:

Definition 2 A surface f: |K|→R3 is tangent plane continuousat x∈ |K| if and only if surface normals

are defined in a neighborhood around x and there exists a limit of normals at x.

This is a useful definition, since it is easier to prove surfaces are tangent plane continuous. Tangent

plane continuity, however, is weaker thanC1-continuity.

As a simple example of a surface that is tangent plane continuous but notC1-continuous, consider the

shape in Figure 3.7. Points in the vicinity of the central point are “wrapped around twice.” There exists a

tangent plane at that point, but the surface does not “locally look like a plane.” Formally speaking, there

is no regular parameterization of the neighborhood of the central point, even though it has a well-defined

tangent plane.

From the previous example, we see how the definition of tangent plane continuity must be strength-

ened to becomeC1:

Lemma 4 If a surface is tangent plane continuous at a point and the projection of the surface onto the

tangent plane at that point is one-to-one, the surface is C1.

The proof can be found in [35].

3.5 Analysis of Subdivision Surfaces

In this section we discuss how to determine if a subdivision scheme produces smooth surfaces. Typically,

it is known in advance that a scheme producesC1-continuous (or better) surfaces in the regular setting.

For local schemes this means that the surfaces generated on arbitrary meshes areC1-continuous away

from the extraordinary vertices. We start with a brief discussion of this fact, and then concentrate on

analysis of the behavior of the schemes near extraordinary vertices. Our goal is to formulate and provide

some motivation for Reif’s sufficient condition forC1-continuity of subdivision.

We assume a subdivision scheme defined on a triangular mesh, with certain restrictions on the struc-

ture of the subdivision matrix, defined in Section 3.5.2. Similar derivations can be performed without

these assumptions, but they become significantly more complicated. We consider the simplest case so as

not to obscure the main ideas of the analysis.

57

Figure 3.7:Example of a surface that is tangent plane continuous but not C1-continuous.

3.5.1 C1-continuity of Subdivision away from Extraordinary Vertices

Most subdivision schemes are constructed from regular schemes, which are known to produce at least

C1-continuous surfaces in the regular setting for almost any initial configuration of control points. If our

subdivision rules are local, we can take advantage of this knowledge to show that the surfaces generated

by the scheme areC1-continuous for almost any choice of control points anywhereaway from extraor-

58

dinary vertices. We call a subdivision scheme local, if only a finite number of control points is used to

compute any new control point, and does not exceed a fixed number for all subdivision levels and all

control points.

One can demonstrate, as we did for the curves, that for any triangleT of the domain the surfacef (T)

is completely determined by only a finite number of control points corresponding to vertices around

T. For example, for the Loop scheme, we need only control points for vertices that are adjacent to the

triangle. (see Figure 3.8). This is true for triangles at any subdivision level.

Figure 3.8: Control set for a triangle for the three-directional box spline.

To show this, fix a pointx of the domain|K| (not necessarily a vertex). For any levelj, x is contained

in a face of the domain; ifx is a vertex, it is shared by several faces. LetU j(x) be the collection of faces

on level j containingx, the1-neighborhoodof x. The 1-neighborhood of a vertex can be identified with a

k-gon in the plane, wherek is the valence. We needj to be large enough so that all neighbors of triangles

in U j(x) are free of extraordinary vertices. Unlessx is an extraordinary vertex, this is easily achieved.

f (U j(x)) will be regular (see Figure 3.9).

A B

C

Figure 3.9: 2-neighborhoods (1-neighborhood of 1-neighborhood) of vertices A, C contain only regular

vertices; this is not the case for B, which is an extraordinary vertex.

This means thatf (U j(x)) is identical to a part of the surface corresponding to a regular mesh, and

is thereforeC1-continuous for almost any choice of control points, because we have assumed that our

59

scheme generatesC1-continuous surfaces over regular meshes.1

3.5.2 Smoothness Near Extraordinary Vertices

Now that we know that surfaces generated by our scheme are (at least)C1-continuous away from the

extraordinary vertices, all we have to do is find a a smooth parameterization near each extraordinary

vertex, or establish that no such parameterization exists.

Consider the extraordinary vertexB in Figure 3.9. After sufficient number of subdivision steps, we

will get a 1-neighborhoodU j of B, such that all control points definingf (U j) are regular, exceptB itself.

This demonstrates that it is sufficient to determine if the scheme generatesC1-continuous surfaces for

a very specific type of domainsK: triangulations of the plane which have a single extraordinary vertex

in their center, surrounded by regular vertices. We can assume all triangles of these triangulations to be

identical (see Figure 3.10) and call such triangulationsk-regular.

Figure 3.10:k-regular triangulation for k= 9.

At first, the task still seems to be very difficult: for any configuration of control vertices, we have to

find a parameterization off (U j). However, it turns out that the problem can be further simplified.

We outline the idea behind asufficientcondition forC1-continuity proposed by Reif [26]. This cri-

terion tells us when the scheme is guaranteed to produceC1-continuous surfaces, but if it fails, it is still

possible that the scheme might beC1-continuous.

In addition to the subdivision matrix described in Section 3.3 , we need one more tool to formulate

the criterion: thecharacteristic map. It turns out that rather than trying to consider all possible surfaces

generated by subdivision, it is typically sufficient to look at a single map—the characteristic map.

1Our argument is informal, and there are certain unusual cases when it fails; see [35] for details.

60

3.5.3 Characteristic Map

Our observations made in Section 3.3 motivate the definition of thecharacteristic map. Recall that the

control points near a vertex converge to a limit configuration independent, up to an affine transformation,

from the control points of the original mesh. This limit configuration defines a map. Informally speaking,

any subdivision surface generated by a scheme looks near an extraordinary vertex of valencek like the

characteristic map of that scheme for valencek.

Figure 3.11:Control set of the characteristic map for k= 9.

Note that when we described subdivision as a function from the plane toR3, we may use control

vertices not fromR3, but fromR2; clearly, subdivision rules can be applied in the plane rather then in

space. Then in the limit we obtain a map from the plane into the plane. The characteristic map is a map

of this type.

As we have seen, the configuration of control points near an extraordinary vertex approachesa1x1 +

a2x2, up to a scaling transformation. This means that the part of the surface defined on thek-gonU j

as j → ∞, and scaled by the factor 1/λ j , approaches the surface defined by the vector of control points

a1x1 + a2x2. Let f [p] : U → R3 be the limit surface generated by subdivision onU from the control set

p.

Definition 3 The characteristic map of a subdivision scheme for a valence k is the mapΦ : U → R2

generated by the vector of 2D control points e1x1 + e2x2: Φ = f [e1x1 + e2x2], where e1 and e2 are unit

coordinate vectors, and x1 and x2 are subdominant eigenvectors.

61

Regularity of the characteristic map Inside each triangle of thek-gonU , the map isC1: the argu-

ment of Section 3.5.1 can be used to show this. Moreover, the map has one-sided derivatives on the

boundaries of the triangles, except at the extraordinary vertex, so we can define one-sided Jacobians on

the boundaries of triangles too. We will say that the characteristic map isregular if its Jacobian is not

zero anywhere onU excluding the extraordinary vertex but including the boundaries between triangles.

The regularity of the characteristic map has a geometric meaning: any subdivision surface can be

written, up to a scale factorλ j , as

f [p j](t) = AΦ(t)+ a(t)O
(
(λ3/λ) j) ,

t ∈U j , a(t) a bounded functionU j → R3, andA is a linear transform taking the unit coordinate vectors

in the plane toa1 anda2. Differentiating along the two coordinate directionst1 andt2 in the parametric

domainU j , and taking a cross product, after some calculations, we get the expression for the normal to

the surface:

n(t) = (a1×a2)J[Φ(t)]+ O
(
(λ3/λ)2 j

)
ã(t)

whereJ[Φ] is the Jacobian, and ˜a(t) some bounded vector function onU j .

The fact that the Jacobian does not vanish forΦ means that the normal is guaranteed to converge to

a1×a2; therefore, the surface is tangent plane continuous.

Now we need to take only one more step. If, in addition to regularity, we assume thatΦ is injective,

we can invert it and parameterize any surface asf (Φ−1(s)), wheres∈ Φ(U). Intuitively, it is clear that

up to a vanishing term this map is just an affine map, and is differentiable. We omit a rigorous proof

here. For a complete treatment see [26]; for more recent developments, see [35] and [37].

We arrive at the following condition, which is the basis of smoothness analysis of all subdivision

schemes considered in these notes.

Reif’s sufficient condition for smoothness.Suppose the eigenvectors of a subdivision matrix form a

basis, the largest three eigenvalues are real and satisfy

λ0 = 1> λ1 = λ2 > |λ3|

If the characteristic map is regular, then almost all surfaces generated by subdivision are tangent

plane continuous; if the characteristic map is also injective, then almost all surfaces generated by

subdivision areC1-continuous.

Note: Reif’s original condition is somewhat different, because he defines the characteristic map on an

annular region, rather than on ak-gon. This is necessary for applications, but makes it somewhat more

difficult to understand.

62

D H Q1 Q3 Q0

Figure 3.12: The charts for a surface with piecewise smooth boundary.

In Chapter 4, we will discuss the most popular stationary subdivision schemes, all of which have

been proved to beC1-continuous at extraordinary vertices. These proofs are far from trivial: checking

the conditions of Reif’s criterion is quite difficult, especially checking for injectivity. In most cases

calculations are done in symbolic form and use closed-form expressions for the limit surfaces of subdivi-

sion [28, 9, 18, 19]. In [36] an interval-based approach is described, which does not rely on closed-form

expressions for limit surfaces, and can be applied, for example, to interpolating schemes.

3.6 Piecewise-smooth surfaces and subdivision

Piecewise smooth surfaces.So far, we have assumed that we consider only closed smooth surfaces.

However, in reality we typically need to model more general classes of surfaces: surfaces with bound-

aries, which may have corners, creases, cusps and other features. One of the significant advantages of

subdivision is that it is possible to introduce features into surfaces using simple modifications of rules.

Here we briefly describe a class of surfaces (piecewise smooth surfaces) which appears to be adequate

for many applications. This is the class of surfaces that includes, for example, quadrilateral free-form

patches, and other common modeling primitives. At the same time, we have excluded from considera-

tion surfaces with various other types of singularities. To generate surfaces from this class, in addition to

vertex and edge rules such as the Loop rules (Section 3.1), we need to define several other types of rules.

To define piecewise smooth surfaces, we start with smooth surfaces that have a piecewise-smooth

boundary. For simplicity, assume that our surfaces do not have self-intersections. Recall that for closed

C1-continuous surfaceM in R3 each point has a neighborhood that can be smoothly deformed into an

open planar diskD.

A surface with a smooth boundaryis defined in a similar way, but the neighborhoods of points on the

boundary can be smoothly deformed into a half-diskH, with closed boundary. To define a surface with

piecewise smooth boundaries, we introduce two additional types of local charts: concave and convex

corner charts,Q3 andQ1 (Figure 3.12). Thus, aC1-continuous surface with piecewise smooth boundary

locally looks like one of the domainsD, H, Q1 andQ3.

63

Piecewise-smooth surfacesare the surfaces that can be constructed out of surfaces with piecewise

smooth boundaries joined together.

If the resulting surface is notC1-continuous at the common boundary of two pieces, this common

boundary is a crease. We allow two adjacent smooth segments of a boundary to be joined, producing a

crease ending in adart (cf. [10]). For dart vertices an additional chartQ0 is required; the surface near a

dart can be deformed into this chart smoothly everywhere except at an open edge starting at the center of

the disk.

Subdivision schemes for piecewise smooth surfaces.An important observation for constructing sub-

division rules for the boundary is that the last two corner types are not equivalent, that is, there is no

smoothnon-degeneratemap fromQ1 to Q3. It follows from the theory of subdivision [35], that a single

subdivision rule cannot produce both types of corners. In general, any complete set of subdivision rules

should contain separate rules for all chart types. Most, if not all, known schemes provide rules for charts

of type D andH (smooth boundary and interior vertices); rules for charts of typeQ1 andQ0 (convex

corners and darts) are typically easy to construct; however,Q3 (concave corner) is more of a challenge,

and no rules were known until recently.

In Chapter 4 we present descriptions of various rules for smooth (not piecewise smooth) surfaces with

boundary. For extensions of the Loop and Catmull-Clark schemes including concave corner rules, see

[2].

Interpolating boundaries. Quite often our goal is not just to generate a smooth surface of a given

topological type approximating or interpolating an initial mesh with boundary, but to interpolate a given

set of boundary or even an arbitrary set of curves. In this case, one can use a technique developed

by A. Levin [13, 14, 15]. The advantage of this approach is that the interpolated curves need not

be generated by subdivision; one can easily create blend subdivision surfaces with different types of

parametric surfaces (for a example, NURBS).

64

Chapter 4

Subdivision Zoo

Denis Zorin, New York University

4.1 Overview of Subdivision Schemes

In this section we describe most known stationary subdivision schemes generatingC1-continuous sur-

faces on arbitrary meshes. Without doubt, our discussion is not exhaustive even as far as stationary

schemes are concerned. There are even wholly different classes of subdivision schemes, most impor-

tantly variational schemes, that we do not discuss here (see Chapter 9).

At first glance, the variety of existing schemes might appear chaotic. However, there is a straightfor-

ward way to classify most of the schemes based on four criteria:

• the type of refinement rule (face split or vertex split);

• the type of generated mesh (triangular or quadrilateral);

• whether the scheme is approximating or interpolating;

• smoothness of the limit surfaces for regular meshes (C1, C2 etc.)

The following table shows this classification:

Face split

Triangular meshes Quad. meshes

Approximating Loop (C2) Catmull-Clark (C2)

Interpolating Mod. Butterfly (C1) Kobbelt (C1)

Vertex split

Doo-Sabin, Midedge (C1)

Biquartic (C2)

65

Out of recently proposed schemes,
√

3 subdivision [12], and subdivision on 4− k meshes [31, 32]

do not fit into this classification. In this survey, we focus on the better-known and established schemes,

and this classification is sufficient for most purposes. It can be extended to include the new schemes, as

discussed in Section 4.9.

The table shows that there is little replication in functionality: most schemes produce substantially

different types of surfaces. Now we consider our classification criteria in greater detail.

First, we note that each subdivision scheme defined on meshes of arbitrary topology is based on a

regular subdivision scheme, for example, one based on splines. Our classification is primarily a classifi-

cation of regular subdivision schemes—once such a scheme is fixed, additional rules have to be specified

only for extraordinary vertices or faces that cannot be part of a regular mesh.

Mesh Type. Regular subdivision schemes act on regular control meshes, that is, vertices of the mesh

correspond to regularly spaced points in the plane. However, the faces of the mesh can be formed in

different ways. For a regular mesh, it is natural to use faces that are identical. If, in addition, we assume

that the faces are regular polygons, it turns out that there are only three ways to choose the face polygons:

we can use squares, equilateral triangles and regular hexagons. Meshes consisting of hexagons are not

very common, and the first two types of tiling are the most convenient for practical purposes. These lead

to two types of regular subdivision schemes: those defined for quadrilateral tilings, and those defined for

triangular tilings.

Face Split and Vertex Split. Once the tiling of the plane is fixed, we have to define how a refined

tiling is related to the original tiling. There are two main approaches that are used to generate a refined

tiling: one isface splitand the other isvertex split(see Figure 4.1). The schemes using the first method

are often calledprimal, and the schemes using the second method are calleddual. In the first case, each

face of a triangular or a quadrilateral mesh is split into four. Old vertices are retained, new vertices are

inserted on the edges, and for quadrilaterals, an additional vertex is inserted for each face. In the second

case, for each old vertex, several new vertices are created, one for each face adjacent to the vertex. A

new face is created for each edge and old faces are retained; in addition, a new face is created for each

vertex. For quadrilateral tilings, this results in tilings in which each vertex has valence 4. In the case of

triangles vertex split (dual) schemes results in non-nesting hexagonal tilings. In this sense quadrilateral

tilings are special: they support both primal and dual subdivision schemes easily (see also Chapter 5).

66

Face split for quads Vertex split for quads

Face split for triangles

Figure 4.1: Different refinement rules.

Approximation vs. Interpolation. Face-split schemes can be interpolating or approximating. Vertices

of the coarser tiling are also vertices of the refined tiling. For each vertex a sequence of control points,

corresponding to different subdivision levels, is defined. If all points in the sequence are the same, we

say that the scheme is interpolating. Otherwise, we call it approximating. Interpolation is an attractive

feature in more than one way. First, the original control points defining the surface are also points of the

limit surface, which allows one to control it in a more intuitive manner. Second, many algorithms can be

considerably simplified, and many calculations can be performed “in place.” Unfortunately, the quality

of these surfaces is not as high as the quality of surfaces produced by approximating schemes, and the

schemes do not converge as fast to the limit surface as the approximating schemes.

67

4.1.1 Notation and Terminology

Here we summarize the notation that we use in subsequent sections. Some of it was already introduced

earlier.

Regular and extraordinary vertices. We have already seen that subdivision schemes defined on trian-

gular meshes create new vertices of valence 6 in the interior. On the boundary, the newly created

vertices have valence 4. Similarly, on quadrilateral meshes both face-split and vertex-split schemes

create only vertices of valence 4 in the interior, and 3 on the boundary. Hence, after several sub-

division steps, most vertices in a mesh will have one of these valences (6 in the interior, 4 on the

boundary for triangular meshes, 4 in the interior, 3 on the boundary for quadrilateral). The vertices

with these valences are calledregular and vertices of other valencesextraordinary.

Notation for vertices near a fixed vertex. In Figure 4.2 we show the notation that we use for control

points of quadrilateral and triangular subdivision schemes near a fixed vertex. Typically, we need

it for extraordinary vertices. We also use it for regular vertices when describing calculations of

limit positions and tangent vectors.

Odd and even vertices.For face-split (primal) schemes, the vertices of the coarser mesh are also ver-

tices of the refined mesh. For any subdivision level, we call all new vertices that are created at that

level, odd vertices. This term comes from the one-dimensional case, when vertices of the control

polygons can be enumerated sequentially and on any level the newly inserted vertices are assigned

odd numbers. The vertices inherited from the previous level are calledeven. (See also Chapter 2).

Face and edge vertices.For triangular schemes (Loop and Modified Butterfly), there is only one type

of odd vertex. For quadrilateral schemes, some vertices are inserted when edges of the coarser

mesh are split, other vertices are inserted for a face. These two types of odd vertices are called

edgeandfacevertices respectively.

Boundaries and creases.Typically, special rules have to be specified on the boundary of a mesh. These

rules are commonly chosen in such a way that the boundary curve of the limit surface does not

depend on any interior control vertices, and is smooth or piecewise smooth (C1 orC2-continuous).

The same rules can be used to introduce sharp features intoC1-surfaces: some interior edges can

be taggedas crease edges, and boundary rules are applied for all vertices that are inserted on such

edges.

68

p
j

i,2

p
j

i-1,2

p
j

i+1,2

p
j

i+1,3

p
j

i-1,3

p
j

i+1,1

p
j

i-1,1

p
j

i,4

p
j

i,5

p
j

i,6

p
j

0

p
j

i-1,4

p
j

i-1,6

p
j

i-1,5

p
j

i+1,4

p
j

i+1,6 p
j

i+1,5

p
j

i+2,3

p
j

i+2,1 p
j

i,3

p
j

i,1

p
j

i+2,3

p
j

i,3

p
j

i,2

p
j

i,1

p
j

i-1,2

p
j

i+1,2 p
j

i+1,3

p
j

i-1,3

p
j

i+1,1

p
j

i-1,1

p
j

i,4

p
j

i,5
p

j

i,6

p
j

0

p
j

i-1,4

p
j

i-1,6

p
j

i-1,5

p
j

i+1,4

p
j

i+1,6

p
j

i+1,5

p
j

i+2,3

p
j

i+2,1

p
j

i,7

p
j

i,8

p
j

i,9

p
j

i+1,7 p
j

i,12 p
j

i,11 p
j

i,10

Figure 4.2: Enumeration of vertices of a mesh near an extraordinary vertex; for a boundary vertex, the

0− th sector is adjacent to the boundary.

Masks. We often specify a subdivision rule by providing itsmask. The mask is a picture showing the

control points used to compute a new control point, which we usually denote with a black dot. The

numbers next to the vertices are the coefficients of the subdivision rule.

4.2 Loop Scheme

The Loop scheme is a simple approximating face-split scheme for triangular meshes proposed by Charles

Loop [16].C1-continuity of this scheme for valences up to 100, including the boundary case, was proved

by Schweitzer [28]. The proof for all valences can be found in [35].

The scheme is based on thethree-directional box spline, which producesC2-continuous surfaces

over regular meshes. The Loop scheme produces surfaces that areC2-continuous everywhere except at

extraordinary vertices, where they areC1-continuous. Hoppe, DeRose, Duchamp et al. [10] proposed a

piecewiseC1-continuous extension of the Loop scheme, with special rules defined for edges; in [2, 3],

69

the boundary rules are further improved, and new rules for concave corners and normal modification are

proposed.

The scheme can be applied to arbitrary polygonal meshes, after the mesh is converted to a triangular

mesh, for example, by triangulating each polygonal face.

Subdivision Rules. The masks for the Loop scheme are shown in Figure 4.3. For boundaries and

edges tagged ascreaseedges, special rules are used. These rules produce a cubic spline curve along the

boundary/crease. The curve only depends on control points on the boundary/crease.

Figure 4.3: Loop subdivision: in the picture above,β can be chosen to be either1
n(5/8−(3

8 + 1
4 cos2π

n)2)

(original choice of Loop [16]), or, for n> 3, β = 3
8n as proposed by Warren [33]. For n= 3, β = 3/16

can be used.

In [10], the rules for extraordinary crease vertices and their neighbors on the crease were modified to

produce tangent plane continuous surfaces on either side of the crease (or on one side of the boundary). In

practice, this modification does not lead to a significant difference in the appearance of the surface. At the

same time, as a result of this modification, the crease curve becomes dependent on the valences of vertices

on the curve. This is a disadvantage in situations when two surfaces have to be joined together along a

boundary. It appears that for display purposes it is safe to use the rules shown in Figure 4.3. Although

the surface will not be formallyC1-continuous near vertices of valence greater than 7, the result will be

visually indistinguishable from aC1-surface obtained with modified rules, with the additional advantage

of independence of the boundary from the interior.

70

If it is necessary to ensureC1-continuity, a different modification can be used. Rather than modifying

the rules for a crease, and making them dependent on the valence of vertices, we modify rules for interior

odd vertices adjacent to an extraordinary vertex. Forn< 7, no modification is necessary. Forn> 7,

it is sufficient to use the mask shown in Figure 4.4. Then the limit surface can be shown to beC1-

continuous at the boundary. A better, although slightly more complex modification can be found in [3, 2]:

instead of12 and 1
4 we can use14 + 1

4 cos 2π
k−1 and 1

2−
1
4 cos 2π

k−1 respectively, wherek is the valence of the

boundary/crease vertex.

1

8

1

4

1

1

8

1

2
extraordinary

vertex

Figure 4.4: Modified rule for odd vertices adjacent to a boundary/crease extraordinary vertex (Loop

scheme).

Tangent Vectors. The rules for computing tangent vectors for the Loop scheme are especially simple.

To compute a pair of tangent vectors at an interior vertex, use

t1 =
k−1

∑
i=0

cos
2πi
k

pi,1

t2 =
k−1

∑
i=0

sin
2πi
k

pi,1.

(4.1)

These formulas can be applied to the control points at any subdivision level.

Quite often, the tangent vectors are used to compute a normal. The normal obtained as the cross

productt1× t2 can be interpreted geometrically. This cross product can be written as a weighted sum

of normals to all possible triangles formed byp0, pi,1, pl ,1, i, l = 0. . .k−1, i 6= l . The standard way

of obtaining vertex normals for a mesh by averaging the normals of triangles adjacent to a vertex, can

be regarded as a first approximation to the normals given by the formulas above. At the same time, it

is worth observing that computing normals ast1× t2 is less expensive than averaging the normals of

71

triangles. The geometric nature of the normals obtained in this way suggests that they can be used to

compute approximate normals for other schemes, even if the precise normals require more complicated

expressions.

At a boundary vertex, the tangent along the curve is computed usingtalong= p0,1−pk−1,1. The tangent

across the boundary/crease is computed as follows [10]:

tacross= p0,1 + p1,1−2p0 for k = 2

tacross= p2,1− p0 for k = 3

tacross= sinθ(p0,1 + pk−1,1)+ (2cosθ−2)
k−2

∑
i=1

siniθ pi,1 for k≥ 4

(4.2)

whereθ = π/(k−1). These formulas apply whenever the scheme is tangent plane continuous at the

boundary; it does not matter which method was used to ensure tangent plane continuity.

Limit Positions. Another set of simple formulas allows one to compute limit positions of control points

for a fixed vertex, that is, the limit limj→∞ pj for a fixed vertex. For interior vertices, the mask for

computing the limit value at an interior vertex is the same as the mask for computing the value on the

next level, withβ replaced byχ = 1
3/8β+n.

For boundary and crease vertices, the formula is always

p∞
0 =

1
5

p0,1 +
3
5

p0 +
1
5

p1,k−1

This expression is similar to the rule for even boundary vertices, but with different coefficients. However,

different formulas have to be used if the rules on the boundary are modified as in [10].

4.3 Modified Butterfly Scheme

The Butterfly scheme was first proposed by Dyn, Gregory and Levin in [7]. The original Butterfly

scheme is defined on arbitrary triangular meshes. However, the limit surface is notC1-continuous at

extraordinary points of valencek = 3 andk> 7 [35], while it isC1 on regular meshes.

Unlike approximating schemes based on splines, this scheme does not produce piecewise polynomial

surfaces in the limit. In [39] a modification of the Butterfly scheme was proposed, which guarantees that

the scheme producesC1-continuous surfaces for arbitrary meshes (for a proof see [35]). The scheme is

known to beC1 but notC2 on regular meshes. The masks are shown in Figure 4.5.

72

8

1

1

1

2

1

2

8-
1

16

-
1

16
-

1

16
-

1

16

-
1

16

Mask for interior odd vertices with
regular neighbors

b. Mask for odd vertices adjacent to
an extraordinary vertex

s0

s1

s2

sk-1

sk-2

s3

Mask for crease
and boundary vertices

a. Masks for odd vertices

9

16
-

1

16
-

1

16

9

16

Figure 4.5: Modified Butterfly subdivision. The coefficients si are 1
k

(
1
4 + cos2iπ

k + 1
2 cos4iπ

k

)
for k> 5.

For k = 3, s0 = 5
12, s1,2 =− 1

12; for k = 4, s0 = 3
8, s2 =−1

8, s1,3 = 0.

The tangent vectors at extraordinary interior vertices can be computed using the same rules as for

the Loop scheme. For regular vertices, the formulas are more complex: in this case, we have to use

control points in a 2-neighborhood of a vertex. If the control points are arranged into a vectorp =

[p0, p0,1, p1,1, . . . , p5,1, p0,2, p1,2, p2,2, . . . p5,3] of length 19, then the tangents are given by scalar products

(l1 · p) and(l2 · p), where the vectorsl1 andl2 are

l1 =

[
0,16,8,−8,−16,−8,8,−4,0,4,4,0,−4,1,

1
2
,−1

2
,−1,−1

2
,
1
2

]
l2 =
√

3

[
0,0,8,8,0,−8,−8,−4

3
,−8

3
,−4

3
,
4
3
,
8
3
,
4
3
,0,

1
2
,
1
2
,0,−1

2
,−1

2

] (4.3)

Because the scheme is interpolating, no formulas are needed to compute the limit positions: all control

points are on the surface. On boundaries and creases the four-point subdivision scheme, also shown in

Figure 4.5, is used [6]. To achieveC1-continuity on the boundary, special coefficients have to be used for

crease neighbors, similar to the case of the Loop scheme. One can also adopt a simpler solution: obtain

missing vertices by reflection whenever the butterfly stencil is incomplete, and always use the standard

Butterfly rule, when there is no adjacent interior extraordinary vertex. This approach however results in

73

visible singularities. For completeness, we describe a set of rules that ensureC1-continuity, as these rules

were not previously published.

Boundary Rules. The rules extending the Butterfly scheme to meshes with boundary are somewhat

more complex, because the stencil of the Butterfly scheme is larger. A number of different cases have

to be considered separately: first, there is a number of ways in which one can chop off triangles from

the butterfly stencil; in addition, the neighbors of the vertex that we are trying to compute can be either

regular or extraordinary.

A complete set of rules for a mesh with boundary (up to head-tail permutations), includes 7 types

of rules: regular interior, extraordinary interior, regular interior-crease, regular crease-crease 1, regular

crease-crease 2, crease, and extraordinary crease neighbor; see Figures 4.5, 4.6, and 4.7. To put it all into

a system, the main cases can be classified by the types of head and tail vertices of the edge on which we

add a new vertex.

Recall that an interior vertex is a regular if its valence is 6, and a crease vertex is regular if its valence

is 4. The following table shows how the type of rule to be applied to compute anon-creasevertex is

determined from the valence of the adjacent vertices and whether they are on a crease or not. As we

have already mentioned, the 4-point rule is used to compute new crease vertices. The only case when

additional information is necessary, is when both neighbors are regular crease vertices. In this case the

decision is based on the number of crease edges of the adjacent triangles (Figure 4.6).

Head Tail Rule

regular interior regular interior standard rule

regular interior regular crease regular interior-crease

regular crease regular crease regular crease-crease 1 or 2

extraordinary interior extraordinary interior average two extraordinary rules

extraordinary interior extraordinary crease same

extraordinary crease extraordinary crease same

regular interior extraordinary interior interior extraordinary

regular interior extraordinary crease crease extraordinary

extraordinary interior regular crease interior extraordinary

regular crease extraordinary crease crease extraordinary

74

3
8

1
16

-
1

16
-

1
16

1
8

-

5
8

-
1

16
-

1
16

3
16

interior-crease rule crease-crease rule 2

1
2

1
2

0 0

0 0

crease-crease rule 1

1
8

-
1
8

-

1
2

1
2

1
4

0

Figure 4.6: Regular Modified Butterfly boundary/crease rules.

The extraordinary crease rule (Figure 4.7) uses coefficientsci j , j = 0. . .k, to compute the vertex

numberi in the ring, when counted from the boundary. Letθk = π/(k− 1). The following formulas

defineci j :

c0 = 1−
(
1/(k−1)

)
sinθk siniθk/(1−cosθk)

ci0 = cik = 1/4cosiθk−
(
1/4(k−1)

)
sin2θk sin2θki/

(
cosθk−cos2θk

)
ci j = (1/k)

(
siniθk sin jθk + (1/2)sin2iθk sin2jθk

)

i

cik
0 kci0

ci1

c0

Figure 4.7: Modified Butterfly rules for neighbors of a crease/boundary extraordinary vertex.

4.4 Catmull-Clark Scheme

The Catmull-Clark scheme was described in [4]. It is based on the tensor product bicubic spline. The

masks are shown in Figure 4.8. The scheme produces surfaces that areC2 everywhere except at extraor-

dinary vertices, where they areC1. The tangent plane continuity of the scheme was analyzed by Ball and

Storry [1], andC1-continuity by Peters and Reif [18]. The values ofα andβ can be chosen from a wide

range (see Figure 4.10). On the boundary, using the coefficients for the cubic spline produces acceptable

75

results, however, the resulting surface formally is notC1-continuous. A modification similar to the one

performed in the case of Loop subdivision makes the schemeC1-continuous (Figure 4.9). Again, a bet-

ter, although a bit more complicated choice of coefficients is3
8 + 1

4 cos 2π
k−1 instead of58 and 3

8−
1
4 cos 2π

k−1

instead of18. See [38] for further details about the behavior on the boundary.

Figure 4.8: Catmull-Clark subdivision. Catmull and Clark [4] suggest the following coefficients for

rules at extraordinary vertices:β = 3
2k andγ = 1

4k

The rules of Catmull-Clark scheme are defined for meshes with quadrilateral faces. Arbitrary polygo-

nal meshes can be reduced to a quadrilateral mesh using a more general form of Catmull-Clark rules [4]:

• a face control point for ann-gon is computed as the average of the corners of the polygon;

76

Figure 4.9: Modified rule for odd vertices adjacent to a boundary extraordinary vertex (Catmull-Clark

scheme).

Figure 4.10: Ranges for coefficientsα andβ of the Catmull-Clark scheme;α = 1−γ−β is the coefficient

of the central vertex.

• an edge control point as the average of the endpoints of the edge and newly computed face control

points of adjacent faces;

• the formula for even control points can be chosen in different ways; the original formula is

pj+1
0 =

k−2
k

pj
0 +

1
k2

k−1

∑
i=0

pj
i,1 +

1
k2

k−1

∑
i=0

pj+1
i,2

using the notation of Figure 4.2. Note that face control points on levelj + 1 are used.

77

4.5 Kobbelt Scheme

This interpolating scheme was described by Kobbelt in [11]. For regular meshes, it reduces to the tensor

product of the four point scheme.C1-continuity of this scheme for interior vertices for all valences is

proven in [36].

Mask for a face vertex

Mask for edge, crease
and boundary vertices

a. Regular masks

b. Computing a face vertex adjacent to an extraordinary
vertex

1

256

1

256

81

256

9

256
-

9

256
-

9

256
-

9

256
-

9

256
-

9

256
-

81

256

81

256

81

256

1

256

1

256

9

256
-

9

256
-

9

16
-

1

16
-

1

16

9

16

Figure 4.11: Kobbelt subdivision.

Crucial for the construction of this scheme is the observation (valid for any tensor-product scheme)

that the face control points can be computed in two steps: first, all edge control points are computed.

Next, face vertices are computed using theedge ruleapplied to a sequence of edge control points on the

same level. As shown in Figure 4.11, there are two ways to compute a face vertex in this way. In the

regular case, the result is the same. Assuming this method of computing all face control points, only one

rule of the regular scheme is modified: the edge odd control points adjacent to an extraordinary vertex

78

are computed differently. Specifically,

pj+1
i,1 = (

1
2
−w)pj

0 + (
1
2
−w)pj

i,1 + wpj
i + wpj

i,3

vj
i =

4
k

k−1

∑
i=0

pj
i,1− (pj

i−1,1 + pj
i,1 + pj

i+1,1)− w
1/2−w

(pj
i−2,2 + pj

i−1,2 + pj
i,2 + pj

i+1,2)+
4w

(1/2−w)k

k−1

∑
i=0

pj
i,2

(4.4)

wherew = −1/16 (also, see Figure 4.2 for notation). On the boundaries and creases, the four point

subdivision rule is used.

Unlike other schemes, eigenvectors of the subdivision matrix cannot be computed explicitly; hence,

there are no precise expressions for tangents. In any case, the effective support of this scheme is too large

for such formulas to be of practical use: typically, it is sufficient to subdivide several times and then use,

for example, the formulas for the Loop scheme (see discussion in the section on the Loop scheme).

For more details on this scheme, see the part of the notes written by Leif Kobbelt.

4.6 Doo-Sabin and Midedge Schemes

Doo-Sabin subdivision is quite simple conceptually: there is no distinction between odd and even ver-

tices, and a single mask is sufficient to define the scheme. A special rule is required only for the bound-

aries, where the limit curve is a quadratic spline. It was observed by Doo that this can also be achieved

by replicating the boundary edge, i.e., creating a quadrilateral with two coinciding pairs of vertices.

Nasri [17] describes other ways of defining rules for boundaries. The rules for the Doo-Sabin scheme

are shown in Figure 4.12.C1-continuity for schemes similar to the Doo-Sabin schemes was analyzed by

Peters and Reif [18].

An even simpler scheme was proposed by Habib and Warren [9] and by Peters and Reif [19]: this

scheme uses even smaller stencils than the Doo-Sabin scheme; for regular vertices, only three control

points are used (Figure 4.13).

A remarkable property of both Midedge and Doo-Sabin subdivision is that the interior rules, at least

in the regular case, can be decomposed into a sequence of averaging steps, as shown in Figures 4.14 and

Figures 4.15

In both cases the averaging procedure generalizes to arbitrary meshes. However, the edge averaging

procedure, as it was established in [19], does not result in well-behaved surfaces, when applied to arbi-

trary meshes. In contrast, centroid averaging, when applied to arbitrary meshes, results precisely in the

79

Figure 4.12: Doo-Sabin subdivision. The coefficients are defined by the formulasα0 = 1/4+ 5/4k and

αi = (3+ 2cos(2iπ/k))/4k, for i = 1. . .k−1. Another choice of coefficients was proposed by Catmull

and Clark: α0 = 1/2+ 1/4k, α1 = αk−1 = 1/8+ 1/4k, andαi = 1/4k for i = 2. . .k−2.

Catmull-Clark variant of the Doo-Sabin scheme. Another important observation is that centroid averag-

ing can be applied more than once. This idea provides us with a different view of a class of quadrilateral

subdivision schemes, which we now discuss in detail.

4.7 Uniform Approach to Quadrilateral Subdivision

As we have observed in the previous section, the Doo-Sabin scheme can be represented as midpoint

subdivision followed by a centroid averaging step. What if we apply the centroid averaging step one

more time? The result is a primal subdivision scheme, in the regular case coinciding with Catmull-Clark.

In the irregular case the stencil of the resulting scheme is the same as the stencil of Catmull-Clark, but

the coefficientsα andβ used in the vertex rule are different. However, the new coefficients also result in

a well-behaved scheme producing surfaces only slightly different from Catmull-Clark.

Clearly, we can apply the centroid averaging to midpoint-subdivided mesh any number of times,

obtaining in the regular case splines of higher and higher degree. Similar observations were made inde-

pendently by a number of people: [34, 29, 30].

For arbitrary meshes we will get subdivision schemes which have higher smoothness away from iso-

80

Figure 4.13: Midedge subdivision. The coefficients are defined by the formulasαi = 2∑n̄
j=02− ji cos2πi j

k ,

n̄ =
⌊

n−1
2

⌋
for i = 0. . .k−1

a
ve

ra
g

e

average

0

1 03

93

0

0

0

av
er

ag
e

Figure 4.14: The subdivision stencil for Doo-Sabin subdivision in the regular case (left). It can be

understood as midpoint subdivision followed by averaging. At the averaging step the centroid of each

face is computed; then the barycenters are connected to obtain a new mesh. This procedure generalizes

without changes to arbitrary meshes.

lated points on the surface. Unfortunately, smoothness at the extraordinary vertices (for primal schemes)

and at the centroids of faces (for dual schemes) remains, in general,C1.

Our observations are summarized in the following table:

81

a
ve

ra
g

e

average

av
er

ag
e

1

0

00

0

00

1 2

Figure 4.15:The subdivision stencil for Midedge subdivision in the regular case (left). It can be under-

stood as a sequence of averaging steps; at each step, two vertices are averaged.

centroid averaging steps scheme smoothness in regular case

0 midpoint C0

1 Doo-Sabin C1

2 Catmull-Clark C2

3 Bi-Quartic C3

4

Biquartic subdivision scheme is a new dual scheme that is obtained by applying three centroid averaging

steps after midpoint subdivision, as illustrated in Figure 4.16. As this scheme was not discussed before,

we discuss it in greater detail here.

Generalized Biquartic Subdivision. The centroid averaging steps provide a nice theoretical way of

deriving a new scheme, however, in practice we may want to use the complete masks directly (in par-

ticular, if we have to implement adaptive subdivision). Figure 4.16 shows the support of the stencil for

Biquartic b-spline subdivision in the regular case (leftmost stencil).

Note that Biquartic subdivision can be implemented with very little additional work, compared to

Doo-Sabin or Midedge. In an implementation of dual subdivision, vertices are organized as quadtrees. It

is then natural to compute all four children of a given vertex at the same time. Considering the stencils

for Doo-Sabin or the Midedge scheme we see that this implies access to all vertices of the faces incident

to a given vertex. If these vertices have to be accessed we may as well use non-zero coefficients for

all of them for each child to be computed. Qu [23] was the first to consider a generalization of the

Biquartic B-splines to the arbitrary topology setting. He derived some conditions on the stencils but did

not give a concrete set of coefficients. Repeated centroid averaging provides a simple way to derive the

coefficients. It is possible to show that the resulting scheme isC1 at extraordinary vertices. Assuming

that only one of the incident faces for a vertex is extraordinary, we can write the subdivision masks for

82

Doo-Sabin points
averages

10

1

25
average

50

5

5

100

10

50

Figure 4.16:The subdivision stencil for bi-quartic b-splines (top row for the regular setting) can be

written as a sequence of averaging steps. In a first step Doo-Sabin points are computed. These are

subsequently averaged twice to arrive at the final point. This effects a factorization of the original mask

(left) into a sequence of pure averaging steps. The same procedure is repeated using as an example a

setting in which one incident face has valence6= 4 (bottom row).

vertices near extraordinary faces in a more explicit form. There are three different masks for the four

children (Figure 4.17). This is in contrast to the Doo-Sabin and Midedge schemes which have only

one mask type for all children (modulo rotation). Vertices incident to the extraordinary faces contribute

nw0nwk-1

nw1

5115

5

50

515

5 50

7 503

35 25

1 10 5

91

10

10

251

57

79

ne0nek-1

ne1

se0sek-1

se1

Figure 4.17:Generalized Biquartic compound masks for the north-west (nw), north-east (ne), and south-

east (se) children of the center vertex. The south-west mask is the reflected (along the diagonal) version

of the ne mask. All weights must be normalized by1/256and the weights for the extraordinary vertices

must be added. They are given in equation 4.5.

83

additionalweights as

nwi =
64
k

+ 48wi + 16wi−1 + 16wi+1

nei = 32wi + 16wi−1

sei = 16wi , (4.5)

wherewi are the Doo-Sabin weights,i = 0, . . . ,k−1 and indices are taken modulok.

4.8 Comparison of Schemes

In this section we compare different schemes by applying to a variety of meshes. First, we consider

Loop, Catmull-Clark, Modified Butterfly and Doo-Sabin subdivision.

Figure 4.18 shows the surfaces obtained by subdividing a cube. Not surprisingly, Loop and Catmull-

Clark subdivision produce more pleasing surfaces, as these schemes reduce toC2 splines on a regular

mesh. As all faces of the cube are quads, Catmull-Clark yields the nicest surface; the surface generated

by the Loop scheme is more asymmetric, because the cube had to be triangulated before the scheme

could be applied. At the same time, Doo-Sabin and Modified Butterfly reproduce the shape of the cube

more closely. The surface quality is worst for the Modified Butterfly scheme, which interpolates the

original mesh. We observe that there is a tradeoff between interpolation and surface quality: the closer

the surface is to interpolating, the lower the surface quality.

Figure 4.19 shows the results of subdividing a tetrahedron. Similar observations hold in this case.

In addition, we observe extreme shrinking for the Loop and Catmull-Clark subdivision schemes. This

is a characteristic feature of approximating schemes: for small meshes, the resulting surface is likely to

occupy much smaller volume than the original control mesh.

Finally, Figure 4.20 demonstrates that for sufficiently “smooth” meshes, with uniform triangle size

and sufficiently small angles between adjacent faces, different schemes may produce virtually indistin-

guishable results. This fact might be misleading however, especially when interpolating schemes are

used; interpolating schemes are very sensitive to the presence of sharp features and may produce low

quality surfaces for many input meshes unless an initial mesh smoothing step is performed.

Overall, Loop and Catmull-Clark appear to be the best choices for most applications, which do not

require exact interpolation of the initial mesh. The Catmull-Clark scheme is most appropriate for meshes

with a significant fraction of quadrilateral faces. It might not perform well on certain types of meshes,

most notably triangular meshes obtained by triangulation of a quadrilateral mesh (see Figure 4.21). The

84

Loop scheme performs reasonably well on any triangular mesh, thus, when triangulation is not objec-

tionable, this scheme might be preferable. There are two main reasons why a quadrilateral scheme may

be preferable: natural texture mapping for quads, and a natural number of symmetries (2). Indeed, many

objects and characters have two easily identifiable special directions (“along the axis of the object” and

“perpendicular to the axis”). The mesh representing the object can be aligned with these directions. Ob-

jects with three natural directions, that can be used to align a triangular mesh with the object, are much

less common.

Loop Butterfly

Catmull-Clark Doo-Sabin

Figure 4.18: Results of applying various subdivision schemes to the cube. For triangular schemes (Loop

and Butterfly) the cube was triangulated first.

85

Loop Butterfly

Catmull-Clark Doo-Sabin

Figure 4.19: Results of applying various subdivision schemes to a tetrahedron.

4.8.1 Comparison of Dual Quadrilateral Schemes

Dual quadrilateral schemes are the only class of schemes with several members: Doo-Sabin, Midedge,

Biquartic. In this section we give some numerical examples comparing the behavior of different dual

quadrilateral subdivision schemes.

Much about a subdivision scheme is revealed by looking at the associated basis functions, i.e., the

result of subdividing an initial control mesh which is planar except for a single vertex which is pulled out

of the plane. Figure 4.22 shows such basis functions for Midedge, Doo-Sabin, and the Biquartic scheme

in the vicinity of ak-gon fork = 4 andk = 9. Note how the smoothness increases with higher order. The

86

Loop Butterfly Catmull-Clark Doo-Sabin

Figure 4.20: Different subdivision schemes produce similar results for smooth meshes.

Initial mesh Loop Catmull-Clark
Catmull-Clark,after

triangulation

Figure 4.21: Applying Loop and Catmull-Clark subdivision schemes to a model of a chess rook. The

initial mesh is shown on the left. Before the Loop scheme was applied, the mesh was triangulated.

Catmull-Clark was applied to the original quadrilateral model and to the triangulated model; note the

substantial difference in surface quality.

distinction is already apparent in the casek = 4, but becomes very noticeable fork = 9.

Figure 4.23 provides a similar comparison showing the effect of different dual quadrilateral subdi-

vision schemes when the control polyhedron is a simple cube (compare to 4.18). Notice the increasing

87

Figure 4.22:Comparison of dual basis functions for a 4-gon (the regular case) on top and a 9-gon on

the bottom. On the left the Midedge scheme (Warren/Habib variant), followed by the Doo-Sabin scheme

and finally by the Biquartic generalization. The increasing smoothness is particularly noticeable in the

9-gon case.

shrinkage with increasing smoothness. Since averages are convex combinations, the more averages are

cascaded the more shrinkage can be expected.

Figure 4.24 shows a pipe shape with boundaries showing the effect of boundaries in the case of

Midedge, Doo-Sabin and the Biquartic scheme.

Finally, Figure 4.25 shows the control mesh, limit surface and an adaptive tesselation blowup for a

head shape.

88

Figure 4.23:Comparison of dual subdivision schemes (Midedge, Doo-Sabin, Biquartic) for the case of a

cube. The control polyhedron is shown in outline. Notice how Doo-Sabin and even more so the Biquartic

scheme exhibit considerable shrinkage in this case, while the difference between Midedge and Doo-Sabin

is only slight in this example.

Figure 4.24:Control mesh for a three legged pipe (left). The red parts denote the control mesh for Mid-

edge and Doo-Sabin, while the additional green section is necessary to have a complete set of boundary

conditions for the bi-quartic scheme. The resulting surfaces in order: Midedge, Doo-Sabin, and Biquar-

tic. Note the pinch point visible for Midedge and the increasing smoothness and roundness for Doo-Sabin

and Biquartic.

4.9 Tilings

The classification that we have described in the beginning of the chapter, captures most known schemes.

However, new schemes keep appearing, and some of the recent schemes do not fit well into this classi-

fication. It can be easily extended to handle a greater variety of schemes, if we include other refinement

rules, in addition to vertex and face splits.

The starting point for refinement rules are theisohedral tilingsand their dual tilings. A tiling is called

isohedral, or Laves, if all tiles are identical, and for any vertex the angles between successive edges

meeting at the vertex are equal.

In general, there are 11 tilings of the plane, shown in Figure 4.26; their dual tilings, obtained by con-

89

Figure 4.25:An example of adaptive subdivision. On the left the control mesh, in the middle the smooth

shaded limit surface and on the right a closeup of the adaptively triangulated limit surface.

necting the centers of the tiles are called Archimedean tilings, and are shown in Figure 4.27. Archimedean

tilings consist of regular polygons. We will refer to Laves and Archimedean tilings as regular tilings.

Generalizing the idea of refinement rules to arbitrary regular tilings, we say that a refinement rule is an

algorithm to obtain a finer regular tiling of the same type from a given regular tiling. This definition

is quite general, and it is not known what all possible refinement rules are. The finer tiling is a scaled

version of the initial tiling; the scaling factor can be arbitrary. For vertex and face splits, it is 2.

In practice, we are primarily interested in refinement rules that generalize well to arbitrary meshes.

Face and vertex splits are examples of such rules. Three more exotic refinement rules have been consid-

ered: honeycomb refinement,
√

3 refinement and bisection.

Honeycomb refinement [8] shown in Figure 4.28, can be regarded as dual to the face split applied

to the triangular mesh. While it is possible to design stationary schemes for honeycomb refinement, the

scheme described in [8] is not stationary.

The
√

3 refinement [12], when applied to the regular triangulation of the plane (36 tiling), produces a

tiling scaled by the factor
√

3 (Figure 4.29). The subdivision scheme described in [12] is stationary and

producesC2 subdivision surfaces on regular meshes.

Bisection, a well-known refinement technique often used for finite-element mesh refinement, can be

used to refine 4− k meshes [32, 31]. The refinement process for the regular 4.82 tiling is illustrated in

Figure 4.30. Note that a single refinement step results in a new tiling scaled by
√

2. As shown in [30],

Catmull-Clark and Doo-Sabin subdivision schemes, as well as some higher order schemes based on face

90

44 36 63 4 . 82

4 . 6 . 12 3 . 6 . 3 . 6 3 . 4 . 6 . 4 3 . 122

33 . 42 32 . 4 . 3 . 4 4 3 . 6

Figure 4.26: 11 Laves (isohedral) tilings.

or vertex splits, can be decomposed into sequences of bisection refinement steps. Both
√

3 and 4− k

subdivision have the advantage of approaching the limit surface more gradually. At each subdivision

step, the number of triangles triples and doubles respectively, rather then quadruple, as is the case for face

split refinement. This allows finer control of the approximation. In addition, adaptive subdivision can be

easier to implement, if edge-based data structures are used to represent meshes (see also Chapter 5).

91

44 36 63 4 . 82

4 . 6 . 12 3 . 6 . 3 . 6 3 . 4 . 6 . 4 3 . 122

3 2 2
3 . 4 3 . 4 . 3 . 4 4 3 . 6

Figure 4.27: 11 Archimedean tilings, dual to Laves tilings.

4.10 Limitations of Stationary Subdivision

Stationary subdivision, while overcoming certain problems inherent in spline representations, still has

a number of limitations. Most problems are much more apparent for interpolating schemes than for

approximating schemes. In this section we briefly discuss a number of these problems.

92

Figure 4.28: Honeycomb refinement. Old vertices are preserved, and 6 new vertices are inserted for

each face.

Figure 4.29:
√

3 refinement. The barycenter is inserted into each triangle; this results in a3.122 tiling.

Then the edges are are flipped, to produce a new36 tiling, which is scaled by
√

3 and rotated by 30

degrees with respect to the original.

Figure 4.30: Bisection on a 4-8 tiling: the hypotenuse of each triangle is split. The resulting tiling is a

new 4-8 mesh, shrunk by
√

2 and rotated by 45 degrees.

Problems with Curvature Continuity. While it is possible to obtain subdivision schemes which are

C2-continuous, there are indications that such schemes either have very large support [24, 21], or nec-

essarily have zero curvature at extraordinary vertices. A compromise solution was recently proposed by

Umlauf [22]. Nevertheless, this limitation is quite fundamental: degeneracy or discontinuity of curvature

93

typically leads to visible defects of the surface.

Decrease of Smoothness with Valence.For some schemes, as the valence increases, the magnitude of

the third largest eigenvalue approaches the magnitude of the subdominant eigenvalues. As an example

we consider surfaces generated by the Loop scheme near vertices of high valence. In Figure 4.31 (right

Figure 4.31: Left: ripples on a surface generated by the Loop scheme near a vertex of large va-

lence; Right: mesh structure for the Loop scheme near an extraordinary vertex with a significant “high-

frequency” component; a crease starting at the extraordinary vertex appears.

side), one can see a typical problem that occurs because of “eigenvalue clustering:” a crease might

appear, abruptly terminating at the vertex. In some cases this behavior may be desirable, but our goal is

to make it controllable rather than let the artifacts appear by chance.

Ripples. Another problem, presence of ripples in the surface close to an extraordinary point, is also

shown in Figure 4.31. It is not clear whether this artifact can be eliminated. It is closely related to the

curvature problem.

Uneven Structure of the Mesh. On regular meshes, subdivision matrices ofC1-continuous schemes

always have subdominant eigenvalue 1/2. When the eigenvalues of subdivision matrices near extraordi-

nary vertices significantly differ from 1/2, the structure of the mesh becomes uneven: the ratio of the size

of triangles on finer and coarser levels adjacent to a given vertex is roughly proportional to the magnitude

of the subdominant eigenvalue. This effect can be seen clearly in Figure 4.33.

94

Optimization of Subdivision Rules. It is possible to eliminate eigenvalue clustering, as well as the

difference in eigenvalues of the regular and extraordinary case by prescribing the eigenvalues of the

subdivision matrix and deriving suitable subdivision coefficients. This approach was used to derive

coefficients of the Butterfly scheme.

As expected, the meshes generated by the modified scheme have better structure near extraordinary

points (Figure 4.32). However, the ripples become larger, so one kind of artifact is traded for another. It

is, however, possible to seek an optimal solution or one close to optimal; alternatively, one may resort to

a family of schemes that would provide for a controlled tradeoff between the two artifacts.

95

Figure 4.32: Left: mesh structure for the Loop scheme and the modified Loop scheme near an extraor-

dinary vertex; a crease does not appear for the modified Loop. Right: shaded images of the surfaces for

Loop and modified Loop; ripples are more apparent for modified Loop.

96

7 9 16

Loop

Modified
Loop

Loop

Modified
Loop

3 4 5

Figure 4.33: Comparison of control nets for the Loop and modified Loop scheme. Note that for the Loop

scheme the size of the hole in the ring (1-neighborhood removed) is very small relative to the surrounding

triangles for valence 3 and becomes larger as k grows. For the modified Loop scheme this size remains

constant.

97

98

Bibliography

[1] BALL , A. A., AND STORRY, D. J. T. Conditions for Tangent Plane Continuity over Recursively

Generated B-Spline Surfaces.ACM Trans. Gr. 7, 2 (1988), 83–102.

[2] BIERMANN, H., LEVIN, A., AND ZORIN, D. Piecewise smooth subdivision surfaces with normal

control. Tech. Rep. TR1999-781, NYU, 1999.

[3] BIERMANN, H., LEVIN, A., AND ZORIN, D. Piecewise smooth subdivision surfaces with normal

control. InSIGGRAPH 2000 Conference Proceedings, Annual Conference Series, July 2000.

[4] CATMULL , E.,AND CLARK , J. Recursively Generated B-Spline Surfaces on Arbitrary Topological

Meshes.Computer Aided Design 10, 6 (1978), 350–355.

[5] DOO, D., AND SABIN , M. Analysis of the Behaviour of Recursive Division Surfaces near Extraor-

dinary Points.Computer Aided Design 10, 6 (1978), 356–360.

[6] DYN, N., GREGORY, J. A., AND LEVIN, D. A Four-Point Interpolatory Subdivision Scheme for

Curve Design.Comput. Aided Geom. Des. 4(1987), 257–268.

[7] DYN, N., LEVIN, D., AND GREGORY, J. A. A Butterfly Subdivision Scheme for Surface Interpo-

lation with Tension Control.ACM Trans. Gr. 9, 2 (April 1990), 160–169.

[8] DYN, N., LEVIN, D., AND LIU, D. Interpolatory convexity-preserving subdivision for curves and

surfaces.Computer-Aided Design 24, 4 (1992), 211–216.

[9] HABIB , A., AND WARREN, J. Edge and Vertex Insertion for a Class ofC1 Subdivision Surfaces.

presented at 4th SIAM COnference on Geometric Design, November 1995.

99

[10] HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEAD, M., JIN, H., MCDONALD, J.,

SCHWEITZER, J., AND STUETZLE, W. Piecewise Smooth Surface Reconsruction. InComputer

Graphics Proceedings, Annual Conference Series, 295–302, 1994.

[11] KOBBELT, L. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology. In

Proceedings of Eurographics 96, Computer Graphics Forum, 409–420, 1996.

[12] KOBBELT, L.
√

3 Subdivision.Computer GraphicsProceedings, Annual Conference Series, 2000.

[13] LEVIN, A. Boundary algorithms for subdivision surfaces. InIsrael-Korea Bi-National Conference

on New Themes in Computerized Geometrical Modeling, 117–121, 1998.

[14] LEVIN, A. Combined subdivision schemes for the design of surfaces satisfying boundary condi-

tions. To appear in CAGD, 1999.

[15] LEVIN, A. Interpolating nets of curves by smooth subdivision surfaces. to appear in SIG-

GRAPH’99 proceedings, 1999.

[16] LOOP, C. Smooth Subdivision Surfaces Based on Triangles. Master’s thesis, University of Utah,

Department of Mathematics, 1987.

[17] NASRI, A. H. Polyhedral Subdivision Methods for Free-Form Surfaces.ACM Trans. Gr. 6, 1

(January 1987), 29–73.

[18] PETERS, J.,AND REIF, U. Analysis of generalized B-spline subdivision algorithms.SIAM Jornal

of Numerical Analysis(1997).

[19] PETERS, J.,AND REIF, U. The simplest subdivision scheme for smoothing polyhedra.ACM Trans.

Gr. 16(4)(October 1997).

[20] PRAUTZSCH, H. Analysis ofCk-subdivision surfaces at extraordianry points. Preprint. Presented

at Oberwolfach, June, 1995, 1995.

[21] PRAUTZSCH, H., AND REIF, U. Necessary Conditions for Subdivision Surfaces. 1996.

[22] PRAUTZSCH, H., AND UMLAUF, G. A G2-Subdivision Algorithm. InGeometric Modeling,

G. Farin, H. Bieri, G. Brunnet, and T. DeRose, Eds., vol. Computing Suppl. 13. Springer-Verlag,

1998, pp. 217–224.

100

[23] QU, R. Recursive Subdivision Algorithms for Curve and Surface Design. PhD thesis, Brunel

University, 1990.

[24] REIF, U. A Degree Estimate for Polynomial Subdivision Surface of Higher Regularity. Tech. rep.,

Universität Stuttgart, Mathematisches Institut A, 1995. preprint.

[25] REIF, U. Some New Results on Subdivision Algorithms for Meshes of Arbitrary Topology. In

Approximation Theory VIII, C. K. Chui and L. Schumaker, Eds., vol. 2. World Scientific, Singapore,

1995, pp. 367–374.

[26] REIF, U. A Unified Approach to Subdivision Algorithms Near Extraordinary Points.Comput.

Aided Geom. Des. 12(1995), 153–174.

[27] SAMET, H. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

[28] SCHWEITZER, J. E. Analysis and Application of Subdivision Surfaces. PhD thesis, University of

Washington, Seattle, 1996.

[29] STAM , J. On Subdivision Schemes Generalizing Uniform B-Spline Surfaces of Arbitrary Degree.

Submitted for Publication, 2000.

[30] VELHO, L., AND GOMES, J. Decomposing Quadrilateral Subdivision Rules into Binary 4–8 Re-

finement Steps.http://www.impa.br/˜lvelho/h4k/ , 1999.

[31] VELHO, L., AND GOMES, J. Quasi 4-8 Subdivision Surfaces. InXII Brazilian Symposium on

Computer Graphics and Image Processing, 1999.

[32] VELHO, L., AND GOMES, J. Semi-Regular 4-8 Refinement and Box Spline Surfaces. Unpub-

lished., 2000.

[33] WARREN, J. Subdivision Methods for Geometric Design. Unpublished manuscript, November

1995.

[34] WARREN, J., AND WEIMER, H. Subdivision for Geometric Design. 2000.

[35] ZORIN, D. Subdivision and Multiresolution Surface Representations. PhD thesis, Caltech,

Pasadena, 1997.

[36] ZORIN, D. A method for analysis ofC1-continuity of subdivision surfaces.SIAM Journal of

Numerical Analysis 37, 4 (2000).

101

[37] ZORIN, D. Smoothness of subdivision on irregular meshes.Constructive Approximation 16, 3

(2000).

[38] ZORIN, D. Smoothness of subdivision surfaces on the boundary. preprint, Computer Science

Department, New York University, 2000.

[39] ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. Interpolating Subdivision for Meshes with

Arbitrary Topology.Computer Graphics Proceedings (SIGGRAPH 96)(1996), 189–192.

[40] ZORIN, D., SCHRÖDER, P.,AND SWELDENS, W. Interactive Multiresolution Mesh Editing.Com-

puter GraphicsProceedings, Annual Conference Series, 1997.

102

103

104

Chapter 5

Implementing Subdivision and

Multiresolution Surfaces

Denis Zorin, New York University
Peter Schr¨oder, Caltech

5.1 Data Structures for Subdivision

In this section we briefly describe some considerations that we found useful when choosing appropriate

data structures for implementing subdivision surfaces. We will consider both primal and dual subdivision

schemes, as well as triangle and quadrilateral based schemes.

5.1.1 Representing Arbitrary Meshes

In all cases, we need to start with data structures representing the top-level mesh. For subdivision

schemes we typically assume that the top level mesh satisfies several requirements that allow us to apply

the subdivision rules everywhere. These requirements are

• no more than two polygons share an edge;

• all polygons sharing a vertex form an open or closed neighborhood of the vertex; in other words,

can be arranged in such an order that two sequential polygons always share an edge.

A variety of representations were proposed in the past for general meshes of this type, sometimes with

some of the assumptions relaxed, sometimes with more assumptions added, such as orientability of the

105

surface represented by the mesh. These representations include winged edge, quad edge, half edge end

other data structures. The most common one is the winged edge. However, this data structure is far from

being the most space efficient and convenient for subdivision. First, most data that we need to store in a

mesh, is naturally associated with vertices and polygons, not edges. Edge-based data structures are more

appropriate in the context of edge-collapse-based simplification. For subdivision, it is more natural to

consider data structures with explicit representations for faces and vertices, not for edges. One possible

and relatively simple data structure for polygons is

struct Polygon{

vector<Vertex*> vertices;

vector<Polygon*> neighbors;

vector<short> neighborEdges;

...

}

For each polygon, we store an array of pointers to vertices and an array of adjacent polygons (neighbors)

across corresponding edge numbers. We also need to know for each edge what the corresponding edge

number of that edge is, when seen from the neighbor across that edge. This information is stored in the

arrayneighborEdges (see Figure 5.1). In addition, if we allow non-orientable surfaces, we need to

2

4
e

ve
1

4
v

v
5

v
1

2
5

e

v
3

e

e

3
e

4

Figure 5.1:A polygon is described by an array of vertex pointers and an array of neighbor pointers (one

such neighbor is indicated in dotted outline). Note that the neighbor has its own edge number assignment

which may differ across the shared edge.

keep track of the orientation of the neighbors, which can be achieved by using signed edge numbers in

the arrayneighorEdges . To complete the mesh representation, we add a data structure for vertices to

the polygon data structure.

106

Let us compare this data structure to the winged edge. LetP be the number of polygons in the

mesh,V the number of vertices andE the number of edges. The storage required for the polygon-based

data structure is approximately 2.5 ·P ·VP 32-bit words, whereVP is the average number of vertices per

polygon. Here we assuming that all polygons have fewer than 216 edges, so only 2 bytes are required to

store the edge number. Note that we disregard the geometric and other information stored in vertices and

polygons, counting only the memory used to maintain the data structure.

To estimate the value of 2.5 ·P ·VP in terms ofV, we use the Euler formula. Recall that any mesh

satisfiesV−E + P = g, whereg is the genus, the number of “holes” in the surface. Assuming genus

small compared to the number of vertices, we get an approximate equationV −E + P = 0; we also

assume that the boundary vertices are a negligible fraction of the total number of vertices. Each polygon

on the average hasVP vertices and the same number of edges. Each edge is shared by two polygons

which results inE = VP ·P/2. Let PV be the number of polygons per vertex. ThenP = PV ·V/VP, and

E = V PV/2. This leads to

1
PV

+
1

VP
=

1
2
. (5.1)

In addition, we know thatVP, the average number of vertices per polygon, is at least 3. It follows from

(5.1) thatPV ≤ 6. Therefore, the total memory spent in the polygon data structure is 2.5PV ·V ≤ 15V.

The winged edge data structure requires 8 pointers per edge. Four pointers to adjacent edges, two

pointers to adjacent faces, and two pointers to vertices. Given that the total number of edgesE is greater

than 3V, the total memory consumption is greater than 24V , significantly worse than the polygon data

structure.

One of the commonly mentioned advantages of the winged edge data structure is its constant size. It

is unclear if this has any consequence in the context of C++: it is relatively easy to create structures with

variable size. However, having a variety of dynamically allocated data of different small sizes may have

a negative impact on performance. We observe that after the first subdivision step all polygons will be

either triangles or quadrilaterals for all schemes that we have considered, so most of the data items will

have fixed size and the memory allocation can be easily optimized.

5.1.2 Hierarchical Meshes: Arrays vs. Trees

Once a mesh is subdivided, we need to represent all the polygons generated by subdivision. The choice

of representation depends on many factors. One of the important decisions to make is whether adaptive

subdivision is necessary for a particular application or not. To understand this tradeoff we need to

107

estimate the storage associated with arrays vs. trees. To make this argument simple we will consider

here only the case of triangle based subdivision such as Loop or Butterfly. The counting arguments for

quadrilaterals schemes (both primal and dual) are essentially similar.

Assuming that only uniform subdivision is needed, all vertices and triangles associated with each

subdivided top-level triangle can be represented as a two-dimensional array. Thus, the complete data

structure would consist of a representation of a top level mesh, with each top level triangle containing a

2D array of vertex pointers. The pointers on the border between two top-level neighbors point pairwise

to the same vertices. The advantage of this data structure is that it has practically no pointer overhead.

The disadvantage is that a lot of space will be wasted if adaptive subdivision is performed.

If we do want adaptive subdivision and maintain efficient storage, the alternative is to use a tree

structure. Each non-leaf triangle becomes a node in a quadtree, containing a pointer to a block of 4

children and pointers to three corner vertices

class TriangleQuadTree{

Vertex* v1, v2, v3;

TriangleQuadTree* firstChild;

...

}

Comparison. To compare the two approaches to organizing the hierarchies (arrays and trees), we need

to compare the representation overhead in these two cases. In the first case (arrays) all adjacency relations

are implicit, and there is no overhead. In the second case, there is overhead in the form of pointers

to children and vertices. For a given number of subdivision stepsn the total overhead can be easily

estimated. For the purposes of the estimate we can assume that the genus of our initial control mesh is

0, so the number of trianglesP, the number of edgesE and the number of verticesV in the initial mesh

are related byP−E +V = 0. The total number of triangles in a complete tree of depthn for P initial

triangles is given byP(4n+1−1)/3. For a triangle meshVP = 3 andPV = 6 (see Eq. (5.1)); thus, the total

number of triangles isP = 2V, and the total number of edges isE = 3V.

For each leaf and non-leaf node we need 4 words (1 pointer to the block of children and three point-

ers to vertices). The total cost of the structure is 4P(4n+1−1)/3 = 8V(4n+1− 1)/3 words, which is

approximately 11·V ·4n.

To estimate when a tree is spatially more efficient than an array, we determine how many nodes have

to be removed from the tree for the gain from the adaptivity to exceed the loss from the overhead. For

108

this, we need a reasonable estimate of the size of the useful data stored in the structures, otherwise the

array will always win.

The number of vertices inserted on subdivision stepi is approximately 3·4i−1V. Assuming that for

each vertex we store all control points on all subdivision levels, and each control point takes 3 words, we

get the following estimate for the control point storage

3V
(
(n+ 1)+ 3n+ 3·42(n−1)+ . . .4n)= V

(
4n+1−1

)
.

The total number of vertices isV ·4n; assuming that at each vertex we store the normal vector, the limit

position vector (3 words), color (3 words) and some extra information, such as subdivision tags (1 word),

we get 7·V ·4n more words. The total useful storage is approximately 11·V ·4n, the same as the cost of

the structure.

Thus for our example the tree introduces a 100% overhead, which implies that it has an advantage

over the array if at least half of the nodes are absent. Whether this will happen, depends on the criterion

for adaptation. If the criterion attempts to measure how well the surface approximates the geometry,

and if only 3 or 4 subdivision levels are used, we have observed that fewer than 50% of the nodes were

removed. However, if different criteria are used (e.g. distance to the camera) the situation is likely to be

radically different. If more subdivision levels are used it is likely that almost all nodes on the finest level

are absent.

5.1.3 Implementations

In many settings tree-based implementations, even with their additional overhead, are highly desirable.

The case of quadtrees for primal triangle schemes is covered in [40] (this article is reprinted at the end of

this chapter). The machinery for primal quadrilateral schemes (e.g., Catmull-Clark) is very similar. Here

we look in some more detail at quadtrees for dual quadrilateral schemes. Since these are based on vertex

splits the natural organization are quadtrees based on verticesnot faces. As we will see the two trees

are not that different and an actual implementation easily supports both primal and dual quadrilateral

schemes. We begin with the dual quadrilateral case.

Representation

At the coarsest level the input control mesh is represented as a general mesh as described in Section 5.1.1.

For simplicity we assume that the control mesh satisfies the property that all vertices have valence four.

This can always be achieved through one step of dual subdivision. The valence four assumption allows

109

us to use quadtrees for the organization of vertices without an extra layer for the coarsest level. In fact we

only have to organize a forest of quadtrees. Each quadtree root maintains four pointers to neighboring

quadtrees roots

class QTreeR{

QTreeR* n[4]; // four neighbors

QTree* root; // the actual tree

}

A quadtree is given as

class QTree{

QTree* p; // parent

QTree* c[4]; // children

Vector3D dual; // dual control point

Vector3D* primal[4]; // shared corners

}

The organization of these quadtrees is depicted in Figure 5.2. Both primal and dual subdivision can

Figure 5.2:Quadtrees carry dual control points (left). We may think of every quadtree element as de-

scribing a small rectangular piece of the limit surface centered at the associated control point (compare

to Figure 5.3). The corners of those quads correspond to the location of primal control points (right) in

a primal quadrilateral subdivision scheme. As usual these are shared among levels.

now be effected by iterating over all faces and repeatedly averaging to achieve the desired order of

subdivision [34, 30]. Alternatively one may apply subdivision rules in the more traditional setup by

110

primal

dual

Figure 5.3:Given some arbitrary input mesh we may associate limit patches of dual schemes with vertices

in the input mesh while primal schemes result in patches associated with faces. Here we see examples of

the Catmull-Clark (top) and Doo-Sabin (bottom) acting on the same input mesh (left).

collecting the 1-ring of neighbors of a given control point (primal or dual). Collecting a 1-ring requires

only the standard neighbor finding routines for quadtrees [27]. If the neighbor finding routine crosses

from one quadtree to another the quadtree root links are used to effect this transition. Nil pointers indicate

boundaries. With the 1-ring in hand one may apply stencils directly as indicated in Chapter 4. Using 1-

rings and explicit subdivision masks, as opposed to repeated averaging, significantly simplifies boundary

treatments and adaptivity.

Boundariesare typically dealt with in primal schemes using special boundary rules (see Chapter 4). For

example, in the case of Catmull-Clark one can ensure that the outermost row of control vertices describes

an endpoint interpolating cubic spline (see, e.g., [2]). For dual schemes, for example Doo-Sabin, a

common solution is to replicate boundary control points (for other possibilities see the references in

Chapter 4).

Constructing higher order quadrilateral subdivision schemes through repeated averaging will result

in increasing shrinkage. This is true both for closed control meshes (see Figure 4.23) and for boundaries

(see Figure 4.24). To address the boundary issue the repeated averaging steps may be modified there

or one could simply drop the order of the method near the boundary. For example, in the case of the

Biquartic scheme one may use the Doo-Sabin rules whenever a complete 1-ring is not available. This

111

leads to lower order near the boundary but avoids excessive shrinkage for high order methods. Which

method is preferable depends heavily on the intended application.

not restricted edge restricted vertex restricted crackfree tesselation crackfree triangulation

Figure 5.4:On the left an unrestricted adaptive primal quadtree. Arrows indicate edge and vertex neigh-

bors off by more than 1 level. Enforcing a standard edge restriction criterion enforces some additional

subdivision. A vertex restriction criterion also disallows vertex neighbors off by more than 1 level. Fi-

nally on the right some adaptive tesselations which are crack-free.

Adaptive Subdivision,as indicated earlier, can be valuable in some applications and may be mandatory

in interactive settings to maintain high frame rates while escaping the exponential growth in the number

of polygons with successive subdivisions. We first consider adaptive tesselations for primal quad schemes

and then show how the same machinery applies to dual quad schemes.

To make such adaptive tesselations manageable it is common to enforce a restriction criterion on the

quadtrees, i.e, no quadtree node is allowed to be off by more than one subdivision level from its neigh-

bors. Typically this is applied only toedgeneighbors, but we need a slightly stronger criterion covering

all neighbors, i.e., including those sharing only a common vertex. This criterion is a consequence of the

fact that to compute a control point at a finer level we need a complete subdivision stencil at a courser

level. for primal schemes, it means that if a face is subdivided, all faces sharing a vertex with it must be

present. This idea is illustrated in Figure 5.4

Once a vertex restricted adaptive quadtree exists one must take care to output quadrilaterals or trian-

gles in such a way that no cracks appear. Since all rendering is done with triangles we consider crack-free

output of a triangulation only. This requires the insertion of diagonals in all quadrilaterals. One can make

this choice randomly, but surfaces appear “nicer” if this is done in a regular fashion. Figure 5.5 illustrates

this on the top for a group of four children of a common parent. Here the diagonals are chosen to meet

at the center. The resulting triangulation is exactly the basic element of a 4-8 tiling [30]. To deal with

cracks we distinguish 16 cases. Given a leaf quadrilateral its edge neighbors may be subdivided once

less, as much, or once more. Only the latter case gives rise to potential cracks from the point of view

of the leaf quad. The 16 cases are easily distinguished by considering a bit flag for each edge indicating

whether the edge neighbor is subdivided once more or not. Figure 5.5 shows the resulting templates

112

3 neighbors

(2 cases)

subdivided

2 neighbors

subdivided

Canonical case

Templates for the adaptive case

(1 case)

subdivided

4 neighbors

(4 cases)

triangulated4 children

1 neighbor

subdivided

no neighbors

subdivided

(1 case) (4 cases)

subdivided

2 neighbors

(4 cases)

Figure 5.5:The top row shows the standard triangulation for a group of 4 child faces of a single face

(face split subdivision). The 16 cases of adaptive triangulation of a leaf quadrilateral are shown below.

Any one of the four edge neighbors may or may not be subdivided one level finer. Using the indicated

templates one can triangulate an adaptive primal quad tree with a simple lookup table.

(modulo symmetries). These are easily implemented as a lookup table.

For dual quadrilateral subdivision schemes crack-free adaptive tesselations are harder to generate.

Recall that in a dual quad scheme a quadtree node represents a control point, not a face. It potentially

connects to all 8 neighbors (see Figure 5.6, left). Consequently there are 256 possible tesselations de-

113

1
2

1
2

1
4

1
4

1
4

1
4

adaptive vertex hierarchy polygonal mesh centroid mesh

update coarse-level centroids update fine-level centroids

Figure 5.6: To produce a polygonal mesh for a restricted vertex-split hierarchy (top row, left), rather

than trying to generate the mesh connecting the vertices (top row, middle) of the mesh, we generate

the mesh connecting the centroids of the faces (top row, right). Centroids are associated with corners

at subdivision levels. To compute centroids correctly, we traverse the vertices in the vertex hierarchy,

and add contributions of the vertex to the centroids associated with the vertex (bottom row, left) and

centroids associated with the corners attached to the children of a neighbor (bottom row, right). The

choice of coefficients guarantees that centroids are found correctly.

pending on 8 neighbor states.

To avoid this explosion of cases we instead choose to draw (or output) a tesselation of the centroids

of the dual control points. These live at corners again, so the adaptive tesselation machinery from the

primal setting applies. This approach has the added benefit of producing samples of the limit surface

for the Doo-Sabin and Midedge scheme. For the Biquartic scheme, unfortunately, limit points are not

centroids of faces. Note that this additional averaging step is only performed during drawing or output

and does not change the overall scheme. Figure 5.6 (right) shows how to form the additional averages

in an adaptive setting. With these drawing averages computed we apply the templates of Figure 5.5 to

114

render the output mesh. Figure 4.25 shows an example of such an adaptively rendered mesh.

115

116

Interactive Multiresolution Mesh Editing

Denis Zorin∗

Caltech
Peter Schr¨oder†

Caltech
Wim Sweldens‡

Bell Laboratories

Abstract
We describe a multiresolution representation for meshes based on
subdivision, which is a natural extension of the existing patch-based
surface representations. Combining subdivision and the smooth-
ing algorithms of Taubin [26] allows us to construct a set of algo-
rithms for interactive multiresolution editing of complex hierarchi-
cal meshes of arbitrary topology. The simplicity of the underly-
ing algorithms for refinement and coarsification enables us to make
them local and adaptive, thereby considerably improving their effi-
ciency. We have built a scalable interactive multiresolution editing
system based on such algorithms.

1 Introduction
Applications such as special effects and animation require creation
and manipulation of complex geometric models of arbitrary topol-
ogy. Like real world geometry, these models often carry detail at
many scales (cf. Fig. 1). The model might be constructed from
scratch (ab initio design) in an interactive modeling environment or
be scanned-in either by hand or with automatic digitizing methods.
The latter is a common source of data particularly in the entertain-
ment industry. When using laser range scanners, for example, indi-
vidual models are often composed of high resolution meshes with
hundreds of thousands to millions of triangles.

Manipulating such fine meshes can be difficult, especially when
they are to be edited or animated. Interactivity, which is crucial in
these cases, is challenging to achieve. Even without accounting for
any computation on the mesh itself, available rendering resources
alone, may not be able to cope with the sheer size of the data. Pos-
sible approaches include mesh optimization [15, 13] to reduce the
size of the meshes.

Aside from considerations of economy, the choice of represen-
tation is also guided by the need for multiresolution editing se-
mantics. The representation of the mesh needs to provide con-
trol at a large scale, so that one can change the mesh in a broad,
smooth manner, for example. Additionally designers will typi-
cally also want control over the minute features of the model (cf.
Fig. 1). Smoother approximations can be built through the use of
patches [14], though at the cost of loosing the high frequency de-
tails. Such detail can be reintroduced by combining patches with
displacement maps [17]. However, this is difficult to manage in the

∗dzorin@gg.caltech.edu
†ps@cs.caltech.edu
‡wim@bell-labs.com

arbitrary topology setting and across a continuous range of scales
and hardware resources.

Figure 1: Before the Armadillo started working out he was flabby,
complete with a double chin. Now he exercises regularly. The orig-
inal is on the right (courtesy Venkat Krischnamurthy). The edited
version on the left illustrates large scale edits, such as his belly, and
smaller scale edits such as his double chin; all edits were performed
at about 5 frames per second on an Indigo R10000 Solid Impact.

For reasons of efficiency the algorithms should be highly adap-
tive and dynamically adjust to available resources. Our goal is to
have a single, simple, uniform representation with scalable algo-
rithms. The system should be capable of delivering multiple frames
per second update rates even on small workstations taking advan-
tage of lower resolution representations.

In this paper we present a system which possesses these proper-
ties

• Multiresolution control: Both broad and general handles, as
well as small knobs to tweak minute detail are available.

• Speed/fidelity tradeoff: All algorithms dynamically adapt to
available resources to maintain interactivity.

• Simplicity/uniformity: A single primitive, triangular mesh, is
used to represent the surface across all levels of resolution.

Our system is inspired by a number of earlier approaches. We
mention multiresolution editing [11, 9, 12], arbitrary topology sub-
division [6, 2, 19, 7, 28, 16], wavelet representations [21, 24, 8, 3],
and mesh simplification [13, 17]. Independently an approach simi-
lar to ours was developed by Pulli and Lounsbery [23].

It should be noted that our methods rely on the finest level mesh
having subdivision connectivity. This requires a remeshing step be-
fore external high resolution geometry can be imported into the ed-
itor. Eck et al. [8] have described a possible approach to remeshing
arbitrary finest level input meshes fully automatically. A method
that relies on a user’s expertise was developed by Krishnamurthy
and Levoy [17].

1.1 Earlier Editing Approaches
H-splines were presented in pioneering work on hierarchical
editing by Forsey and Bartels [11]. Briefly, H-splines are obtained
by adding finer resolution B-splines onto an existing coarser resolu-
tion B-spline patch relative to the coordinate frame induced by the

coarser patch. Repeating this process, one can build very compli-
cated shapes which are entirely parameterized over the unit square.
Forsey and Bartels observed that the hierarchy induced coordinate
frame for the offsets is essential to achieve correct editing seman-
tics.

H-splines provide a uniform framework for representing both the
coarse and fine level details. Note however, that as more detail
is added to such a model the internal control mesh data structures
more and more resemble a fine polyhedral mesh.

While their original implementation allowed only for regular
topologies their approach could be extended to the general setting
by using surface splines or one of the spline derived general topol-
ogy subdivision schemes [18]. However, these schemes have not
yet been made to work adaptively.

Forsey and Bartels’ original work focused on the ab initio de-
sign setting. There the user’s help is enlisted in defining what is
meant by different levels of resolution. The user decides where to
add detail and manipulates the corresponding controls. This way
the levels of the hierarchy are hand built by a human user and the
representation of the final object is a function of its editing history.

To edit an a priori given model it is crucial to have a general pro-
cedure to define coarser levels and compute details between levels.
We refer to this as theanalysisalgorithm. An H-spline analysis al-
gorithm based on weighted least squares was introduced [10], but
is too expensive to run interactively. Note that even in an ab initio
design setting online analysis is needed, since after a long sequence
of editing steps the H-spline is likely to be overly refined and needs
to be consolidated.

Wavelets provide a framework in which to rigorously de-
fine multiresolution approximations and fast analysis algorithms.
Finkelstein and Salesin [9], for example, used B-spline wavelets
to describe multiresolution editing of curves. As in H-splines, pa-
rameterization of details with respect to a coordinate frame induced
by the coarser level approximation is required to get correct edit-
ing semantics. Gortler and Cohen [12], pointed out that wavelet
representations of detail tend to behave in undesirable ways during
editing and returned to a pure B-spline representation as used in
H-splines.

Carrying these constructions over into the arbitrary topology sur-
face framework is not straightforward. In the work by Lounsbery et
al. [21] the connection between wavelets and subdivision was used
to define the different levels of resolution. The original construc-
tions were limited to piecewise linear subdivision, but smoother
constructions are possible [24, 28].

An approach to surface modeling based on variational methods
was proposed by Welch and Witkin [27]. An attractive character-
istic of their method is flexibility in the choice of control points.
However, they use a global optimization procedure to compute the
surface which is not suitable for interactive manipulation of com-
plex surfaces.

Before we proceed to a more detailed discussion of editing we
first discuss different surface representations to motivate our choice
of synthesis (refinement) algorithm.

1.2 Surface Representations
There are many possible choices for surface representations.
Among the most popular are polynomial patches and polygons.

Patches are a powerful primitive for the construction of coarse
grain, smooth models using a small number of control parameters.
Combined with hardware support relatively fast implementations
are possible. However, when building complex models with many
patches the preservation of smoothness across patch boundaries can
be quite cumbersome and expensive. These difficulties are com-
pounded in the arbitrary topology setting when polynomial param-
eterizations cease to exist everywhere. Surface splines [4, 20, 22]
provide one way to address the arbitrary topology challenge.

As more fine level detail is needed the proliferation of control
points and patches can quickly overwhelm both the user and the
most powerful hardware. With detail at finer levels, patches become
less suited and polygonal meshes are more appropriate.

Polygonal Meshes can represent arbitrary topology and re-
solve fine detail as found in laser scanned models, for example.
Given that most hardware rendering ultimately resolves to triangle
scan-conversion even for patches, polygonal meshes are a very ba-
sic primitive. Because of sheer size, polygonal meshes are difficult
to manipulate interactively. Mesh simplification algorithms [13]
provide one possible answer. However, we need a mesh simpli-
fication approach, that is hierarchical and gives us shape handles
for smooth changes over larger regions while maintaining high fre-
quency details.

Patches and fine polygonal meshes represent two ends of a spec-
trum. Patches efficiently describe large smooth sections of a surface
but cannot model fine detail very well. Polygonal meshes are good
at describing very fine detail accurately using dense meshes, but do
not provide coarser manipulation semantics.

Subdivisionconnects and unifies these two extremes.

Figure 2: Subdivision describes a smooth surface as the limit of a
sequence of refined polyhedra. The meshes show several levels of
an adaptive Loop surface generated by our system (dataset courtesy
Hugues Hoppe, University of Washington).

Subdivision defines a smooth surface as the limit of a sequence
of successively refined polyhedral meshes (cf. Fig. 2). In the reg-
ular patch based setting, for example, this sequence can be defined
through well known knot insertion algorithms [5]. Some subdi-
vision methods generalize spline based knot insertion to irregular
topology control meshes [2, 6, 19] while other subdivision schemes
are independent of splines and include a number of interpolating
schemes [7, 28, 16].

Since subdivision provides a path from patches to meshes, it can
serve as a good foundation for the unified infrastructure that we
seek. A single representation (hierarchical polyhedral meshes) sup-
ports the patch-type semantics of manipulationandfinest level de-
tail polyhedral edits equally well. The main challenge is to make
the basic algorithms fast enough to escape the exponential time and
space growth of naive subdivision. This is the core of our contribu-
tion.

We summarize the main features of subdivision important in our
context
• Topological Generality: Vertices in a triangular (resp. quadri-

lateral) mesh need not have valence 6 (resp. 4). Generated sur-
faces are smooth everywhere, and efficient algorithms exist for
computing normals and limit positions of points on the surface.

• Multiresolution: because they are the limit of successive refine-
ment, subdivision surfaces support multiresolution algorithms,
such as level-of-detail rendering, multiresolution editing, com-
pression, wavelets, and numerical multigrid.

• Simplicity: subdivision algorithms are simple: the finer mesh
is built through insertion of new vertices followed bylocal
smoothing.

• Uniformity of Representation: subdivision provides a single
representation of a surface at all resolution levels. Boundaries
and features such as creases can be resolved through modified
rules [14, 25], reducing the need for trim curves, for example.

1.3 Our Contribution
Aside from our perspective, which unifies the earlier approaches,
our major contribution—and the main challenge in this program—
is the design of highly adaptive and dynamic data structures and
algorithms, which allow the system to function across a range of
computational resources from PCs to workstations, delivering as
much interactive fidelity as possible with a given polygon render-
ing performance. Our algorithms work for the class of 1-ring sub-
division schemes (definition see below) and we demonstrate their
performance for the concrete case of Loop’s subdivision scheme.

The particulars of those algorithms will be given later, but Fig. 3
already gives a preview of how the different algorithms make up
the editing system. In the next sections we first talk in more detail
about subdivision, smoothing, and multiresolution transforms.

Adaptive render

Initial mesh

Render

Select group of vertices
at level i

Adaptive analysis

Begin dragging

Create dependent
submesh

DragRelease selection

Local analysis Local synthesis

Render

Adaptive synthesis

Figure 3: The relationship between various procedures as the user
moves a set of vertices.

2 Subdivision
We begin by defining subdivision and fixing our notation. There are
2 points of view that we must distinguish. On the one hand we are
dealing with an abstractgraphand perform topological operations
on it. On the other hand we have ameshwhich is the geometric
object in 3-space. The mesh is the image of a map defined on the
graph: it associates apoint in 3D with everyvertex in the graph
(cf. Fig. 4). A triangledenotes a face in the graph or the associated
polygon in 3-space.

Initially we have a triangular graphT 0 with verticesV 0. By
recursivelyrefining each triangle into 4 subtriangles we can build
a sequence of finer triangulationsT i with verticesV i, i > 0
(cf. Fig. 4). The superscripti indicates thelevel of triangles and
vertices respectively. A trianglet ∈ T i is a triple of indices
t = {va, vb, vc} ⊂ V i.

The vertex sets are nested asV j ⊂ V i if j < i. We define
oddvertices on leveli asM i = V i+1 \ V i. V i+1 consists of two
disjoint sets:evenvertices (V i) andodd vertices (M i). We define
the levelof a vertexv as the smallesti for whichv ∈ V i. The level
of v is i+ 1 if and only if v ∈M i.

T iVi

1 2

3

s (1)i

s (3)i

s (2)i

4

56

T i+1V i+1

1 2

3
s (6)
i+1 s (3)

i+1

s (5)
i+1

s (1)
i+1

s (4)
i+1

s (2)
i+1

re
fi

ne
m

en
t subdivision

Mesh with pointsGraph with vertices

Maps to

Figure 4: Left: the abstract graph. Vertices and triangles are mem-
bers of setsV i andT i respectively. Their index indicates the level
of refinement when they first appeared. Right: the mapping to the
mesh and its subdivision in 3-space.

With each setV i we associate a map, i.e., for each vertexv and
each leveli we have a 3D pointsi(v) ∈ R3. The setsi contains
all points on leveli, si = {si(v) | v ∈ V i}. Finally, asubdivision
schemeis a linear operatorS which takes the points from leveli to
points on thefiner level i+ 1: si+1 = S si

Assuming that the subdivision converges, we can define a limit
surfaceσ as

σ = lim
k→∞

Sk s0.

σ(v) ∈ R3 denotes the point on the limit surface associated with
vertexv.

In order to define our offsets with respect to a local frame we also
need tangent vectors and a normal. For the subdivision schemes
that we use, such vectors can be defined through the application of
linear operatorsQ andR acting onsi so thatqi(v) = (Qsi)(v)
andri(v) = (Rsi)(v) are linearly independent tangent vectors at
σ(v). Together with an orientation they define a local orthonormal
frameF i(v) = (ni(v), qi(v), ri(v)). It is important to note that
in general it is not necessary to use precise normals and tangents
during editing; as long as the frame vectors are affinely related to
the positions of vertices of the mesh, we can expect intuitive editing
behavior.

1-ring at level i 1-ring at level i+1

Figure 5: An even vertex has a 1-ring of neighbors at each level of
refinement (left/middle). Odd vertices—in the middle of edges—
have 1-rings around each of the vertices at either end of their edge
(right).

Next we discuss two common subdivision schemes, both of
which belong to the class of1-ring schemes. In these schemes
points at leveli+ 1 depend only on 1-ring neighborhoods of points

at leveli. Let v ∈ V i (v even) then the pointsi+1(v) is a function
of only thosesi(vn), vn ∈ V i, which are immediate neighbors
of v (cf. Fig. 5 left/middle). Ifm ∈ M i (m odd), it is the vertex
inserted when splitting an edge of the graph; we call such vertices
middle verticesof edges. In this case the pointsi+1(m) is a func-
tion of the 1-rings around the vertices at the ends of the edge (cf.
Fig. 5 right).

a(k)

1

1

1

1

1
1

1

3 3

1

1

Figure 6: Stencils for Loop subdivision with unnormalized weights
for even and odd vertices.

Loop is a non-interpolating subdivision scheme based on a gen-
eralization of quartic triangular box splines [19]. For a given even
vertex v ∈ V i, let vk ∈ V i with 1 ≤ k ≤ K be itsK 1-
ring neighbors. The new pointsi+1(v) is defined assi+1(v) =

(a(K) +K)−1(a(K) si(v) +
∑K

k=1
si(vk)) (cf. Fig. 6),a(K) =

K(1−α(K))/α(K), andα(K) = 5/8−(3+2 cos(2π/K))2/64.
For odd v the weights shown in Fig. 6 are used. Two inde-
pendent tangent vectorst1(v) and t2(v) are given bytp(v) =∑K

k=1
cos(2π(k + p)/K) si(vk).

Features such as boundaries and cusps can be accommodated
through simple modifications of the stencil weights [14, 25, 29].

Butterfly is an interpolating scheme, first proposed by Dyn et
al. [7] in the topologically regular setting and recently general-
ized to arbitrary topologies [28]. Since it is interpolating we have
si(v) = σ(v) for v ∈ V i even. The exact expressions for odd
vertices depend on the valenceK and the reader is referred to the
original paper for the exact values [28].

For our implementation we have chosen the Loop scheme, since
more performance optimizations are possible in it. However, the
algorithms we discuss later work for any 1-ring scheme.

3 Multiresolution Transforms
So far we only discussed subdivision, i.e., how to go from coarse to
fine meshes. In this section we describe analysis which goes from
fine to coarse.

We first needsmoothing, i.e., a linear operationH to build a
smooth coarse mesh at leveli− 1 from a fine mesh at leveli:

si−1 = H si.

Several options are available here:
• Least squares:One could define analysis to be optimal in the

least squares sense,

min
si−1
‖si − S si−1‖2.

The solution may have unwanted undulations and is too expen-
sive to compute interactively [10].

• Fairing: A coarse surface could be obtained as the solution to
a global variational problem. This is too expensive as well. An
alternative is presented by Taubin [26], who uses alocal non-
shrinking smoothing approach.

Because of its computational simplicity we decided to use a version
of Taubin smoothing. As before letv ∈ V i haveK neighbors
vk ∈ V i. Use the average,si(v) = K−1

∑K

k=1
si(vk), to define

the discrete LaplacianL(v) = si(v)− si(v). On this basis Taubin
gives a Gaussian-like smoother which does not exhibit shrinkage

H := (I + µL) (I + λL).

With subdivision and smoothing in place, we can describe the
transform needed to support multiresolution editing. Recall that
for multiresolution editing we want the difference between succes-
sive levels expressed with respect to a frame induced by the coarser
level, i.e., the offsets are relative to the smoother level.

With each vertexv and each leveli > 0 we associate adetail
vector, di(v) ∈ R3. The setdi contains all detail vectors on leveli,
di = {di(v) | v ∈ V i}. As indicated in Fig. 7 the detail vectors
are defined as

di = (F i)t (si − S si−1) = (F i)t (I − S H) si,

i.e., the detail vectors at leveli record how much the points at level
i differ from the result of subdividing the points at leveli− 1. This
difference is then represented with respect to the local frameF i to
obtain coordinate independence.

Since detail vectors are sampled on the fine level meshV i, this
transformation yields an overrepresentation in the spirit of the Burt-
Adelson Laplacian pyramid [1]. The only difference is that the
smoothing filters (Taubin) are not the dual of the subdivision filter
(Loop). Theoretically it would be possible to subsample the detail
vectors and only record a detail per odd vertex ofM i−1. This is
what happens in the wavelet transform. However, subsampling the
details severely restricts the family of smoothing operators that can
be used.

t
(F)

id

SubdivisionSmoothing

s -Ssis

i-1s

i-1i
i

Figure 7: Wiring diagram of the multiresolution transform.

4 Algorithms and Implementation
Before we describe the algorithms in detail let us recall the overall
structure of the mesh editor (cf. Fig 3). The analysis stage builds
a succession of coarser approximations to the surface, each with
fewer control parameters. Details or offsets between successive
levels are also computed. In general, the coarser approximations
are not visible; only their control points are rendered. These con-
trol points give rise to avirtual surfacewith respect to which the
remaining details are given. Figure 8 shows wireframe representa-
tions of virtual surfaces corresponding to control points on levels 0,
1, and 2.

When an edit level is selected, the surface is represented inter-
nally as an approximation at this level, plus the set of all finer level
details. The user can freely manipulate degrees of freedom at the
edit level, while the finer level details remain unchanged relative
to the coarser level. Meanwhile, the system will use the synthesis
algorithm to render the modified edit level with all the finer details
added in. In between edits, analysis enforces consistency on the
internal representation of coarser levels and details (cf. Fig. 9).

The basic algorithmsAnalysis and Synthesis are very
simple and we begin with their description.

Let i = 0 be the coarsest andi = n the finest level withN
vertices. For each vertexv and all levelsi finer than the first level

Figure 8: Wireframe renderings of virtual surfaces representing the
first three levels of control points.

Figure 9: Analysis propagates the changes on finer levels to coarser
levels, keeping the magnitude of details under control. Left: The
initial mesh. Center: A simple edit on level 3. Right: The effect of
the edit on level 2. A significant part of the change was absorbed
by higher level details.

where the vertexv appears, there are storage locationsv.s[i] and
v.d[i], each with 3 floats. With this the total storage adds to2 ∗ 3 ∗
(4N/3) floats. In general,v.s[i] holdssi(v) andv.d[i] holdsdi(v);
temporarily, these locations can be used to store other quantities.
The local frame is computed by callingv.F (i).

Global analysis and synthesis are performed level wise:

Analysis

for i = n downto 1
Analysis(i)

Synthesis

for i = 1 to n
Synthesis(i)

With the action at each level described by

Analysis(i)

∀v ∈ V i−1 : v.s[i− 1] := smooth (v, i)
∀v ∈ V i : v.d[i] := v.F (i)t ∗ (v.s[i]− subd (v, i− 1))

and

Synthesis(i)

∀v ∈ V i : s.v[i] := v.F (i) ∗ v.d[i] + subd (v, i− 1)

Analysis computes points on the coarser leveli− 1 using smooth-
ing (smooth), subdividessi−1 (subd), and computes the detail
vectorsdi (cf. Fig. 7). Synthesis reconstructs leveli by subdividing
level i− 1 and adding the details.

So far we have assumed that all levels are uniformly refined, i.e.,
all neighbors at all levels exist. Since time and storage costs grow
exponentially with the number of levels, this approach is unsuitable
for an interactive implementation. In the next sections we explain
how these basic algorithms can be made memory and time efficient.

Adaptive and local versions of these generic algorithms (cf.
Fig. 3 for an overview of their use) are the key to these savings.
The underlying idea is to use lazy evaluation and pruning based on

thresholds. Three thresholds control this pruning:εA for adaptive
analysis,εS for adaptive synthesis, andεR for adaptive rendering.
To make lazy evaluation fast enough several caches are maintained
explicitly and the order of computations is carefully staged to avoid
recomputation.

4.1 Adaptive Analysis
The generic version of analysis traverses entire levels of the hierar-
chy starting at some finest level. Recall that the purpose of analysis
is to compute coarser approximations and detail offsets. In many
regions of a mesh, for example, if it is flat, no significant details
will be found. Adaptive analysisavoids the storage cost associated
with detail vectors below some thresholdεA by observing that small
detail vectors imply that the finer level almost coincides with the
subdivided coarser level. The storage savings are realized through
tree pruning.

For this purpose we need an integerv.finest :=
maxi{‖v.d[i]‖ ≥ εA}. Initially v.finest = n and the fol-
lowing precondition holds before callingAnalysis(i) :
• The surface is uniformly subdivided to leveli,
• ∀v ∈ V i : v.s[i] = si(v),

• ∀v ∈ V i | i < j ≤ v.finest : v.d[j] = dj(v).
Now Analysis(i) becomes:

Analysis(i)

∀v ∈ V i−1 : v.s[i− 1] := smooth (v, i)
∀v ∈ V i :
v.d[i] := v.s[i]− subd (v, i− 1)
if v.finest > i or ‖v.d[i]‖ ≥ εA then
v.d[i] := v.F (i)t ∗ v.d[i]

else
v.finest := i− 1

Prune(i− 1)

Triangles that do not contain details above the threshold are unre-
fined:

Prune(i)

∀t ∈ T i : If all middle verticesm havem.finest = i− 1
and all children are leaves, delete children.

This results in an adaptive mesh structure for the surface with
v.d[i] = di(v) for all v ∈ V i, i ≤ v.finest . Note that the re-
sulting mesh is not restricted, i.e., two triangles that share a vertex
can differ in more than one level. Initial analysis has to be followed
by a synthesis pass which enforces restriction.

4.2 Adaptive Synthesis
The main purpose of the general synthesis algorithm is to rebuild
the finest level of a mesh from its hierarchical representation. Just
as in the case of analysis we can get savings from noticing that in
flat regions, for example, little is gained from synthesis and one
might as well save the time and storage associated with synthe-
sis. This is the basic idea behindadaptive synthesis, which has two
main purposes. First, ensure the mesh is restricted on each level,
(cf. Fig. 10). Second, refine triangles and recompute points until
the mesh has reached a certain measure of local flatness compared
against the thresholdεS .

The algorithm recomputes the pointssi(v) starting from the
coarsest level. Not all neighbors needed in the subdivision stencil
of a given point necessarily exist. Consequently adaptive synthesis

i+1V

iV

V i V i

V

i

i+1

V i+1

T

Figure 10: A restricted mesh: the center triangle is inT i and its
vertices inV i. To subdivide it we need the 1-rings indicated by the
circular arrows. If these are present the graph is restricted and we
can computesi+1 for all vertices and middle vertices of the center
triangle.

lazily creates all triangles needed for subdivision by temporarily re-
fining their parents, then computes subdivision, and finally deletes
the newly created triangles unless they are needed to satisfy the
restriction criterion. The following precondition holds before en-
teringAdaptiveSynthesis :

• ∀t ∈ T j | 0 ≤ j ≤ i : t is restricted

• ∀v ∈ V j | 0 ≤ j ≤ v.depth : v.s[j] = sj(v)

wherev.depth := maxi{si(v)has been recomputed}.

AdaptiveSynthesis

∀v ∈ V 0 : v.depth := 0
for i = 0 to n− 1

temptri := {}
∀t ∈ T i :

current := {}
Refine (t, i, true)
∀t ∈ temptri : if not t.restrict then

Delete children oft

The list temptri serves as a cache holding triangles from levels
j < i which are temporarily refined. A triangle is appended to the
list if it was refined to compute a value at a vertex. After processing
level i these triangles are unrefined unless theirt.restrict flag is
set, indicating that a temporarily created triangle was later found
to be needed permanently to ensure restriction. Since triangles are
appended totemptri , parents precede children. Deallocating the
list tail first guarantees that all unnecessary triangles are erased.

The functionRefine (t, i, dir) (see below) creates children of
t ∈ T i and computes the valuesSsi(v) for the vertices and mid-
dle vertices oft. The results are stored inv.s[i + 1]. The boolean
argumentdir indicates whether the call was made directly or recur-
sively.

Refine (t, i, dir)

if t.leaf then Create children fort
∀v ∈ t : if v.depth < i+ 1 then

GetRing (v, i)
Update (v, i)
∀m ∈ N(v, i+ 1, 1) :

Update (m, i)
if m.finest ≥ i+ 1 then

forced := true
if dir and Flat (t) < εS and not forced then

Delete children oft
else
∀t ∈ current : t.restrict := true

Update (v, i)
v.s[i+ 1] := subd (v, i)
v.depth := i+ 1
if v.finest ≥ i+ 1 then
v.s[i+ 1] += v.F (i+ 1) ∗ v.d[i+ 1]

The conditionv.depth = i+ 1 indicates whether an earlier call to
Refine already recomputedsi+1(v). If not, call GetRing (v, i)
andUpdate (v, i) to do so. In case a detail vector lives atv at level
i (v.finest ≥ i + 1) add it in. Next computesi+1(m) for mid-
dle vertices on leveli + 1 aroundv (m ∈ N(v, i + 1, 1), where
N(v, i, l) is the l-ring neighborhood of vertexv at level i). If m
has to be calculated, computesubd (m, i) and add in the detail if it
exists and record this fact in the flagforced which will prevent unre-
finement later. At this point, allsi+1 have been recomputed for the
vertices and middle vertices oft. Unrefinet and delete its children
if Refine was called directly, the triangle is sufficiently flat, and
none of the middle vertices contain details (i.e.,forced = false).
The listcurrent functions as a cache holding triangles from level
i − 1 which are temporarily refined to build a 1-ring around the
vertices oft. If after processing all vertices and middle vertices of
t it is decided thatt will remain refined, none of the coarser-level
triangles fromcurrent can be unrefined without violating restric-
tion. Thust.restrict is set for all of them. The functionFlat (t)
measures how close to planar the corners and edge middle vertices
of t are.

Finally, GetRing (v, i) ensures that a complete ring of triangles
on leveli adjacent to the vertexv exists. Because triangles on level
i are restricted triangles all triangles on leveli − 1 that containv
exist (precondition). At least one of them is refined, since other-
wise there would be no reason to callGetRing (v, i). All other
triangles could be leaves or temporarily refined. Any triangle that
was already temporarily refined may become permanently refined
to enforce restriction. Record such candidates in thecurrent cache
for fast access later.

GetRing (v, i)

∀t ∈ T i−1 with v ∈ t :
if t.leaf then

Refine (t, i− 1, false); temptri .append(t)
t.restrict := false ; t.temp := true

if t.temp then
current .append (t)

4.3 Local Synthesis
Even though the above algorithms are adaptive, they are still run ev-
erywhere. During an edit, however, not all of the surface changes.
The most significant economy can be gained from performing anal-
ysis and synthesis only over submeshes which require it.

Assume the user edits levell and modifies the pointssl(v) for
v ∈ V ∗l ⊂ V l. This invalidates coarser level valuessi anddi for
certain subsetsV ∗i ⊂ V i, i ≤ l, and finer level pointssi for subsets
V ∗i ⊂ V i for i > l. Finer level detail vectorsdi for i > l remain
correct by definition. Recomputing the coarser levels is done by
local incremental analysisdescribed in Section 4.4, recomputing
the finer level is done bylocal synthesisdescribed in this section.

The set of verticesV ∗i which are affected depends on the support
of the subdivision scheme. If the support fits into anm-ring around
the computed vertex, then all modified vertices on leveli + 1 can
be found recursively as

V ∗i+1 =
⋃

v∈V ∗i
N(v, i+ 1,m).

We assume thatm = 2 (Loop-like schemes) orm = 3 (Butterfly
type schemes). We define thesubtriangulationT ∗i to be the subset
of triangles ofT i with vertices inV ∗i.

LocalSynthesis is only slightly modified from
AdaptiveSynthesis : iteration starts at levell and iter-
ates only over the submeshT ∗i.

4.4 Local Incremental Analysis
After an edit on levell local incremental analysiswill recompute
si(v) anddi(v) locally for coarser level vertices (i ≤ l) which are
affected by the edit. As in the previous section, we assume that
the user edited a set of verticesv on levell and callV ∗i the set of
vertices affected on leveli. For a given vertexv ∈ V ∗i we define

v
f1

v
7

v

v

1v
v ve

f 2

e 2

6

v
1

4

v
5

v

v

v
2

v
3

Figure 11: Sets of even vertices affected through smoothing by ei-
ther an evenv or oddm vertex.

Ri−1(v) ⊂ V i−1 to be the set of vertices on leveli − 1 affected
by v through the smoothing operatorH. The setsV ∗i can now be
defined recursively starting from leveli = l to i = 0:

V ∗i−1 =
⋃

v∈V ∗i
Ri−1(v).

The setRi−1(v) depends on the size of the smoothing stencil and
whetherv is even or odd (cf. Fig. 11). If the smoothing filter
is 1-ring, e.g., Gaussian, thenRi−1(v) = {v} if v is even and
Ri−1(m) = {ve1, ve2} if m is odd. If the smoothing filter is 2-
ring, e.g., Taubin, thenRi−1(v) = {v} ∪ {vk | 1 ≤ k ≤ K}
if v is even andRi−1(m) = {ve1, ve2, vf1, vf2} if v is odd. Be-
cause of restriction, these vertices always exist. Forv ∈ V i and
v′ ∈ Ri−1(v) we letc(v, v′) be the coefficient in the analysis sten-
cil. Thus

(H si)(v′) =
∑

v|v′∈Ri−1(v)

c(v, v′)si(v).

This could be implemented by running over thev′ and each time
computing the above sum. Instead we use the dual implementation,
iterate over allv, accumulating (+=) the right amount tosi(v′) for
v′ ∈ Ri−1(v). In case of a 2-ring Taubin smoother the coefficients
are given by

c(v, v) = (1− µ) (1− λ) + µλ/6

c(v, vk) = µλ/6K

c(m, ve1) = ((1− µ)λ+ (1− λ)µ+ µλ/3)/K

c(m, vf1) = µλ/3K,

where for eachc(v, v′),K is the outdegree ofv′.
The algorithm first copies the old pointssi(v) for v ∈ V ∗i and

i ≤ l into the storage location for the detail. If then propagates
the incremental changes of the modified points from levell to the
coarser levels and adds them to the old points (saved in the detail
locations) to find the new points. Then it recomputes the detail
vectors that depend on the modified points.

We assume that before the edit, the old pointssl(v) for v ∈
V ∗l were saved in the detail locations. The algorithm starts out by
building V ∗i−1 and saving the pointssi−1(v) for v ∈ V ∗i−1 in
the detail locations. Then the changes resulting from the edit are
propagated to leveli − 1. Finally S si−1 is computed and used to
update the detail vectors on leveli.

LocalAnalysis(i)

∀v ∈ V ∗i : ∀v′ ∈ Ri−1(v) :
V ∗i−1 ∪= {v′}
v′.d[i− 1] := v′.s[i− 1]
∀v ∈ V ∗i : ∀v′ ∈ Ri−1(v) :
v′.s[i− 1] += c(v, v′) ∗ (v.s[i]− v.d[i])
∀v ∈ V ∗i−1 :
v.d[i] = v.F (i)t ∗ (v.s[i]− subd (v, i− 1))
∀m ∈ N(v, i, 1) :
m.d[i] = m.F (i)t ∗ (m.s[i]− subd (m, i− 1))

Note that the odd points are actually computed twice. For the Loop
scheme this is less expensive than trying to compute a predicate to
avoid this. For Butterfly type schemes this is not true and one can
avoid double computation by imposing an ordering on the triangles.
The top level code is straightforward:

LocalAnalysis

∀v ∈ V ∗l : v.d[l] := v.s[l]
for i := l downto 0

LocalAnalysis(i)

It is difficult to make incremental local analysis adaptive, as it is
formulated purely in terms of vertices. It is, however, possible to
adaptively clean up the triangles affected by the edit and (un)refine
them if needed.

4.5 Adaptive Rendering
The adaptive renderingalgorithm decides which triangles will be
drawn depending on the rendering performance available and level
of detail needed.

The algorithm uses a flagt.draw which is initialized tofalse ,
but set totrue as soon as the area corresponding tot is drawn.
This can happen either whent itself gets drawn, or when a set of
its descendents, which covert, is drawn. The top level algorithm
loops through the triangles starting from the leveln− 1. A triangle

is always responsible for drawing its children, never itself, unless it
is a coarsest-level triangle.

AdaptiveRender

for i = n− 1 downto 0
∀t ∈ T i : if not t.leaf then

Render (t)
∀t ∈ T 0 : if not t.draw then

displaylist.append(t)

T-vertex

Figure 12: Adaptive rendering: On the left 6 triangles from leveli,
one has a covered child from leveli + 1, and one has a T-vertex.
On the right the result from applyingRender to all six.

TheRender (t) routine decides whether the children oft have to be
drawn or not (cf. Fig.12). It uses a functionedist (m) which mea-
sures the distance between the point corresponding to the edge’s
middle vertexm, and the edge itself. In the when case any of the
children oft are already drawn or any of its middle vertices are far
enough from the plane of the triangle, the routine will draw the rest
of the children and set the draw flag for all their vertices andt. It
also might be necessary to draw a triangle if some of its middle
vertices are drawn because the triangle on the other side decided
to draw its children. To avoid cracks, the routinecut (t) will cut
t into 2, 3, or 4, triangles depending on how many middle vertices
are drawn.

Render (t)

if (∃ c ∈ t.child | c.draw = true
or ∃m ∈ t.mid vertex | edist (m) > εD) then
∀c ∈ t.child :

if not c.draw then
displaylist.append (c)
∀v ∈ c : v.draw := true

t.draw := true
else if ∃m ∈ t.mid vertex | m.draw = true
∀t′ ∈ cut (t) : displaylist.append(t′)
t.draw := true

4.6 Data Structures and Code
The main data structure in our implementation is a forest of trian-
gular quadtrees. Neighborhood relations within a single quadtree
can be resolved in the standard way by ascending the tree to the
least common parent when attempting to find the neighbor across a
given edge. Neighbor relations between adjacent trees are resolved
explicitly at the level of a collection of roots, i.e., triangles of a
coarsest level graph. This structure also maintains an explicit rep-
resentation of the boundary (if any). Submeshes rooted at any level
can be created on the fly by assembling a new graph with some set
of triangles as roots of their child quadtrees. It is here that the ex-
plicit representation of the boundary comes in, since the actual trees

are never copied, and a boundary is needed to delineate the actual
submesh.

The algorithms we have described above make heavy use of
container classes. Efficient support for sets is essential for a fast
implementation and we have used the C++ Standard Template Li-
brary. The mesh editor was implemented using OpenInventor and
OpenGL and currently runs on both SGI and Intel PentiumPro
workstations.

Figure 13: On the left are two meshes which are uniformly sub-
divided and consist of 11k (upper) and 9k (lower) triangles. On
the right another pair of meshes mesh with approximately the same
numbers of triangles. Upper and lower pairs of meshes are gen-
erated from the same original data but the right meshes were op-
timized through suitable choice ofεS. See the color plates for a
comparison between the two under shading.

5 Results
In this section we show some example images to demonstrate vari-
ous features of our system and give performance measures.

Figure 13 shows two triangle mesh approximations of the Ar-
madillo head and leg. Approximately the same number of triangles
are used for both adaptive and uniform meshes. The meshes on the
left were rendered uniformly, the meshes on the right were rendered
adaptively. (See also color plate 15.)

Locally changing threshold parameters can be used to resolve an
area of interest particularly well, while leaving the rest of the mesh
at a coarse level. An example of this “lens” effect is demonstrated
in Figure 14 around the right eye of the Mannequin head. (See also
color plate 16.)

We have measured the performance of our code on two plat-
forms: an Indigo R10000@175MHz with Solid Impact graphics,
and a PentiumPro@200MHz with an Intergraph Intense 3D board.

We used the Armadillo head as a test case. It has approximately
172000 triangles on 6 levels of subdivision. Display list creation
took 2 seconds on the SGI and 3 seconds on the PC for the full
model. We adjustedεR so that both machines rendered models at
5 frames per second. In the case of the SGI approximately 113,000
triangles were rendered at that rate. On the PC we achieved 5
frames per second when the rendering threshold had been raised
enough so that an approximation consisting of 35000 polygons was
used.

The other important performance number is the time it takes to
recompute and re-render the region of the mesh which is changing
as the user moves a set of control points. This submesh is rendered
in immediate mode, while the rest of the surface continues to be
rendered as a display list. Grabbing a submesh of 20-30 faces (a
typical case) at level 0 added 250 mS of time per redraw, at level 1
it added 110 mS and at level 2 it added 30 mS in case of the SGI.
The corresponding timings for the PC were 500 mS, 200 mS and
60 mS respectively.

Figure 14: It is easy to changeεS locally. Here a “lens” was applied
to the right eye of the Mannequin head with decreasingεS to force
very fine resolution of the mesh around the eye.

6 Conclusion and Future Research
We have built a scalable system for interactive multiresolution edit-
ing of arbitrary topology meshes. The user can either start from
scratch or from a given fine detail meshwith subdivision connec-
tivity. We use smooth subdivision combined with details at each
level as a uniform surface representation across scales and argue
that this forms a natural connection between fine polygonal meshes
and patches. Interactivity is obtained by building both local and
adaptive variants of the basic analysis, synthesis, and rendering al-
gorithms, which rely on fast lazy evaluation and tree pruning. The
system allows interactive manipulation of meshes according to the
polygon performance of the workstation or PC used.

There are several avenues for future research:
• Multiresolution transforms readily connect with compression.

We want to be able to store the models in a compressed format
and use progressive transmission.

• Features such as creases, corners, and tension controls can easily
be added into our system and expand the users’ editing toolbox.

• Presently no real time fairing techniques, which lead to more
intuitive coarse levels, exist.

• In our system coarse level edits can only be made by dragging
coarse level vertices. Which vertices live on coarse levels is
currently fixed because of subdivision connectivity. Ideally the
user should be able to dynamically adjust this to make coarse
level edits centered at arbitrary locations.

• The system allows topological edits on the coarsest level. Algo-
rithms that allow topological edits on all levels are needed.

• An important area of research relevant for this work is genera-
tion of meshes with subdivision connectivity from scanned data
or from existing models in other representations.

Acknowledgments
We would like to thank Venkat Krishnamurthy for providing the
Armadillo dataset. Andrei Khodakovsky and Gary Wu helped be-
yond the call of duty to bring the system up. The research was
supported in part through grants from the Intel Corporation, Mi-
crosoft, the Charles Lee Powell Foundation, the Sloan Founda-
tion, an NSF CAREER award (ASC-9624957), and under a MURI
(AFOSR F49620-96-1-0471). Other support was provided by the
NSF STC for Computer Graphics and Scientific Visualization.

References
[1] BURT, P. J.,AND ADELSON, E. H. Laplacian Pyramid as a

Compact Image Code.IEEE Trans. Commun. 31, 4 (1983),
532–540.

[2] CATMULL , E., AND CLARK , J. Recursively Generated B-
Spline Surfaces on Arbitrary Topological Meshes.Computer
Aided Design 10, 6 (1978), 350–355.

[3] CERTAIN, A., POPOVIĆ, J., DEROSE, T., DUCHAMP, T.,
SALESIN, D., AND STUETZLE, W. Interactive Multiresolu-
tion Surface Viewing. InSIGGRAPH 96 Conference Proceed-
ings, H. Rushmeier, Ed., Annual Conference Series, 91–98,
Aug. 1996.

[4] DAHMEN, W., MICCHELLI , C. A., AND SEIDEL, H.-
P. Blossoming Begets B-Splines Bases Built Better by B-
Patches.Mathematics of Computation 59, 199 (July 1992),
97–115.

[5] DE BOOR, C. A Practical Guide to Splines. Springer, 1978.
[6] DOO, D., AND SABIN , M. Analysis of the Behaviour of

Recursive Division Surfaces near Extraordinary Points.Com-
puter Aided Design 10, 6 (1978), 356–360.

[7] DYN, N., LEVIN, D., AND GREGORY, J. A. A Butterfly
Subdivision Scheme for Surface Interpolation with Tension
Control. ACM Trans. Gr. 9, 2 (April 1990), 160–169.

[8] ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNS-
BERY, M., AND STUETZLE, W. Multiresolution Analysis of
Arbitrary Meshes. InComputer Graphics Proceedings, An-
nual Conference Series, 173–182, 1995.

[9] FINKELSTEIN, A., AND SALESIN, D. H. Multiresolution
Curves.Computer GraphicsProceedings, Annual Conference
Series, 261–268, July 1994.

[10] FORSEY, D., AND WONG, D. Multiresolution Surface Re-
construction for Hierarchical B-splines. Tech. rep., University
of British Columbia, 1995.

[11] FORSEY, D. R.,AND BARTELS, R. H. Hierarchical B-Spline
Refinement.Computer Graphics (SIGGRAPH ’88 Proceed-
ings), Vol. 22, No. 4, pp. 205–212, August 1988.

[12] GORTLER, S. J.,AND COHEN, M. F. Hierarchical and Vari-
ational Geometric Modeling with Wavelets. InProceedings
Symposium on Interactive 3D Graphics, May 1995.

[13] HOPPE, H. Progressive Meshes. InSIGGRAPH 96 Con-
ference Proceedings, H. Rushmeier, Ed., Annual Conference
Series, 99–108, August 1996.

[14] HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEAD, M.,
JIN, H., MCDONALD, J., SCHWEITZER, J., AND STUET-
ZLE, W. Piecewise Smooth Surface Reconstruction. InCom-
puter Graphics Proceedings, Annual Conference Series, 295–
302, 1994.

[15] HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J.,
AND STUETZLE, W. Mesh Optimization. InComputer
Graphics (SIGGRAPH ’93 Proceedings), J. T. Kajiya, Ed.,
vol. 27, 19–26, August 1993.

[16] KOBBELT, L. Interpolatory Subdivision on Open Quadrilat-
eral Nets with Arbitrary Topology. InProceedings of Euro-
graphics 96, Computer Graphics Forum, 409–420, 1996.

Figure 15: Shaded rendering (OpenGL) of the meshes in Figure 13.

Figure 16: Shaded rendering (OpenGL) of the meshes in Figure 14.

[17] KRISHNAMURTHY, V., AND LEVOY, M. Fitting Smooth Sur-
faces to Dense Polygon Meshes. InSIGGRAPH 96 Confer-
ence Proceedings, H. Rushmeier, Ed., Annual Conference Se-
ries, 313–324, August 1996.

[18] KURIHARA, T. Interactive Surface Design Using Recursive
Subdivision. InProceedings of Communicating with Virtual
Worlds. Springer Verlag, June 1993.

[19] LOOP, C. Smooth Subdivision Surfaces Based on Triangles.
Master’s thesis, University of Utah, Department of Mathemat-
ics, 1987.

[20] LOOP, C. Smooth Spline Surfaces over Irregular Meshes. In
Computer Graphics Proceedings, Annual Conference Series,
303–310, 1994.

[21] LOUNSBERY, M., DEROSE, T., AND WARREN, J. Multires-
olution Analysis for Surfaces of Arbitrary Topological Type.
Transactions on Graphics 16, 1 (January 1997), 34–73.

[22] PETERS, J. C1 Surface Splines.SIAM J. Numer. Anal. 32, 2
(1995), 645–666.

[23] PULLI , K., AND LOUNSBERY, M. Hierarchical Editing and
Rendering of Subdivision Surfaces. Tech. Rep. UW-CSE-
97-04-07, Dept. of CS&E, University of Washington, Seattle,
WA, 1997.

[24] SCHRÖDER, P., AND SWELDENS, W. Spherical wavelets:
Efficiently representing functions on the sphere.Computer
Graphics Proceedings, (SIGGRAPH 95)(1995), 161–172.

[25] SCHWEITZER, J. E.Analysis and Application of Subdivision
Surfaces. PhD thesis, University of Washington, 1996.

[26] TAUBIN , G. A Signal Processing Approach to Fair Surface
Design. InSIGGRAPH 95 Conference Proceedings, R. Cook,
Ed., Annual Conference Series, 351–358, August 1995.

[27] WELCH, W., AND WITKIN , A. Variational surface modeling.
In Computer Graphics (SIGGRAPH ’92 Proceedings), E. E.
Catmull, Ed., vol. 26, 157–166, July 1992.

[28] ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. Interpo-
lating Subdivision for Meshes with Arbitrary Topology.Com-
puter Graphics Proceedings (SIGGRAPH 96)(1996), 189–
192.

[29] ZORIN, D. N. Subdivision and Multiresolution Surface Rep-
resentations. PhD thesis, Caltech, Pasadena, California, 1997.

Chapter 6

Interpolatory Subdivision for Quad

Meshes

Speaker: Adi Levin

Combined Subdivision Schemes - an introduction

Adi Levin

April 7, 2000

Abstract

Combined subdivision schemes are a class of subdivision schemes that allow
the designer to prescribe arbitrary boundary conditions. A combined subdivision
scheme operates like an ordinary subdivision scheme in the interior of the surface,
and applies special rules near the boundaries. The boundary rules at each iteration
explicitly involve the given boundary conditions. They are designed such that the
limit surfaces will satisfy the boundary conditions, and will have specific smooth-
ness and approximation properties.

This article presents a short introduction to combined subdivision schemes and
gives references to the author’s works on the subject.

1 Background

The surface of a mechanical part is typically a piecewise smooth surface. It is also
useful to think of it as the union of smooth surfaces that share boundaries. Those
boundaries are key features of the object. In many applications, the accuracy required
at the surface boundaries is more than the accuracy needed at the interior of the surface.
In particular it is crucial that two neighboring surfaces do not have gaps between them
along their common boundary. Gaps that appears in the mathematical model cause
algorithmic difficulties in processing these surfaces. However, commonly used spline
models cannot avoid these gaps.

A boundary curve between two surfaces represents their intersection. Even for
simple surfaces such as bicubic polynomial patches the intersection curve is known to
be a polynomial of very high degree. A compromise is then made by approximating
the actual intersection curve within specified error tolerance, and thus a new problem
appears: the approximate curve cannot lie on both surfaces. Therefore one calculates
two approximations for the same curve, each one lying on one of the surfaces, hence
the new surface boundaries have a gap between them.

The same thing happens with other surface models that represent a surface by a
discrete set of control points, including subdivision schemes. Combined subdivision
schemes offer an alternative. In the new setting, the designer can prescribe the bound-
ary curves of the surface exactly. Therefore, in order to force two surfaces to share a
common boundary without gaps, we only need to calculate the boundary curve, and
require each of the two surfaces to interpolate that curve.

1

Figure 1: A smooth blending between six cylinders.

While boundary curves are crucial for the continuity of the model, other bound-
ary conditions are also of interest. It is sometimes desirable to have two neighboring
surfaces connect smoothly along their shared boundary. Figure 1 shows six cylinders
blended smoothly by a surface. Combined subdivision schemes offer that capability as
well.

2 The principle of combined subdivision

Combined subdivision schemes provide a general framework for designing subdivision
surfaces that satisfy prescribed boundary conditions. In the standard subdivision ap-
proach, the surface is defined only by its control points. Given boundary conditions,
one tries to find a configuration of control points for which the surface satisfies the
boundary conditions. In combined subdivision schemes the boundary conditions play
a role which is equivalent to that of the control points. Every iteration of subdivision is
affected by the boundary conditions.

Hence, standard subdivision can be described as the linear process

Pn+1 = SPn, n = 0, 1, . . . ,

wherePn stands for control points aftern iterations of subdivision, andS stands for
the subdivision operator. In these notations, a combined subdivision scheme will be
described by

Pn+1 = SPn + (Boundary contribution), n = 0, 1,

The namecombined subdivision schemescomes from the fact that every iteration of the
scheme combines discrete data, i.e. the control points, with continuous (ortransfinite)
data, i.e. the boundary conditions. Using this approach, a simple subdivision algorithm
can yield limit surfaces that satisfy the prescribed boundary conditions.

2

3 Related work

In this section we discuss previous known works in the subject of subdivision surfaces
with boundaries. All of these works employ the standard notion of subdivision, i.e. a
process where control points are recursively refined. Thus, the subdivision surface is
described by a given set of control points, and a set of subdivision rules. The subdivi-
sion rules that are applied near the surface boundary may differ from those used in the
interior of the surface.

In [8], Loop’s subdivision scheme is extended to create piecewise surfaces, by in-
troducing special subdivision rules that apply near crease edges and other non-smooth
features. The crease rules introduced in [8] can also be used as boundary rules. How-
ever, these boundary rules do not satisfy the requirement that the boundary curve de-
pends only on the control points on the boundary of the control net. Bierman et al.
[9] improve these boundary rules such that the boundary curve depends only on the
boundary control polygon, and introduce similar boundary rules for the Catmull-Clark
scheme. Their subdivision rules also enable control over the tangent planes of the
surface at the boundaries.

Kobbelt [1] introduced an interpolatory subdivision scheme for quadrilateral con-
trol nets which generalizes the tensor-product 4-point scheme and has special subdi-
vision rules near the boundaries. Nasri [7] considered the interpolation of quadratic
B-spline curves by limit surfaces of the Doo-Sabin scheme. The conditions he derived
can be used to determine the boundary points of a Doo-Sabin control net such that the
limit surface interpolates a prescribed B-spline curve at the boundary.

In all of these works, specific subdivision schemes are considered, and the boundary
curves are restricted to spline curves or to subdivision curves. The notion of combined
subdivision enables the designer to prescribe arbitrary boundary curves. Moreover, we
have a generalized framework for constructing combined subdivision schemes, based
on any known subdivision scheme, and for a large class of boundary conditions.

In addition, all of these previous works only established the smoothness of the limit
surfaces resulting from their proposed subdivision schemes. In the theory of combined
subdivision schemes, both the smoothness and the approximation properties of the new
schemes were studied, as it was recognized that for CAGD applications the quality of
approximation is a major concern.

4 Works on Combined Subdivision Schemes

In this section, the current works on combined subdivision schemes are listed. All of
the manuscripts are available athttp://www.math.tau.ac.il/˜ adilev.

The definition and the theoretical analysis of combined subdivision schemes are
developed in [5]. This work also contains several detailed examples of constructions of
new subdivision schemes with prescribed smoothness and approximation properties,
and of their applications. The schemes in [5] include extensions of Loop, Catmull-
Clark, Doo-Sabin and the Butterfly scheme.

An important aspect of the smoothness analysis of combined subdivision schemes
is the analysis of a subdivision scheme across anextraordinary line, namely, an area of

3

the surface around a given edge or curve where special subdivision rules are applied.
Analysis tools for such cases are given in [2]. This is also of interest for constructing
boundary rules for ordinary subdivision schemes, since boundaries can typically be
viewed as extraordinary lines.

In [3], several simple combined subdivision schemes are presented, that can handle
prescribed boundary curves, and prescribed cross-boundary derivatives, as extensions
of Loop’s scheme and of the Catmull-Clark scheme.

In [4] a combined subdivision scheme for the interpolation of nets of curves is pre-
sented. This scheme is based on a variant of the Catmull-Clark scheme. The generated
surfaces can interpolate nets of curves of arbitrary topology, as long as no more than
two curves intersect at one point.

In [6] a specially designed combined subdivision scheme is used for fillingN -
sided holes, while maintainingC1 contact with the neighboring surfaces. This offers
an elegant alternative to current methods forN -sided patches.

References

[1] L. Kobbelt, T. Hesse, H. Prautzsch, and K. Schweizerhof. Interpolatory subdivision
on open quadrilateral nets with arbitrary topology.Computer Graphics Forum,
15:409–420, 1996. Eurographics ’96 issue.

[2] A. Levin. Analysis of quazi-uniform subdivision schemes. in preparation, 1999.

[3] A. Levin. Combined subdivision schemes for the design of surfaces satisfying
boundary conditions.Computer Aided Geometric Design, 16(5):345–354, 1999.

[4] A. Levin. Interpolating nets of curves by smooth subdivision surfaces. InPro-
ceedings of SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference
Series, pages 57–64, 1999.

[5] A. Levin. Combined Subdivision Schemes with Applications to Surface Design.
PhD thesis, Tel-Aviv university, 2000.

[6] A. Levin. Filling n-sided holes using combined subdivision schemes. In
Paul Sablonni`ere Pierre-Jean Laurent and Larry L. Schumaker (eds.), editors,
Curve and Surface Design: Saint-Malo 1999. Vanderbilt University Press,
Nashville, TN, 2000.

[7] A. H. Nasri. Curve interpolation in recursively generated b-spline surfaces over
arbitrary topology.Computer Aided Geometric Design, 14:No 1, 1997.

[8] J. Schweitzer. Analysis and Applications of Subdivision Surfaces. PhD thesis,
University of Washington, Seattle, 1996.

[9] D. Zorin, H. Biermann, and A. Levin. Piecewise smooth subdivision surfaces with
normal control. Technical Report TR1999-781, New York University, February
26, 1999.

4

A Combined Subdivision Scheme For Filling Polygonal Holes

Adi Levin

April 7, 2000

Abstract

A new algorithm is presented for calculatingN -sided
surface patches that satisfy arbitraryC1 boundary con-
ditions. The algorithm is based on a new subdivision
scheme that uses Catmull-Clark refinement rules in the
surface interior, and specially designed boundary rules
that involve the given boundary conditions. The new
scheme falls into the category of Combined Subdivision
Schemes, that enable the designer to prescribe arbitrary
boundary conditions. The generated subdivision surface
has continuous curvature except at one extraordinary mid-
dle point. Around the middle point the surface isC1 con-
tinuous, and the curvature is bounded.

1 Background

The problem of constructingN -sided surface patches oc-
curs frequently in computer-aided geometric design. The
N -sided patch is required to connect smoothly to given
surfaces surrounding a polygonal hole, as shown in Fig.
1.

Referring to [10, 25, 26],N -sided patches can be gen-
erated basically in two ways. Either the polygonal do-
main, which is to be mapped into 3D, is subdivided in
the parametric plane, or one uniform equation is used to
represent the entire patch. In the former case, triangular
or rectangular elements are put together [2, 6, 12, 20, 23]
or recursive subdivision methods are applied [5, 8, 24]. In
the latter case, either the known control-point based meth-
ods are generalized or a weighted sum of 3D interpolants
gives the surface equation [1, 3, 4, 22].

The method presented in this paper is a recursive sub-
division scheme specially designed to consider arbitrary
boundary conditions. Subdivision schemes provide effi-

Figure 1: A 5 sided surface patch

cient algorithms for the design, representation and pro-
cessing of smooth surfaces of arbitrary topological type.
Their simplicity and their multiresolution structure make
them attractive for applications in 3D surface modeling,
and in computer graphics [7, 9, 11, 13, 19, 27, 28].

The subdivision scheme presented in this paper falls
into the category ofcombined subdivision schemes[14,
15, 17, 18], where the underlying surface is represented
not only by a control net, but also by the given boundary
conditions. The scheme repeatedly applies a subdivision
operator to the control net, which becomes more and more
dense. In the limit, the vertices of the control net converge
to a smooth surface. Samples of the boundary conditions
participate in every iteration of the subdivision, and as a
result the limit surface satisfies the given conditions, re-
gardless of their representation. Thus, our scheme per-
forms so-called transfinite interpolation.

The motivation behind the specific subdivision rules,
and the smoothness analysis of the scheme are presented

1

in [16]. In the following sections, we describe Catmull-
Clark’s scheme, and we present the details of our scheme.

2 Catmull-Clark Subdivision

A net Σ = (V,E) consists of a set of verticesV and the
topological information of the netE, in terms of edges
and faces. A net is closed when each edge is shared by
exactly two faces.

Camull-Clark’s subdivision scheme is defined over
closed nets of arbitrary topology, as an extension of
the tensor product bi-cubic B-spline subdivision scheme
[5, 8]. Variants of the original scheme were analyzed by
Ball and Storry [24]. Our algorithm employs a variant
of Catmull-Clark’s scheme due to Sabin [21], which gen-
erates limit surfaces that areC2-continuous everywhere
except at a finite number of irregular points. In the neigh-
borhood of those points the surface curvature is bounded.
The irregular points come from vertices of the original
control net that have valency other than 4, and from faces
of the original control net that are not quadrilateral.

Given a netΣ, the verticesV ′ of the new netΣ′ =
(V ′, E′) are calculated by applying the following rules on
Σ (see Fig. 2):

1. For each old facef , make a new face-vertexv(f) as
the weighted average of the old vertices off , with
weightsWm that depend on the valencym of each
vertex.

2. For each old edgee, make a new edge-vertexv(e)
as the weighted average of the old vertices ofe and
the new face vertices associated with the two faces
originally sharinge. The weightsWm (which are
the same as the weights used in rule 1) depend on
the valencym of each vertex.

3. For each old vertexv, make a new vertex-vertexv(v)
at the point given by the following linear combina-
tion, whose coefficientsαm, βm, γm depend on the
valencym of v:

αm· (the centroid of the new edge vertices of the
edges meeting at v) +βm· (the centroid of the new
face vertices of the faces sharing those edges) +
γm · v.

v

f

e

v(f)

v(e)
v(v)

Figure 2: Catmull-Clark’s scheme

The topologyE′ of the new net is calculated by the
following rule: For each old facef and for each vertexv
of f , make a new quadrilateral face whose edges joinv(f)
andv(v) to the edge vertices of the edges off sharingv
(see Fig. 2).

We present the procedure for calculating the weights
mentioned above, as formulated by Sabin in [21]: Let
m > 2 denote a vertex valency. Letk := cos(π/m).
Let x be the unique real root of

x3 + (4k2 − 3)x− 2k = 0,

satisfyingx > 1. Then

Wm = x2 + 2kx− 3, αm = 1,

γm =
kx+ 2k2 − 1

x2(kx+ 1)
, βm = −γm.

Remark: The original paper by Sabin [21] contains a mis-
take: the formulas for the parametersα, β andγ that ap-
pear in§4 there, areβ := 1, γ := −α.

3 The Boundary Conditions

The input to our scheme consists ofN smooth curves
given in a parametric representationcj : [0, 2]→ R

3 over
the parameter interval[0, 2], and corresponding cross-
boundary derivative functionsdj : [0, 2] → R

3 (see
Fig. 3). We say that the boundary conditions areC0-
compatible at thej-th corner if

cj(2) = cj+1(0).

2

c

c

c

j

j+1

j-1

d

dj+1

j
1

1

10
2

2

2

0

0

Figure 3: The input data

cj
1

2

0

Figure 4: The initial control net (right)

We say that the boundary conditions areC1-compatible
if

dj(0) = −c′j−1(2),

dj(2) = c′j+1(0).

We say that the boundary conditions areC2-compatible if
the curvescj have Hölder continuous second derivatives,
the functionsdj have Hölder continuous derivatives, and
the following twist compatibility condition is satisfied:

d′j(2) = −d′j+1(0). (1)

The requirement of H¨older continuity is used in [16] for
the proof ofC2-continuiuty in case the boundary condi-
tions areC2-compatible.

4 The Algorithm

In this section we describe our algorithm for the design
of anN -sided patch satisfying the boundary conditions
described in§3. The key ingredients of the algorithm are
two formulas for calculating the boundary vertices of the
net. These formulas are given in§4.3 and§4.4.

4.1 Constructing an initial control net

The algorithm starts by constructing an initial control
net whose faces are all quadrilateral with2N bound-
ary vertices and one middle vertex, as shown in Fig. 4.
The boundary vertices are placed at the parameter values
0, 1, 2 on the given curves. The middle vertex can be ar-
bitrarily chosen by the designer, and controls the shape of
the resulting surface.

4.2 A single iteration of subdivision

We denote byn the iteration number, wheren = 0 corre-
sponds to the first iteration. In then-th iteration we per-
form three steps: First, we relocate the boundary vertices
according to the rules given below in§4.3 -§4.4. Then, we
apply Sabin’s variant of Catmull-Clark’s scheme to cal-
culate the new net topology and the position of the new
internal vertices. For the purpose of choosing appropriate
weights in the averaging process, we consider the bound-
ary vertices as if they all have valency 4. This makes up
for the fact that the net is not closed. In the third and fi-
nal step, we sample the boundary vertices from the given
curves at uniformly spaced parameter values with interval
length2−(n+1).

4.3 A smooth boundary rule

Let v denote a boundary vertex corresponding to the pa-
rameter0 < u < 2 on the curvecj . Let w denote the
unique internal vertex which shares an edge withv (see
Fig. 5). In the first step of then-th iteration we calculate
the position of thev by the formula

v = 2cj(u)− 1

4

(
cj
(
u+ 2−n

)
+ cj

(
u− 2−n

))
−

−2−n
1

12

(
dj
(
u+ 2−n

)
+ dj

(
u− 2−n

))
−

3

jc
u

2
-n2

-nu- u+

v

w

Figure 5: The stencil for the smooth boundary rule

1

2
w + 2−n

2

3
dj(u).

4.4 A corner rule

Let v denote a boundary vertex corresponding to the point
cj−1(2) = cj(0). Let w be the unique internal vertex
sharing a face withv (see Fig. 6). In the first step of the
n-th iteration we calculate the position ofv by the formula

v =
5

2
cj(0)−

(
cj(2

−n) + cj−1(2− 2−n)
)

+

1

8
cj(2

1−n) +
1

8
cj−1(2− 21−n) +

2−n
29

48
(dj(0) + dj−1(2)) +

1

4
w −

2−n
1

12

(
dj(2

−n) + dj−1(2− 2−n)
)
−

2−n
1

48

(
dj(2

1−n) + dj−1(2− 21−n)
)
.

5 Properties of the scheme

In [16] we prove that the vertices generated by the above
procedure converge to a surface which isC2-continuous
almost everywhere, provided that the boundary conditions
areC2-compatible (as defined in§3). The only point
where the surface is notC2-continuous is a middle-point
(corresponding to the middle vertex, which has valency
N), where the surface is onlyG1-continuous. In the
neighborhood of this extraordinary point, the surface cur-
vature is bounded.

jc
-n2

v

w
j-1c

0
2

2-

2-

1-n2

-n2

1-n2

Figure 6: The stencils for the corner rule

The limit surface interpolates the given curves, for
C0-compatible boundary conditions. ForC1-compatible
boundary conditions, the tangent plane of the limit sur-
face at the pointcj(u) is spanned by the vectorsc′j(u) and
dj(u), thus the surface satisfiesC1-boundary conditions.
Furthermore, due to the locality of this scheme, the limit
surface isC2 near the boundaries except at points where
theC2-compatibility condition is not satisfied.

The surfaces in Fig. 7 and Fig. 8 demonstrate that the
limit surface behaves moderately even in the presence of
wavy boundary conditions. The limit surfaces areC2-
continuous near the boundary except at corners where the
twist compatibility condition (1) is not satisfied.

References

[1] R. E. Barnhill, Computer aided surface representa-
tion and design, in Surfaces in CAGD, R. E. Barnhill
and W. Boehm, editors, North-Holland, Amsterdam,
1986, 1–24.

[2] E. Becker, Smoothing of shapes designed with
free-form surfaces, Computer Aided Design, 18(4),
1986, 224–232.

[3] W. Boehm, Triangular spline algorithms, Computer
Aided Geometric Design 2(1), 1985, 61–67.

4

Figure 7: A 3-sided surface patch with wavy boundary
curves

[4] W. Boehm, G. Farin, and J. Kahmann, A survey
of curves and surface methods in cagd, Computer
Aided Geometric Design 1(1), 1985, 1–60.

[5] E. Catmull and J. Clark, Recursively generated
b-spline surfaces on arbitrary topological meshes,
Computer Aided Design 10, 1978, 350–355.

[6] H. Chiokura, Localized surface interpolation
method for irregular meshes, in Advanced Com-
puter Graphics, Proc. Comp. Graphics, L. Kunii,
editor, Tokyo, Springer, Berlin, 1986.

[7] T. DeRose, M. Kass, and T. Truong, Subdivision
surfaces in character animation, inSIGGRAPH 98
Conference Proceedings, Annual Conference Series,
ACM SIGGRAPH, 1998, 85–94.

[8] D. Doo and M. Sabin, Behaviour of recursive di-
vision surface near extraordinary points, Computer
Aided Design 10, 1978, 356–360.

[9] N. Dyn, J. A. Greogory, and D. Levin, A butter-
fly subdivision scheme for surface interpolation with
tension control, ACM Transactions on Graphics 9,
1990, 160–169.

[10] J. A. Gregory, V. K. H. Lau, and J. Zhou,
Smooth parametric surfaces andN -sided patches,

Figure 8: A 5-sided surface patch with wavy boundary
curves

in Computation of Curves and Surfaces, ASI Series,
W. Dahmen, M. Gasca, and C. A. Micchelli, edi-
tors, Kluwer Academic Publishers, Dordrecht, 1990,
457–498.

[11] M. Halstead, M. Kass, and T. DeRose, Efficient, fair
interpolation using catmull-clark surfaces, in SIG-
GRAPH 93 Conference Proceedings, Annual Con-
ference series, ACM SIGGRAPH, 1993, 35–44.

[12] G. J. Herron, Triangular and multisided patch
schemes, PhD thesis, University of Utah, Salt Lake
City, UT, 1979.

[13] L. Kobbelt, T. Hesse, H. Prautzsch, and K. Schweiz-
erhof, Interpolatory subdivision on open quadrilat-
eral nets with arbitrary topology, Computer Graph-
ics Forum 15, Eurographics ’96 issue, 1996, 409–
420.

[14] A. Levin, Analysis of combined subdivision
schemes 1, Submitted, 1999, Available on the web
at the author’s home-page.

[15] A. Levin, Analysis of combined subdivision
schemes 2, In preparation, 1999, Available on the
web at the author’s home-page.

[16] A. Levin, Combined Subdivision Schemes, PhD the-
sis, Tel-Aviv university, 2000.

5

[17] A. Levin, Combined subdivision schemes for the
design of surfaces satisfying boundary conditions,
Computer Aided Geometric Design 16(5), 1999,
345-354.

[18] A. Levin, Interpolating nets of curves by smooth
subdivision surfaces, Proceedings of SIGGRAPH
99, Computer Graphics Proceedings, Annual Con-
ference Series, 1999, 57–64.

[19] C. Loop, Smooth spline surfaces based on triangles.
Master’s thesis, University of Utah, Department of
Mathematics, 1987.

[20] E. Nadler, A practical approach toN -sided patches,
presented at the Fourth SIAM Conference on Geo-
metric Design, Nashville, 1995.

[21] M. Sabin, Cubic recursive division with bounded
curvature, In Curves and Surfaces, P. J. Laurent,
A. le Mehaute, and L. L. Schumaker, editors, Aca-
demic Press, 1991, pages 411–414.

[22] M. A. Sabin, Some negative results inN -sided
patches, Computer Aided Design 18(1), 1986, 38–
44.

[23] R. F. Sarraga,G1 interpolation of generally unre-
stricted cubic B´ezier curves, Computer Aided Geo-
metric Design 4, 1987, 23–29.

[24] D. J. T. Storry and A. A. Ball, Design of anN -sided
surface patch, Computer Aided Geometric Design 6,
1989, 111–120.

[25] T. Varady, Survey and new results inn-sided patch
generation, In The Mathematics of Surfaces II,
R. Martin, editor, Oxford Univ., 1987, 203–235.

[26] T. Varady, Overlap patches: a new scheme for in-
terpolating curve networks withN -sided regions,
Computer Aided Geometric Design 8, 1991, 7–27.

[27] D. Zorin, P. Schr¨oder, and W. Sweldens, Interpolat-
ing subdivision for meshes with arbitrary topology,
Computer Graphics Proceedings (SIGGRAPH 96),
1996, 189–192.

[28] D. Zorin, P. Schr¨oder, and W. Sweldens, Interac-
tive multiresolution mesh editing, Computer Graph-
ics Proceedings (SIGGRAPH 97), 1997, 259–268.

6

Interpolating Nets Of Curves By Smooth Subdivision Surfaces

Adi Levin∗

Tel Aviv University

Abstract

A subdivision algorithm is presented for the computation and repre-
sentation of a smooth surface of arbitrary topological type interpo-
lating a given net of smooth curves. The algorithm belongs to a new
class of subdivision schemes calledcombined subdivision schemes.
These schemes can exactly interpolate a net of curves given in any
parametric representation. The surfaces generated by our algorithm
areG2 except at a finite number of points, where the surface isG1

and has bounded curvature. The algorithm is simple and easy to
implement, and is based on a variant of the famous Catmull-Clark
subdivision scheme.

1 INTRODUCTION

Subdivision schemes provide efficient algorithms for the design,
representation and processing of smooth surfaces of arbitrary topo-
logical type. Their simplicity and their multiresolution structure
make them attractive for applications in 3D surface modeling, and
in computer graphics [2, 4, 5, 6, 11, 18].

A common task in surface modeling is that of interpolating a
given net of smooth curves by a smooth surface. A typical solu-
tion, using either subdivision surfaces or NURBS surfaces (or other
kinds of spline surfaces), is based on establishing the connection
between parts of the control net which defines the surface, and cer-
tain curves on the surface. For example, the boundary curves of
NURBS surfaces are NURBS curves whose control polygon is the
boundary polygon of the NURBS surface control net. Hence, curve
interpolation conditions are translated into conditions on the control
net. Fairing techniques [5, 15, 17] can be used to calculate a control
net satisfying those conditions. Using subdivision surfaces, this can
be carried out, in general, for given nets of arbitrary topology (see
[12, 13]).

However, the curves that can be interpolated using that approach
are restricted by the representation chosen for the surface. NURBS
surfaces are suitable for interpolating NURBS curves; Doo-Sabin
surfaces can interpolate quadratic B-spline curves [12, 13]; Other
kinds of subdivision surfaces can be shown to interpolate specific
kinds of subdivision curves. Furthermore, interpolation of curves
that have small features requires a large control net, making the
fairing process slower and more complicated.

This paper presents a new subdivision scheme specially designed
for the task of interpolating nets of curves. This scheme falls into

∗adilev@math.tau.ac.il, http://www.math.tau.ac.il/ãdilev

Figure 1: Interpolation of a net of curves

the category ofcombined subdivision schemes[7, 8, 10], where the
underlying surface is represented not only by a control net, but also
by given parametric curves (or in general, given interpolation con-
ditions or boundary conditions). The scheme repeatedly applies a
subdivision operator to the control net, which becomes more and
more dense. In the limit, the vertices of the control net converge to
a smooth surface. Point-wise evaluations of the given curves par-
ticipate in every iteration of the subdivision, and the limit surface
interpolates the given curves, regardless of their representation.

Figure 1 illustrates a surface generated by our algorithm. The
surface is defined by an initial control net that consists of 11 ver-
tices, and by a net of intersecting curves, shown in green. The edges
of the control net are shown as white lines.

The combined subdivision scheme presented in this paper is
based on the famous Catmull-Clark subdivision scheme. Our al-
gorithm applies Catmull-Clark’s scheme almost everywhere on the
control net. The given curves affect the control net only locally, at
parts of the control net that are near the given curves.

The motivation behind the specific subdivision rules, and the
smoothness analysis of the scheme are presented in [9]. In the
following sections, we describe Catmull-Clark’s scheme, and we
present the details of our scheme.

2 CATMULL-CLARK’S SCHEME

Camull Clark’s subdivision scheme is defined over closed nets of
arbitrary topology, as an extension of the tensor product bi-cubic
B-spline subdivision scheme (see [1, 3]). Variants of the original
scheme were analyzed by Ball and Storry [16]. Our algorithm em-
ploys a variant of Catmull-Clark’s scheme due to Sabin [14], which
generates limit surfaces that areG2 everywhere except at a finite
number of irregular points. In the neighborhood of those points the
surface curvature is bounded. The irregular points come from ver-
tices of the original control net that have valency other than 4, and
from faces of the original control net that are not quadrilateral.

A netN = (V,E) consists of a set of verticesV and the topo-
logical information of the netE, in terms of edges and faces. A net
is closed when each edge is shared by exactly two faces.

v

f

e

v(f)

v(e)
v(v)

Figure 2: Catmull-Clark’s scheme.

The verticesV ′ of the new netN ′ = (V ′, E′) are calculated by
applying the following rules onN (see figure 2):

1. For each old facef , make a new face-vertexv(f) as the
weighted average of the old vertices off , with weightsWn

that depend on the valencyn of each vertex.

2. For each old edgee, make a new edge-vertexv(e) as the
weighted average of the old vertices ofe and the new face ver-
tices associated with the two faces originally sharinge. The
weightsWn (which are the same as the weights used in rule
1) depend on the valencyn of each vertex.

3. For each old vertexv, make a new vertex-vertexv(v) at the
point given by the following linear combination, whose coef-
ficientsαn, βn, γn depend on the valencyn of v:

αn· (the centroid of the new edge vertices of the edges meet-
ing at v) +βn· (the centroid of the new face vertices of the
faces sharing those edges) +γn · v.

The topologyE′ of the new net is calculated by the following
rule:

For each old facef and for each vertexv of f , make a new
quadrilateral face whose edges joinv(f) andv(v) to the edge
vertices of the edges off sharingv (see figure 2).

The formulas for the weightsαn, βn, γn andWn are given in
the appendix.

3 THE CONTROL NET

Our subdivision algorithm is defined both on closed nets and on
open nets. In the case of open nets, we make a distinction be-
tweenboundary verticesandinternal vertices(and betweenbound-
ary edgesandinternal edges). The control net that is given as input
to our scheme consists of vertices, edges, faces and given smooth
curves. We assume that these areC2 parametric curves. An edge
which is associated with a segment of a curve, is called ac-edge.
Both of its vertices are calledc-vertices. All the other edges and
vertices areordinary verticesandordinary edges.

In case two c-edges that share a c-vertex are associated with two
different curves, the c-vertex is associated with two curves, and we
call it an intersection vertex. Everyc-vertexis thus associated with
a parameter value on a curve, whileintersection verticesare asso-
ciated with two curves and two different parameter values. In case

An Inward corner vertexAn outward corner vertex

A boundary intersection
vertex

An internal intersection vertex A regular internal c-vertex

A regular boudnary
c-vertex

Figure 3: The different kinds of c-vertices. C-edges are marked by
bold curved lines. Usual edges are shown as thin lines.

of intersection vertices, we require that the two curves intersect at
those parameter values.

Every c-edgecontains a pointer to a curvec, and to a segment
on that curve designated by a parameter interval[u0, u1]. The ver-
tices of that edge are associated with the pointsc(u0) andc(u1)
respectively. We require that in the original control net, the param-
eter intervals be all of constant length for all the c-edges associated
with a single curvec, namely|u1 − u0| = const. In order to fulfill
this requirement, the c-vertices along a curvec can be chosen to be
evenly spaced with respect to the parameterization of the curvec,
or the curvec can be reparameterized appropriately such that the
c-vertices ofc are evenly spaced with respect to the new parameter-
ization.

The restrictions on the control net are that every boundary edge
is a c-edge (i.e. the given net of curves contains all the boundary
curves of the surface), and that we allow only the following types
of c-verticesto exist in the net (see figure 3):

A regular internal c-vertex A c-vertex with four edges emanat-
ing from it: Two c-edges that are associated with the same
curve, and two ordinary edges from opposite sides of the
curve.

A regular boundary c-vertex A c-vertex with 3 edges emanating
from it: Two boundary edges that are associated with the same
curve, and one other ordinary internal edge.

An internal intersection vertex A c-vertex with 4 edges emanat-
ing from it: Two c-edges that are associated with the same
curve, and two other c-edges that are associated with a second
curve, from opposite sides of the first curve.

A boundary intersection vertex A c-vertex with 3 edges emanat-
ing from it: Two c-edges that are associated with the same
curve, and another c-edge associated with a different curve.

An inward corner vertex A c-vertex with 2 c-edges emanating
from it, each associated with a different curve.

An outward corner vertex A c-vertex with 4 edges emanating
from it: Two consequent c-edges that are associated with two
different curves and two ordinary edges.

In particular, we do not handle more than two curves intersecting
at one point.

In our algorithm, there is an essential difference between c-
vertices and ordinary vertices: While the locationp(v) of ordinary
vertices of the original control net is determined by the designer,
the location of c-vertices is calculated in a preprocessing stage of
the algorithm (the exact procedure is described in§4).

Every c-vertexv which is associated with a parameter valueu on
the curvec, has associated with it a three-dimensional vectord(v),
which determines the second partial derivative of the limit surface
at the pointc(u) in the cross-curve direction (The differentiation is
made with respect to a local parameterization that is induced by the
subdivision process. The cross-curve direction at a c-vertexv is the
limit direction of the ordinary edge emanating forv). We call the
valued(v) the cross-curve second derivativeassociated with the
vertexv.

Every intersection vertexv has associated with it two three-
dimensional vectorsd1(v), d2(v) that correspond to the two curves
c1, c2 that are associated withv. At the intersection between two
curves, the surface second derivatives in the two curve directions
are determined by the curves, therefore the user does not have con-
trol over the cross-curve second derivatives there. Their initializa-
tion procedure is described below.

For c-vertices that are not intersection vertices, the vectorsd(v)
in the initial control net are determined by the designer and they
affect the shape of the limit surface. Several ways of initializing the
valuesd(v) are discussed in§5.

v

c(u)1
c(u)2

c(u)
v

c(u)1
c(u)2

Figure 4: For each c-vertexv that is associated with a curvec we
define the second difference∆2c(v).

Throughout the scheme we apply second difference operators to
the given curves. Letv denote a c-vertex associated with a curve
c. We define thesecond difference ofc at v, denoted by∆2c(v) as
follows (see figure 4): Ifv is associated with the end of the curve
c, then there is a single c-edge emanating fromv that is associated
with the parameter interval[u1, u2] on c. In this case

∆2c(v) = 4c(u1)− 8c
(
u1 + u2

2

)
+ 4c(u2).

In case there are two c-edges emanating fromv that are associated
with the parameter intervals[u1, u], [u, u2] on c, we define

∆2c(v) = c(u1)− 2c(u) + c(u2).

The valuesd1(v), d2(v) at the intersection vertexv which is as-
sociated with two curvesc1 andc2, are initialized by

d1(v) = ∆2c1(v)

d2(v) = ∆2c2(v). (1)

We say thatd1(v) is the cross-curve second derivative associated
with v with respect to the curvec2. Similarly, d2(v) is the cross-
curve second derivative associated withv with respect to the curve
c1.

4 THE COMBINED SCHEME

In the preprocessing stage of our algorithm, we calculatep(v) for
every c-vertex of the original control net, according to the following
rules: In casev is an intersection vertex which is associated with the
point c(u), its location is given by

p(v) = c(u)− d1(v) + d2(v)

6
. (2)

In casev is not an intersection vertex, its location is given by

p(v) = c(u)− ∆2c(v) + d(v)

6
. (3)

From (2) and (3) it is clear why the c-vertices do not necessarily
lie on the given curves. Notice, for example, in figure 8 how the
boundary vertices of the original control net are ’pushed away’ from
the given boundary curve, due to the term∆2c(v) in (3).

Each iteration of the subdivision algorithm consists of the fol-
lowing steps: First, Catmull-Clark’s scheme as described in§2 is
used to calculate the new ordinary vertices. Next, the new c-vertices
are calculated (this includes all the boundary vertices). Finally, we
perform local ’corrections’ on new ordinary vertices that are neigh-
bors of c-vertices.

4.1 Calculation Of Ordinary Vertices

Step 1 of the combined scheme creates the new control net topol-
ogy, and calculates all the new ordinary vertices, by applying
Catmull-Clark’s scheme. Since Catmull-Clark’s scheme was de-
signed for closed nets, we adapt it a little bit near the surface bound-
aries, by considering the boundary vertices to have valency 4 when
calculating new ordinary vertices that are affected by the boundary
vertices.

4.2 Calculation Of C-Vertices

In step 2, the data associated with the new c-vertices is calculated,
by the following procedure:

Let e denote a c-edge on the old control net, which corresponds
to the parameter interval[u0, u1] of the curvec. Let v0, v1 denote
the vertices ofe. We associate the vertexv(e) with c

(
u0+u1

2

)
, and

we calculate the new cross-curve second derivative forv(e) by the
following simple rule:

d(v(e)) =
d(v0) + d(v1)

8
. (4)

In casev0 or v1 are intersection vertices (and therefore, contain two
cross-curve second derivative vectorsd1 andd2), the one taken in
(4) should be the cross-curve second derivative with respect to the
curvec.

Let v denote a c-vertex on the old control net. We associatev(v)
with the same curve and the same parameter value on that curve,
asv had. In casev is an intersection vertex, we setd1(v(v)) and
d2(v(v)) by (1). Otherwise, the new cross-curve second derivative
atv(v) is inherited fromv by the following rule:

d(v(v)) =
d(v)

4
. (5)

v

v

v

1

2

Figure 5: Local corrections near a regular internal c-vertex

v5

v
v3

v2

v4v6

v

v1

7 c
c1

2

Figure 6: Local corrections near an outward corner.

Step 2 is completed by calculating the location of every c-vertex
using (2) and (3).

As the subdivision iterations proceed, the valuesd(v) and
∆2C(v) decay at a rate of4−k, wherek is the level of subdivision.
Therefore the c-vertices converge to points on the curves, which
provides the interpolation property (see figure 8).

4.3 Local Corrections Near C-Vertices

Step 3 performs local modifications to the resulting control net near
regular internal c-vertices, and near outward corners. Ordinary ver-
tices that are neighbors of regular internal c-vertices are recalcu-
lated by the following rule: Letv denote a regular internal c-vertex,
and letv1 andv2 denote its two neighboring ordinary vertices (see
figure 5). Letp(v1), p(v2) denote the locations ofv1 andv2 that
resulted from step 1 of the algorithm. Letp(v) denote the location
of v that resulted from step 2 of the algorithm. We calculate the
correctedlocationsp̂(v1), p̂(v2) by

p̂(v1) = p(v) +
d(v)

2
+
p(v1)− p(v2)

2
,

p̂(v2) = p(v) +
d(v)

2
+
p(v2)− p(v1)

2
. (6)

A different correction rule is applied near outward corner ver-
tices. Letv denote an outward corner vertex, and letv1, . . . , v7

denote its neighboring vertices (see figure 6). The vertexv corre-
sponds to the curvec1 at the parameter valueu1, and to the curve
c2 at the parameter valueu2. In particular,c1(u1) = c2(u2).

Let p(v), p(v1), . . . , p(v7) denote the locations ofv, v1, . . . , v7

that resulted from steps 1 and 2 of the algorithm. Leta be the
vectora = 1

4 (1,−1,−1, 2,−1,−1, 1). We calculate the corrected

locations forv2, . . . , v6 by the following rules:

t =

7∑
i=1

aip(vi),

p̂(v3) =
1

3
p(v3) +

2

3

(
2p(v)− p(v7) + ∆2c1(v)

)
,

p̂(v5) =
1

3
p(v5) +

2

3

(
2p(v)− p(v1) + ∆2c2(v)

)
.

p̂(v2) =
1

3
p(v2) +

2

3
(p̂(v3) + p(v1)− p(v)− t)

p̂(v6) =
1

3
p(v6) +

2

3
(p̂(v5) + p(v7)− p(v)− t)

p̂(v4) =
1

3
p(v4) +

2

3
(p̂(v5) + p̂(v3)− p(v) + t) (7)

There are cases when a single vertex has more than one cor-
rected location, for example an ordinary vertex which is a neighbor
of several c-vertices. In these cases we calculate all the corrected
locations for such a vertex, using (6) or (7) and define the new lo-
cation of that vertex to be the arithmetic mean of all the corrected
locations. Situations like these occur frequently at the first level of
subdivision. The only possibility for a vertex to have more than one
corrected location after the first subdivision iteration, is near inter-
section vertices; The vertex always has two corrected locations, and
its new location is taken to be their arithmetic mean.

5 DISCUSSION

The cross-curve second derivativesd(v) of the original control net
as determined by the designer, play an important role in determin-
ing the shape of the limit surface. As part of constructing the initial
control net, a 3D vectord(v) should be initialized by the designer,
for everyregular internal c-vertexand for everyregular boundary
c-vertex.

In case the initial control net contains only intersection vertices
(such as the control net in figure 1), (1) determines all the cross-
curve second derivatives. Otherwise they can be initialized by any
kind of heuristic method.

We suggest the following heuristic approach to initialized(v)
in casev is a regular internal c-vertex: Letv be associated with
the curvec at the parameter valueu, and letv1, v2 denote the two
ordinary vertices that are neighbors ofv (see figure 5). It seems
reasonable to calculated(v) such that

p(v1) + p(v2)− 2p(v) = d(v),

because we know that this relation holds in the limit. Sincep(v) it-
self depends ond(v) according to (3), we get the following formula
for d(v):

d(v) =
3

2
(p(v1) + p(v2))− 3c(u) +

1

2
∆2c(v). (8)

In casev is a regular boundary c-vertex, which lies between
two boundary intersection verticesv1, v2 (see figure 7), one should
probably consider the second derivatives atv1, v2 when determin-
ing d(v). The following heuristic rule can be used:

d(v) =
∆2c1(v) + ∆2c2(v)

2
, (9)

wherev1, v2 are associated withc1(u1) andc2(u2) respectively.
The are many cases when the choiced(v) = 0 generates the

nicest shapes whenv is a regular boundary c-vertex. Recall that the
natural interpolating cubic spline has zero second derivative at its
ends.

v

v

v 12

c

c

2

1

Figure 7: A regular boundary c-vertex between two boundary inter-
section vertices

Other ways of determiningd(v) may employ variational princi-
ples. One can choosed(v) such as to minimize a certain fairness
measure of the entire surface.

6 CONCLUSIONS

With combined subdivision schemesthat extend the notion of the
known subdivision schemes, it is simple to generate surfaces of ar-
bitrary topological type that interpolate nets of curves given in any
parametric representation. The scheme presented in this paper is
easy to implement and generates nice looking and almostG2 sur-
faces, provided that the given curves areC2. These surfaces are
suitable for machining purposes since they have bounded curvature.

The current algorithm is restricted to nets of curves where no
more than two curves intersect at one point, which is a consider-
able restriction for many applications. However, we believe that the
basic idea of applying subdivision rules that explicitly involve the
given curve data, and the general theory of combined subdivision
schemes can be extended to handle nets where three or more curves
intersect at one point, as well as nets with irregular c-vertices.

The proposed scheme can work even if the given curves are not
C2, since it only uses point-wise evaluations. In case the curves are
C1, for example, the limit surface will be onlyG1. Moreover, in
case a given curve has a local ’fault’, and otherwise it isC2, the
local ’fault’ will have only a local effect on the limit surface.

Creases in the limit surface can be introduced along a given curve
by avoiding the corrections made to vertices near that curve in step
3 of the subdivision. This causes the curve to act as a boundary
curve to the surface on both sides of the curve.

Concerning the computation time, notice that most of the compu-
tational work in each iteration is spent in the first step of the subdi-
vision iteration, namely, in applying Catmull-Clark’s scheme. The
local corrections are very simple, and apply only near c-vertices
(whose number, after a few iterations, is much lower than that of
the ordinary vertices).

Using the analysis tools we have developed in [7, 8], other com-
bined subdivision schemes can be constructed to perform other
tasks, such as the generation of surfaces that satisfy certain bound-
ary conditions, including tangent plane conditions [10], and even
curvature continuity conditions.

Figures 8-19 show several surfaces created by our algorithm.

Acknowledgement

This work is sponsored by the Israeli Ministry of Science. I thank
Nira Dyn for her guidance and many helpful comments, and Peter
Schröder for his constant encouragement and advice.

References

[1] E. Catmull and J. Clark. Recursively generated b-spline sur-
faces on arbitrary topological meshes.Computer Aided De-
sign, 10:350–355, 1978.

[2] T. DeRose, M. Kass, and T. Truong. Subdivision surfaces in
character animation. InSIGGRAPH 98 Conference Proceed-
ings, Annual Conference Series, pages 85–94. ACM SIG-
GRAPH, 1998.

[3] D. Doo and M. Sabin. Behaviour of recursive division surface
near extraordinary points.Computer Aided Design, 10:356–
360, 1978.

[4] N. Dyn, J. A. Greogory, and D. Levin. A butterfly subdivision
scheme for surface interpolation with tension control.ACM
Transactions on Graphics, 9:160–169, 1990.

[5] M. Halstead, M. Kass, and T. DeRose. Efficient, fair inter-
polation using catmull-clark sutfaces. InSIGGRAPH 93 Con-
ference Proceedings, Annual Conference Series, pages 35–44.
ACM SIGGRAPH, 1993.

[6] L. Kobbelt, T. Hesse, H. Prautzsch, and K. Schweizerhof.
Interpolatory subdivision on open quadrilateral nets with ar-
bitrary topology. Computer Graphics Forum, 15:409–420,
1996. Eurographics ’96 issue.

[7] A. Levin. Analysis of combined subdivision schemes 1. in
preparation, available on the web at
http://www.math.tau.ac.il/˜ adilev, 1999.

[8] A. Levin. Analysis of combined subdivision schemes 2. in
preparation, available on the web at
http://www.math.tau.ac.il/˜ adilev, 1999.

[9] A. Levin. Analysis of combined subdivision schemes for the
interpoation of curves. SIGGRAPH’99 CDROM Proceed-
ings, 1999.

[10] A. Levin. Combined subdivision schemes for the design of
surfaces satisfying boundary conditions. To appear in CAGD,
1999.

[11] C. Loop. Smooth spline surfaces based on triangles. Master’s
thesis, University of Utah, Department of Mathematics, 1987.

[12] A. H. Nasri. Curve interpolation in recursively generated b-
spline surfaces over arbitrary topology.Computer Aided Ge-
ometric Design, 14:No 1, 1997.

[13] A. H. Nasri. Interpolation of open curves by recursive sub-
division surface. In T. Goodman and R. Martin, editors,The
Mathematics of Surfaces VII, pages 173–188. Information Ge-
ometers, 1997.

[14] M. Sabin. Cubic recursive division with bounded curvature.
In P. J. Laurent, A. le Mehaute, and L. L. Schumaker, editors,
Curves and Surfaces, pages 411–414. Academic Press, 1991.

[15] J. Schweitzer.Analysis and Applications of Subdivision Sur-
faces. PhD thesis, University of Washington, Seattle, 1996.

[16] D. J. T. Storry and A. A. Ball. Design of an n-sided surface
patch.Computer Aided Geometric Design, 6:111–120, 1989.

[17] G. Taubin. A signal processing approach to fair surface de-
sign. In Robert Cook, editor,SIGGRAPH 95 Conference Pro-
ceedings, Annual Conference Series, pages 351–358. ACM
SIGGRAPH, Addison Wesley, August 1995. held in Los An-
geles, California, 06-11 August 1995.

[18] D. Zorin, P. Schr¨oder, and W. Sweldens. Interpolating subdi-
vision for meshes with arbitrary topology.Computer Graph-
ics Proceedings (SIGGRAPH 96), pages 189–192, 1996.

Appendix

We present the procedure for calculating the weights mentioned in
§2, as formulated by Sabin in [14].

Let n > 2 denote a vertex valency. Letk := cos(π/n). Let x
be the unique real root of

x3 + (4k2 − 3)x− 2k = 0,

satisfyingx > 1. Then

Wn = x2 + 2kx− 3, (10)

αn = 1,

γn =
kx+ 2k2 − 1

x2(kx+ 1)
,

βn = −γn.

n Wn γn

3 1.23606797749979. . . 0.06524758424985. . .
4 1 0.25
5 0.71850240323974. . . 0.40198344690335. . .
6 0.52233339335931. . . 0.52342327689253. . .
7 0.39184256502794. . . 0.61703187134796. . .

Table 1: The weights used in Sabin’s variant of Catmull-Clark’s
subdivision scheme

The original paper by Sabin [14] contains a mistake: the for-
mulas for the parametersα, β andγ that appear in§4 there, are
β := 1, γ := −α.

The weightsWn andγn for n = 3, . . . , 7 are given in table 1.

Figure 8: Three iterations of the algorithm. We have chosen
d(v) = 0 for every c-vertexv, which results in parabolic points
on the surface boundary.

Figure 9: The limit surface of the iterations shown in figure 8

Figure 10: A 5-sided surface generated from a simple control net,
with zerod(v) for all c-verticesv. Our algorithm easily fills arbi-
trary N-sided patches.

v1
v2

Figure 11: A surface with an outward corner. We used (8) to calcu-
lated(v2), and setd(v1) = 0.

Figure 12: A surface with non smooth boundary curves, and zero
cross-curve second derivatives

Figure 13: A surface with non smooth boundary curves, and zero
cross-curve second derivatives

Figure 14: A closed surface. The cross curve second derivatives for
regular internal c-vertices were calculated using (9).

Figure 15: A Torus-like surface, from a net of circles.

Figure 16: Introducing small perturbations to the given curves re-
sults in small and local perturbations of the limit surface. Notice
that the original control net does not contain the information of
the small perturbations. These come directly from the data of the
curves.

Figure 17: Small perturbations to the given curves result in small
and local deformation of the limit surface.

Figure 18: A surface constructed from two given sections. The
cross curve second derivatives for the regular internal c-vertices
were calculated using (8). For boundary vertices, we tookd(v) =
0.

Figure 19: the same surface as in figure 18 after introducing small
perturbations in the section curves.

Chapter 7

Interpolatory Subdivision for Quad

Meshes

Author: Leif Kobbelt

 Interpolatory Subdivison for Quad-Meshes

A simple interpolatory subdivision scheme for quadrilateral nets
with arbitrary topology is presented which generates C1 surfaces
in the limit. The scheme satisfies important requirements for prac-
tical applications in computer graphics and engineering. These re-
quirements include the necessity to generate smooth surfaces with
local creases and cusps. The scheme can be applied to open nets
in which case it generates boundary curves that allow a C0-join of
several subdivision patches. Due to the local support of the scheme,
adaptive refinement strategies can be applied. We present a simple
device to preserve the consistency of such adaptively refined nets.

The original paper has been published in:

L. Kobbelt
Interpolatory Subdivision on Open Quadri-
lateral Nets with Arbitrary Topology,
Computer Graphics Forum 15 (1996), Eu-
rographics ’96 issue, pp. 409–420

3.1 Introduction

The problem we address in this paper is the generation of smooth
interpolating surfaces of arbitrary topological type in the context of
practical applications. Such applications range from the design of
free-form surfaces and scattered data interpolation to high quality
rendering and mesh generation, e.g., in finite element analysis. The
standard set-up for this problem is usually given in a form equiva-
lent to the following:

A net N= (V;F) representing the input is to be mapped to are-
fined net N0 = (V 0;F 0) which is required to be a sufficiently close
approximation of a smooth surface. In this notation the setsV and
V 0 contain thedata pointspi;p0i 2 IR3 of the input or output respec-
tively. The setsF andF 0 represent thetopological informationof
the nets. The elements ofF andF 0 are finite sequences of points
sk �V or s0k �V 0 each of which enumerates the corners of one not
necessarily planarfaceof a net.

If all elementssk 2 F have length four thenN is called aquadri-
lateral net. To achieve interpolation of the given data,V � V 0 is
required. Due to the geometric background of the problem we as-
sumeN to befeasible, i.e., at each pointpi there exists a planeTi
such that the projection of the faces meeting atpi ontoTi is injec-
tive. A net isclosedif every edge is part of exactly two faces. In
opennets, boundary edges occur which belong to one face only.

There are two major ‘schools’ for computingN0 from a givenN.
The first or classic way of doing this is to explicitely find a collec-
tion of local (piecewise polynomial) parametrizations (patches) cor-
responding to the faces ofN. If these patches smoothly join at com-
mon boundaries they form an overall smooth patch complex. The
netN0 is then obtained by sampling each patch on a sufficiently fine
grid. The most important step in this approach is to find smoothly
joining patches which represent a surface of arbitrary topology. A
lot of work has been done in this field, e.g., [16], [15], [17] . . .

Another way to generateN0 is to define arefinement operator
S which directly maps nets to nets without constructing an explicit
parametrization of a surface. Such an operator performs both, a
topological refinement of the net by splitting the faces and age-
ometric refinement by determining the position of the new points
in order to reduce the angles between adjacent faces (smoothing).
By iteratively applyingS one produces a sequence of netsNi with
N0 = N andNi+1 = S Ni . If S has certain properties then the se-
quenceS i N converges to a smooth limiting surface and we can set
N0 := Sk N for some sufficiently largek. Algorithms of this kind
are proposed in [2], [4], [14], [7], [10], and [11]. All these schemes

are either non-interpolatory or defined ontriangular nets which is
not appropriate for some engineering applications.

The scheme which we present here is astationary refinement
scheme[9], [3], i.e., the rules to compute the positions of the new
points use simple affine combinations of points from the unrefined
net. The termstationaryimplies that these rules are the same on
every refinement level. They are derived from a modification of the
well-known four-point scheme [6]. This scheme refines polgons by
S : (pi) 7! (p0i) with

p02i := pi

p02i+1 :=
8+ω

16
(pi +pi+1)� ω

16
(pi�1+pi+2)

(11)

where 0< ω < 2(
p

5�1) is sufficient to ensure convergence to a
smooth limiting curve [8]. The standard value isω = 1 for which
the scheme has cubic precision. In order to minimize the number of
special cases, we restrict ourselves to the refinement of quadrilateral
nets. The faces are split as shown in Fig. 10 and hence, to complete
the definition of the operatorS , we need rules for new points corre-
sponding to edges and/or faces of the unrefined net. To generalize
the algorithm for interpolating arbitrary nets, a precomputing step
is needed (cf. Sect. 3.2).

Figure 10: The refinement operator splits one quadrilateral face into
four. The new vertices can be associated with the edges and faces
of the unrefined net. All new vertices have valency four.

The major advantages that this scheme offers, are that it has the
interpolation propertyandworks on quadrilateral nets. This seems
to be most appropriate for engineering applications (compared to
non-interpolatory schemes or triangular nets), e.g., in finite element
analysis since quadrilateral (bilinear) elements are less stiff than tri-
angular (linear) elements [19]. The scheme provides the maximum
flexibility since it can be applied toopennets witharbitrary topol-
ogy. It produces smooth surfaces and yields the possibility to gener-
ate local creases and cusps. Since the support of the scheme is local,
adaptive refinement strategies can be applied. We present a tech-
nique to keep adaptively refined netsC0-consistent (cf. Sect. 3.6)
and shortly describe an appropriate data structure for the implemen-
tation of the algorithm.

3.2 Precomputing: Conversion to Quadrilateral
Nets

It is a fairly simple task to convert a given arbitrary netÑ into a
quadrilateral netN. One straightforward solution is to apply one
singleCatmull-Clark-typesplit C [2] to every face (cf. Fig. 11).
This split operation divides everyn-sided face inton quadrilaterals
and needs the position of newly computedface-pointsand edge-
points to be well-defined. The vertices of̃N remain unchanged.

The number of faces in the modified netN equals the sum of the
lengths of all sequencessk 2 eF .

The number of faces in the quadrilateralized netN can be re-
duced by half if the netÑ is closed, by not applyingC but
rather its (topological) square root

p
C , i.e., a refinement operator

whose double application is equivalent to one application ofC (cf.
Fig. 11). For this split, only newface-pointshave to be computed.
For open nets, the

p
C -split modifies the boundary polygon in a

non-intuitive way. Hence, one would have to handle several special
cases with boundary triangles if one is interested in a well-behaved
boundary curve of the resulting surface.

3.3 Subdivision Rules for Closed Nets with Arbi-
trary Topology

The topological structure of any quadrilateral net after several ap-
plications of a uniform refinement operator consists of large regu-
lar regions with isolated singularities which correspond to the non-
regular vertices of the initial net (cf. Fig. 12). Bytopological reg-
ularity we mean a tensor product structure with four faces meeting
at every vertex. The natural way to define refinement operators for
quadrilateral nets is therefore to modify a tensor product scheme
such that special rules for the vicinity of non-regular vertices are
found. In this paper we will use the interpolatory four-point scheme
[6] in its tensor product version as the basis for the modification.

Figure 12: Isolated singularities in the refined net.

Consider a portion of a regular quadrilateral net with vertices
pi; j . The vertices can be indexed locally such that each face is rep-
resented by a sequencesi; j = fpi; j ;pi+1; j ;pi+1; j+1;pi; j+1g. The
points p0i; j of the refined net can be classified into three disjunct
groups. Thevertex-pointsp02i;2 j := pi; j are fixed due to the interpo-
lation requirement. Theedge-pointsp02i+1;2 j andp02 j;2i+1 are com-
puted by applying the four-point rule (11) in the corresponding grid
direction, e.g.,

p02i+1;2 j :=
8+ω

16
(pi; j +pi+1; j)� ω

16
(pi�1; j +pi+2; j): (12)

Finally, the face-points p02i+1;2 j+1 are computed by apply-
ing the four-point rule to either four consecutive edge-points
p02i+1;2 j�2; : : : ;p

0
2i+1;2 j+4 or to p02i�2;2 j+1; : : : ;p

0
2i+4;2 j+1. The re-

sulting weight coefficient masks for these rules are shown in
Fig. 13. The symmetry of theface-mask proves the equivalence
of both alternatives to compute the face-points. From the differen-
tiability of the limiting curves generated by the four-point scheme,
the smoothness of the limiting surfaces generated by infinitely re-
fining a regular quadrilateral net, follows immediately. This is a
simple tensor product argument.

For the refinement of irregular quadrilateral nets, i.e., nets which
include some vertices where other than four faces meet, a consistent
indexing which allows the application of the above rules is impos-
sible. If other than four edges meet at one vertex, it is not clear how
to choose the four points to which one can apply the above rule

α

α

β

β

σ µ

ν

σ σ

σµ

µ

µ

µ

µ

ν

ν ν

µ µ

Face−Point:Edge−point:

Figure 13: Subdivision masks for regular regions withα =� ω
16,

β = 8+ω
16 andσ = α2, µ= αβ, ν = β2.

for computing the edge-points. However, once all the edge-points
are known, there always are exactly two possibilities to choose four
consecutive edge-points when computing a certain face-point since
the net is quadrilateral. It is an important property of tensor product
schemes on regular nets that both possibilities lead to the same re-
sult (commuting univariant refinement operators). In order to mod-
ify the tensor product scheme as little as possible while generalizing
it to be applicable for nets with arbitrary topology, we want to con-
serve this property. Hence, we will propose a subdivision scheme
which only needsoneadditional rule: the one for computing edge-
points corresponding to edges adjacent to a non-regular vertex. All
other edge-points and all face-points are computed by the applica-
tion of the original four-point scheme and the additional rule will be
such that both possibilities for the face-points yield the same result.

We use the notation of Fig. 14 for points in the neighborhood of
a singular vertexp. The indexi is taken to bemodulo nwheren is
the number of edges meeting atp. Applying the original four-point
rule wherever possible leaves only the pointsxi andyi undefined.
If we require that both possible ways to computeyi by applying the
standard four-point rule to succeeding edge-points lead to the same
result, we get a dependence relatingxi+1 to xi

xi+1 = xi +
w
8
(hi�hi+1)+

w2

8(4+w)
(k i�2�k i+2)+

w
8
(l i+2� l i�1)+

4+w
8

(l i+1� l i);

which can be considered as compatibility condition. In the regular
case, this condition is satisfied for any tensor product rule. The
compatibility uniquely defines the cyclic differences4xi = xi+1�
xi which sum to zero (telescoping sums). Hence, there always exists
a solution and even one degree of freedom is left for the definition
of thexi .

y

i

i i

i+1

i+1
i+2

i+2

i−1

i−1

i−2

i

i+1

i

k

h

l k

lxl
i+1h

k

x

l
k

k

p

Figure 14: Notation for vertices around a singular vertexP.

The pointsxi will be computed by rotated versions of the same
subdivision mask. Thus, the vicinity ofp will become more and
more symmetric while refinement proceeds. Hence, the distance

N C N
p

C N

Figure 11: Transformation of an arbitrary netÑ into a quadrilateral netN by one Catmull-Clark-splitC (middle) or by its square root (right,
for closed nets).

betweenp and the center of gravity of thexi will be a good mea-
sure for the roughness of the net nearp and the rate by which this
distance tends to zero can be understood as the ‘smoothing rate’.
The center of gravity in the regular (n= 4) case is:

1
n

n�1

∑
i=0

xi =
4+w

8
p+

1
2n

n�1

∑
i=0

l i � w
8n

n�1

∑
i=0

hi : (13)

In the non-regular case, we have

1
n

n�1

∑
i=0

xi = x j +
1
n

n�2

∑
i=0

(n�1� i)4xi+ j ;

j 2 f0; : : : ;n�1g:
(14)

Combining common terms in the telescoping sum and equating the
right hand sides of (13) and (14) leads to

x j =�w
8

h j +
4+w

8
l j +

4+w
8

p� w
8

v j ; (15)

where we define thevirtual point

v j :=
4
n

n�1

∑
i=0

l i� (l j�1+ l j + l j+1)+

w
4+w

(k j�2+k j�1+k j +k j+1)�

4w
(4+w)n

n�1

∑
i=0

k i :

(16)

Hence, thex j can be computed by applying (11) to the four points
h j , l j , p andv j . The formula also holds in the casen= 4 wherev j =
l j+2. Such a virtual pointv j is defined for every edge and both of
its endpoints. Hence to refine an edge which connects two singular
verticesp1 andp2, we first compute the two virtual pointsv1 and
v2 and then apply (11) tov1, p1, p2 andv2. If all edge-pointsx j are
known, the refinement operation can be completed by computing
the face-pointsy j . These are well defined since the auxillary edge-
point rule is constructed such that both possible ways lead to the
same result.

3.4 Convergence Analysis

The subdivision scheme proposed in the last section is a station-
ary scheme and thus the convergence criteria of [1] and [18] can be

applied. In the regular regions of the net (which enlarge during re-
finement), the smoothness of the limiting surface immediately fol-
lows from the smoothness of the curves generated by the univariate
four-point scheme. Hence to complete the convergence analysis,
it is sufficient to look at the vicinities of the finitely many isolated
singular vertices (cf. Fig. 12).

Let p0; : : : ;pk be the points from a fixed neighborhood of the sin-
gular vertexp0. The size of the considered neighborhood depends
on the support of the underlying tensor product scheme and con-
tains 5 ‘rings’ of faces aroundp0 in our case. The collection of
all rules to compute the new pointsp00; : : : ;p

0
k of the same ‘scaled’

(5-layer-) neighborhood ofp0 = p00 in the refined net can be repre-
sented by a block-circulant matrixA such that(p0i)i = A (pi)i . This
matrix is called therefinement matrix. After [1] and [18] the conver-
gence analysis can be reduced to the analysis of the eigenstructure
of A. For the limiting surface to have a unique tangent plane atp0
it is sufficient that the leading eigenvalues ofA satisfy

λ1 = 1; 1> λ2 = λ3; jλ2j> jλi j;8i � 4:

Table 2 shows theses eigenvalues of the refinement matrixA for ver-
tices withn adjacent edges in the standard caseω = 1. The compu-
tation of the spectrum can be done by exploiting the block-circulant
structure ofA. We omit the details here, because the dimension of
A is k�k with k= 30n+1.

n λ1 λ2 λ3 λi�4 �
3 1:0 0.42633 0.42633 0.25
4 1:0 0.5 0.5 0.25
5 1:0 0.53794 0.53794 0.36193
6 1:0 0.55968 0.55968 0.42633
7 1:0 0.5732 0.5732 0.46972
8 1:0 0.58213 0.58213 0.5
9 1:0 0.58834 0.58834 0.52180

Table 2: Leading eigenvalues of the subdivision matrix

In addition to a uniquely defined tangent plane we also have to
have local injectivity in order to guarantee the regularity of the sur-
face. This can be checked by looking at the natural parametrization
of the surface atp0 which is spanned by the eigenvectors ofA cor-
responding to the subdominant eigenvaluesλ2 andλ3. The injec-
tivity of this parametrization is a sufficient condition. The details
can be found in [18]. Fig. 15 shows meshes of ‘isolines’ of these
characteristic maps which are well-behaved.

Figure 15: Sketch of the characteristic maps in the neighborhood of singular vertices withn= 3;5; : : : ;9.

3.5 Boundary Curves

If a subdivision scheme is supposed to be used in practical mod-
eling or reconstruction applications, it must provide features that
allow the definition of creases and cusps [12]. These requirements
can be satisfied if the scheme includes special rules for the refine-
ment ofopennets which yield well-behaved boundary curves that
interpolate the boundary polygons of the given net. Having such
a scheme, creases can be modeled by joining two separate sub-
division surfaces along a common boundary curve and cusps re-
sult from a topological hole in the initial net which geometrically
shrinks to a single point, i.e., a faces= fp1; : : : ;png of a given net
is deleted to generate a hole and its vertices are moved to the same
locationpi = p (cf. Fig. 16).

To allow aC0-join between two subdivision patches whose ini-
tially given nets have a common boundary polygon, it is necessary
that their limiting boundary curves only depend on these common
points, i.e., they must not depend on any interior point. For our
scheme, we achieve this by simply applying the original univariate
four-point rule to boundary polygons. Thus, the boundary curve
of the limiting surface is exactly the four-point curve which is de-
fined by the initial boundary polygon. Further, it is necessary to not
only generatesmoothboundary curves but rather to allowpiecewise
smooth boundary curves, e.g., in cases where more than two sub-
division patches meet at a common point. In this case we have to
cut the boundary polygon into several segments by marking some
vertices on the boundary as beingcorner vertices. Each segment
between two corner vertices is then treated separately as an open
polygon.

When dealing with open polygons, it is not possible to refine the
first or the last edge by the original four-point scheme since rule
(11) requires a well-defined 2-neighborhood. Therefore, we have
to find another rule for the pointpm+1

1 which subdivides the edge
pm

0 pm
1 . We define anextrapolatedpoint pm

�1 := 2pm
0 � pm

1 . The

point pm+1
1 then results from the application of (11) to the sub-

polygonpm
�1;p

m
0 ;p

m
1 ;p

m
2 . Obviously, this additional rule can be ex-

pressed as a stationary linear combination of points from the non-
extrapolated open polygon:

pm+1
1 :=

8�w
16

pm
0 +

8+2w
16

pm
1 �

w
16

pm
2 (17)

The rule to compute the pointpm+1
2n�1 subdividing the last edge

pm
n�1pm

n is defined analogously.
This modification of the original scheme does not affect the con-

vergence to a continuously differentiable limit, because the esti-
mates for the contraction rate of the maximum second forward dif-
ference used in the convergence proof of [6] remain valid. This
is obvious since the extrapolation only adds the zero component
42pm

�1 to the sequence of second order forward differences. The
main convergence criterion of [13] also applies.

It remains to define refinement rules for inner edges of the net
which have one endpoint on the boundary and for faces including
at least one boundary vertex. To obtain these rules we use the same
heuristic as in the univariate case. We extrapolate the unrefined
net over every boundary edge to get an additional layer of faces.
When computing the egde- and face-points refining the original net
by the rules from Sect. 3.3, these additional points can be used.
To complete the refinement step, the extrapolated faces are finally
deleted.

Let q1; : : : ;qr be theinner points of the net which are connected
to the boundary pointp then the extrapolated point will be

p� := 2p� 1
r

r

∑
i=1

qi :

If the boundary pointp belongs to the faces= fp;q;u;vg and is
not connected to any inner vertex then we definep� := 2p� u.
For every boundary edgepq we add the extrapolated faces� =
fp;q;q�;p�g.

Again, the tangent-plane continuity of the resulting limiting sur-
face can be proved by the sufficient criteria of [1] and [18]. This
is obvious since for a fixed number of interior edges adjacent to
some boundary vertexp, the refinement of the extrapolated net can
be rewritten as a set of stationary refinement rules which define
the new points in the vicinity ofp as linear combinations of points
from the non-extrapolated net. However the refinement matrix is
no longer block-circulant.

At every surface point lying on the boundary of a tangent plane
continuous surface, one tangent direction is determined by the tan-
gent of the boundary curve (which in this case is a four-point curve
that does not depend on inner vertices). On boundaries, we can
therefore drop the requirement of [18] that the leading eigenval-
ues of the refinement matrix have to be equal. This symmetry
is only a consequence of the assumption that the rules to com-
pute the new points around a singular vertex are identical modulo

Figure 16: Modeling sharp features (piecewise smooth boundary, crease, cusp)

rotations (block-circulant refinement matrix). Althoughλ2 6= λ3
causes an increasing local distortion of the net, the smoothness of
the limiting surface is not affected. This effect can be viewed as
a reparametrization in one direction. (Compare this to the distor-
tion of a regular net which is refined by binary subdivision in one
direction and trinary in the other.)

We summarize the different special cases which occur when re-
fining an open net by the given rules. In Fig. 17 the net to be refined
consists of the solid white faces while the extrapolated faces are
drawn transparently. The dark vertex is marked as a corner vertex.
We have to distinguish five different cases:

D

D

D

D

D

D

D

D
DC

C

C

C
C

C

C

C C
C

C
C

C

C
CC

CC

C

C

C

C

A

A

A

B
B

E

Figure 17: Occurences of the different special cases.

A: Within boundary segments, we apply (11) to four succeeding
boundary vertices.

B: To the first and the last edge of an open boundary segment, we
apply the special rule (17).
C: Inner edge-points can be computed by application of (15). If
necessary, extrapolated points are involved.

D: For every face-point of this class, at least one sequence of four
C-points can be found to which (11) can be applied. If there are
two possibilities for the choice of these points then both lead to the
same result which is guaranteed by the construction of (15).
E: In this case no appropriate sequence of four C-points can be
found. Therefore, one has to apply (17) to a B-point and the two C-
points following on the opposite side of the corner face. In order to
achieve independence of the grid direction, even in case the corner
vertex is not marked, we apply (17) in both directions and compute
the average of the two results.

3.6 Adaptive Refinement

In most numerical applications, the exponentially increasing num-
ber of vertices and faces during the iterative refinement only allows
a small number of refinement steps to be computed. If high acuracy
is needed, e.g., in finite element analysis or high quality rendering,
it is usually sufficient to perform a high resolution refinement in re-

gions with high curvature while ‘flat’ regions may be approximated
rather coarsely. Hence, in order to keep the amount of data reason-
able, the next step is to introduce adaptive refinement features.

The decision where high resolution refinement is needed,
strongly depends on the underlying application and is not discussed
here. The major problem one always has to deal with when adap-
tive refinement of nets is performed is to handle or eliminateC�1-
inconsistencies which occur when faces from different refinement
levels meet. A simple trick to repair the resulting triangular holes
is to split the bigger face into three quadrilaterals in an Y-fashion
(cf. Fig 18). However this Y-split does not repair the hole. Instead
it shifts the hole to an adjacent edge. Only combining several Y-
elements such that they build a ‘chain’ connecting two inconsisten-
cies leads to an overall consistent net. The new vertices necessary
for the Y-splits are computed by the rules of Sect. 3.3. The fact
that every Y-element contains a singular (n= 3) vertex causes no
problems for further refinement because this Y-element is only of
temporary nature, i.e., if any of its three faces or any neighboring
face is to be split by a following local refinement adaption, then first
the Y-split is undone and a proper Catmull-Clark-type split is per-
formed before proceeding. While this simple technique seems to
be known in the engineering community, the author is not aware of
any reference where the theoretical background for this technique
is derived. Thus, we sketch a simple proof that shows under which
conditions this technique applies.

p

q

r

s

Figure 18: A hole in an adaptively refined net and an Y-element to
fill it.

First, in order to apply the Y-technique we have to restrict the
considered nets tobalancednets. These are adaptively refined nets
(without Y-elements) where the refinement levels of neighboring
faces differ at most by one. Non-balanced inconsistencies can not
be handled by the Y-technique. Hence, looking at a particular face
s from then-th refinement level, all faces having at least one vertex
in common withs are from the levels(n� 1), n, or (n+ 1). For
the proof we can think of first repairing all inconsistencies between
leveln�1 andn and then proceed with higher levels. Thus, without
loss of generality, we can restrict our considerations to a situation
where all relevant faces are from level(n�1) or n.

A critical edge is an edge, where a triangular hole occurs due
to different refinement levels of adjacent faces. A sequence of Y-
elements can always be arranged such that two critical edges are
connected, e.g., by surrounding one endpoint of the critical edge
with a ’corona’ of Y-elements until another critical edge is reached
(cf. Fig. 19). Hence, on closed nets, we have to require the number
of critical edges to be even. (On open nets, any boundary edge can

stop a chain of Y-elements.) We show that this is always satisfied,
by induction over the number of faces from then-th level within
an environment of(n� 1)-faces. Faces from generations> n or
< (n�1) do not affect the situation since we assume the net to be
balanced.

Figure 19: Combination of Y-elements

The first adaptive Catmull-Clark-type split on a uniformly re-
fined net produces four critical edges. Every succeeding split
changes the number of critical edges by an even number between
�4 and 4, depending on the number of direct neighbors that have
been split before. Thus the number of critical edges is always even.
However, then-faces might form a ring having in total an even
number of critical edges which are separated into an odd number
‘inside’ and an odd number ‘outside’. It turns out that this can-
not happen: Let the inner region surrounded by the ring ofn-faces
consist ofr quadrilaterals having a total number of 4r edges which
are candidates for being critical. Every edge which is shared by
two such quadrilaterals reduces the number of candidates by two
and thus the number of boundary edges of this inner region is again
even.

The only situation where the above argument is not valid, occurs
when the considered net is open and has a hole with an odd number
of boundary edges. In this case, every loop ofn-faces enclosing
this hole will have an odd number of critical edges on each side.
Hence, we have to further restrict the class of nets to which we
can apply the Y-technique toopen balanced nets which have no
hole with an odd number of edges. This restriction is not serious
because one can transform any given net in order to satisfy this
requirement by applying aninitial uniform refinement stepbefore
adaptive refinement is started. Such an initial step is needed anyway
if a given arbitrary net has to be transformed into a quadrilateral one
(cf. Sect. 3.2).

It remains to find analgorithm to place the Y-elements cor-
rectly, i.e., to decide which critical edges should be connected by
a corona. This problem is not trivial because interference between
the Y-elements building the ‘shores’ of two ‘islands’ ofn-faces ly-
ing close to each other, can occur. We describe an algorithm which
only uses local information and decides the orientation separately
for each face instead of ‘marching’ around the islands.

The initially given net (level 0) has been uniformly refined once
before the adaptive refinement begins (level 1). Let every vertex
of the adaptively refined net be associated with the generation in
which it was introduced. Since all faces of the net are the result
of a Catmull-Clark-type split (no Y-elements have been placed so
far), they all have the property that three of its vertices belong to
the same generationg and the fourth vertex belongs to a generation
g0 < g. This fact yields a unique orientation for every face. The
algorithm starts by marking all vertices of the net which are end-
points of a critical edge, i.e. if a(n�1)-facefp;q; : : :g meets two
n-facesfp; r ;s; : : :g andfq; r ;s; : : :g thenp andq are marked (cf.
Fig. 18). After themarking-phase, the Y-elements are placed. Let
s= fp;q;u;vg be a face of the net wherep is the unique vertex
which belongs to an elder generation than the other three. If neither
q nor v are marked then no Y-element has to be placed within this
face. If only one of them is marked then the Y-element has to be

Face4Typ Face9Typ Face4Typ

Figure 21: References between different kinds of faces.

oriented as shown in Fig. 20 and if both are marked this face has to
be refined by a proper Catmull-Clark-type split.

The correctness of this algorithm is obvious since the vertices
which are marked in the first phase are those which are common to
faces of different levels. The second phase guarantees that a corona
of Y-elements is built around each such vertex (cf. Fig. 19).

3.7 Implementation and Examples

The described algorithm is designed to be useful in practical ap-
plications. Therefore, besides the features for creating creases and
cusps and the ability to adaptively refine a given quadrilateral net,
efficiency and compact implementation are also important. Both
can be achieved by this algorithm. The crucial point of the im-
plementation is the design of an appropriate data structure which
supports an efficient navigation through the neighborhood of the
vertices. The most frequently needed access operation to the data
structure representing the balanced net, is to enumerate all faces
which lie around one vertex or to enumerate all the neighbors of
one vertex. Thus every vertex should be associated with a linked
list of the objects that constitute its vicinity. We propose to do this
implicitely by storing the topological information in a data struc-
tureFace4Typ which contains all the information of one quadri-
lateral face, i.e., references to its four corner points and references
to its four directly neighboring faces. By these references, a doubly
linked list around every vertex is available.

Since we have to maintain an adaptively refined net, we need
an additional datatype to consistently store connections between
faces from different refinement levels. We define another struc-
tureFace9Typ which holds references to nine vertices and eight
neighbors. Thesemulti-facescan be considered as ‘almost’ split
faces, where the geometric information (the new edge- and face-
points) is already computed but the topological split has not yet
been performed. If, during adaptive refinement, somen-face is
split then all its neighbors which are from the same generation are
converted intoFace9Typ ’s. Since these faces have pointers to
eight neighbors, they can mimic faces from different generations
and therefore connect them correctly. TheFace9Typ ’s are the
candidates for the placement of Y-elements in order to re-establish
consistency. The various references between the different kinds of
faces are shown in Fig. 21.

To relieve the application program which decides where to adap-
tively refine, from keeping track of the balance of the net, the im-
plementation of the refinement algorithm should perform recursive
refinement operations when necessary, i.e., if an-faces is to be re-
fined then first all(n�1)-neighbors which have at least one vertex
in common withs must be split.

The following pictures are generated by using our experimen-
tal implementation. The criterion for adaptive refinement is a dis-
crete approximation of the Gaussian curvature. The running time
of the algorithm is directly proportional to the number of computed
points, i.e., to the complexity of the output-net. Hence, since the
number of regions where deep refinement is necessary usually is

p q p q p q p q

u u uv v v v u

Figure 20: The orientation of the Y-elements depends on whether the verticesq andv are marked (black) or not (white). The status of vertices
p andu does not matter (gray).

fixed, we can reduce the space- and time-complexity from expo-
nential to linear (as a function of the highest occurring refinement
level in the output).

References

[1] A. Ball / D. Storry, Conditions for Tangent Plane Continuity
over Recursively Generated B-Spline Surfaces, ACM Trans.
Graph. 7 (1988), pp. 83–102

[2] E. Catmull, J. Clark,Recursively generated B-spline surfaces
on arbitrary topological meshes, CAD 10 (1978), pp. 350–355

[3] A. Cavaretta / W. Dahmen / C. Micchelli,Stationary Subdivi-
sion, Memoirs of the AMS 93 (1991), pp. 1-186

[4] D. Doo / M. Sabin,Behaviour of Recursive Division Surfaces
Near Extraordinary Points, CAD 10 (1978), pp. 356–360

[5] S. Dubuc,Interpolation Through an Iterative Scheme, Jour. of
Mathem. Anal. and Appl., 114 (1986), pp. 185–204

[6] N. Dyn / J. Gregory / D. Levin,A 4-Point Interpolatory Subdi-
vision Scheme for Curve Design, CAGD 4(1987), pp. 257–268

[7] N. Dyn / J. Gregory / D. Levin,A Butterfly Subdivision Scheme
for Surface Interpolation with Tension Controll, ACM Trans.
Graph. 9 (1990), pp. 160–169

[8] N. Dyn / D. Levin, Interpolating subdivision schemes for the
generation of curves and surfaces, Multivar. Approx. and In-
terp., W. Hau¨smann and K. Jetter (eds.), 1990 Birkh¨auser Ver-
lag, Basel

[9] N. Dyn, Subdivision Schemes in Computer Aided Geometric
Design, Adv. in Num. Anal. II, Wavelets, Subdivisions and
Radial Functions, W.A. Light ed., Oxford Univ. Press, 1991,
pp. 36–104.

[10] N. Dyn / D. Levin / D. Liu, Interpolatory Convexity-
Preserving Subdivision Schemes for Curves and Surfaces,
CAD 24 (1992), pp. 221–216

[11] M. Halstead / M. Kass / T. DeRose,Efficient, fair interpo-
lation using Catmull-Clark surfaces, Computer Graphics 27
(1993), pp. 35–44

[12] H. Hoppe,Surface Reconstruction from unorganized points,
Thesis, University of Washington, 1994

[13] L. Kobbelt,Using the Discrete Fourier-Transform to Analyze
the Convergence of Subdivision Schemes, Appl. Comp. Har-
monic Anal. 5 (1998), pp. 68–91

[14] C. Loop, Smooth Subdivision Surfaces Based on Triangles,
Thesis, University of Utah, 1987

[15] C. Loop,A G1 triangular spline surface of arbitrary topolog-
ical type, CAGD 11 (1994), pp. 303–330

[16] J. Peters,Smooth mesh interpolation with cubic patches, CAD
22 (1990), pp. 109–120

[17] J. Peters,Smoothing polyhedra made easy, ACM Trans. on
Graph., Vol 14 (1995), pp. 161–169

[18] U. Reif, A unified approach to subdivision algorithms near
extraordinary vertices, CAGD 12 (1995), pp. 153–174

[19] K. Schweizerhof, Universit¨at Karlsruheprivate communica-
tion

Figure 22: Examples for adaptively refined nets.

Chapter 8

A Variational Approach to Subdivision

Speaker: Leif Kobbelt

Variational Subdivision Schemes

Leif Kobbelt�

Max-Planck-Institute for Computer Sciences

Preface

The generic strategy of subdivision algorithms which is to define
smooth curves and surfacesalgorithmicallyby giving a set of sim-
ple rules for refining control polygons or meshes is a powerful tech-
nique to overcome many of the mathematical difficulties emerging
from (polynomial) spline-based surface representations. In this sec-
tion we highlight another application of the subdivision paradigm
in the context of high quality surface generation.

From CAGD it is known that the technical and esthetic quality
of a curve or a surface does not only depend on infinitesimal prop-
erties like theCk differentiability. Much more important seems to
be thefairnessof a geometric object which is usually measured by
curvature based energy functionals. A surface is hence considered
optimal if it minimizes a given energy functional subject to auxil-
iary interpolation or approximation constraints.

Subdivision and fairing can be effectively combined into what is
often refered to asvariational subdivisionor discrete fairing. The
resulting algorithms inherit the simplicity and flexibility of subdi-
vision schemes and the resulting curves and surfaces satisfy the so-
phisticated requirements for high end design in geometric modeling
applications.

The basic idea that leads to variational subdivision schemes is
that one subdivision step can be considered as atopological split
operationwhere new vertices are introduced to increase the number
of degrees of freedom, followed by asmoothing operationwhere
the vertices are shifted in order to increase the overall smooth-
ness. From this point of view is is natural to ask for the maxi-
mum smoothness that can be achieved on a given level of refine-
ment while observing prescribed interpolation constraints.

We use an energy functional as a mathematical criterion to rate
the smoothness of a polygon or a mesh. In the continuous setting,
such scalar valued fairing functionals are typically defined as an
integral over a combination of (squared) derivatives. In the discrete
setting, we approximate such functionals by a sum over (squared)
divided differences.

In the following we reproduce a few papers where this approach
is described in more detail. In the univariate setting we con-
sider interpolatory variational subdivision schemes which perform
a greedy optimization in the sense that when computing the poly-
gon Pm+1 from Pm the new vertices’ positions are determined by

�Computer Graphics Group, Max-Planck-Institute for Computer Sci-
ences, Im Stadtwald, 66123 Saarbr¨ucken, Germany,kobbelt@mpi-
sb.mpg.de

an energy minimization process but when proceeding withPm+2
the vertices ofPm+1 are not adjusted.

In the bivariate setting, i.e., the subdivision and optimization of
triangle meshes, we start with a given control meshP0 whose ver-
tices are to be interpolated by the resulting mesh. In this case it
turns out that the mesh quality can be improved significantly if we
use all the vertices fromPm nP0 for the optimization in themth
subdivision step.

Hence the algorithmic structure of variational subdivision degen-
erates to an alternating refinement and (constrained) global opti-
mization. In fact, from a different viewing angle the resulting al-
gorithms perform like a multi-grid solver for the discretized op-
timization problem. This observation provides the mathematical
justification for thediscrete fairing approach.

For the efficient fairing of continuous parameteric surfaces, the
major difficulties arise from the fact that geometrically meaningful
energy functionals depend on the control vertices in a highly non-
linear fashion. As a consequence we have to either do non-linear
optimization or we have to approximate the true functional by a
linearized version. The reliability of this approximation usually
depends on how close to isometric the surface’s parameterization
is. Alas, spline-patch-based surface representations often do not
provide enough flexibility for an appropriate re-parameterization
which would enable a feasible linearization of the geometric en-
ergy functional. Figure 1 shows two surfaces which are both op-
timal with respect to the same energy functional but for different
parameterizations.

Figure 1: Optimal surfaces with respect to the same functional and
interpolation constraints but for different parameterizations (iso-
metric left, uniform right).

With the discrete fairing approach, we can exploit the auxiliary
freedom to define an individual local parameterization for every
vertex in the mesh. By this we find an isometric parameterization
for each vertex and since the vertices are in fact the only points
where the surface is evaluated, the linearized energy functional is a
good approximation to the original one.

The discrete fairing machinery turns out to be a powerful tool
which can facilitate the solution of many problems in the area of
surface generation and modeling. The overall objective behind the
presented applications will be the attempt to avoid, bypass, or at
least delay the mathematically involved generation of spline CAD-
models whenever it is appropriate.

I Univariate Variational Subdivision

In this paper a new class of interpolatory refinement schemes is
presented which in every refinement step determine the new points
by solving an optimization problem. In general, these schemes are
global, i.e., every new point depends on all points of the polygon
to be refined. By choosing appropriate quadratic functionals to be
minimized iteratively during refinement, very efficient schemes pro-
ducing limiting curves of high smoothness can be defined. The well
known class of stationary interpolatory refinement schemes turns
out to be a special case of these variational schemes.

The original paper which also contains the omitted
proofs has been published in:

L. Kobbelt
A Variational Approach to Subdivision,
CAGD 13 (1996) pp. 743–761, Elsevier

1.1 Introduction

Interpolatory refinement is a very intuitive concept for the construc-
tion of interpolating curves or surfaces. Given a set of pointsp0

i 2
IRd which are to be interpolated by a smooth curve, the first step of a
refinement scheme consists in connecting the points by a piecewise
linear curve and thus defining a polygonP0 = (p0

0; : : : ;p
0
n�1).

This initial polygon can be considered as a very coarse approx-
imation to the final interpolating curve. The approximation can be
improved by inserting new points between the old ones, i.e., by sub-
dividing the edges of the given polygon. The positions of the new
pointsp1

2i+1 have to be chosen appropriately such that the result-
ing (refined) polygonP1 = (p1

0; : : : ;p
1
2n�1) lookssmootherthan the

given one in some sense (cf. Fig. 2). Interpolation of the given
points is guaranteed since the old pointsp0

i = p1
2i still belong to the

finer approximation.
By iteratively applying this interpolatory refinement operation,

a sequence of polygons(Pm) is generated with vertices becoming
more and more dense and which satisfy the interpolation condition
pm

i = pm+1
2i for all i andm. This sequence may converge to a smooth

limit P∞.
Many authors have proposed different schemes by explicitly giv-

ing particular rules how to compute the new pointspm+1
2i+1 as a func-

tion of the polygonPm to be refined. In (Dubuc, 1986) a simple
refinement scheme is proposed which uses four neighboring ver-
tices to compute the position of a new point. The position is de-
termined in terms of the unique cubic polynomial which uniformly
interpolates these four points. The limiting curves generated by this
scheme are smooth, i.e., they are differentiable with respect to an
equidistant parametrisation.

Figure 2: Interpolatory refinement

In (Dyn et al., 1987) this scheme is generalized by introducing
an additional design or tension parameter. Replacing the interpo-
lating cubic by interpolating polynomials of arbitrary degree leads
to theLagrange-schemesproposed in (Deslauriers & Dubuc, 1989).
Raising the degree to(2k+1), every new point depends on(2k+2)
old points of its vicinity. In (Kobbelt, 1995a) it is shown that at least
for moderatek these schemes produceCk-curves.

Appropriate formalisms have been developed in (Cavaretta et al.,
1991), (Dyn & Levin, 1990), (Dyn, 1991) and elsewhere that allow
an easy analysis of suchstationary schemeswhich compute the new
points by applying fixed banded convolution operators to the orig-
inal polygon. In (Kobbelt, 1995b) simple criteria are given which
can be applied to convolution schemes without any band limitation
as well (cf. Theorem 2).

(Dyn et al., 1992) and (Le M´ehauté & Utreras, 1994) propose
non-linear refinement schemes which produce smooth interpolating
(C1-) curves and additionally preserve the convexity properties of
the initial data. Both of them introduce constraints which locally
define areas where the new points are restricted to lie in. Another
possibility to define interpolatory refinement schemes is to dualize
corner-cutting algorithms (Paluszny et al., 1994). This approach
leads to more general necessary and sufficient convergence criteria.

In this paper we want to define interpolatory refinement schemes
in a more systematic fashion. The major principle is the following:
We are looking for refinement schemes for which, given a polygon
Pm, the refined polygonPm+1 is as smooth as possible. In order
to be able to compare the “smoothness” of two polygons we de-
fine functionalsE(Pm+1) which measure the total amount of (dis-
crete) strain energy ofPm+1. The refinement operator then simply
chooses the new pointspm+1

2i+1 such that this functional becomes a
minimum.

An important motivation for this approach is that in practice
good approximations to the final interpolating curves should be
achieved with little computational effort, i.e., maximum smooth-
ness after a minimal number of refinement steps is wanted. In non-
discrete curve design based, e.g., on splines, the concept of defining
interpolating curves by the minimization of some energy functional
(fairing) is very familiar (Meier & Nowacki, 1987), (Sapidis, 1994).

This basic idea of making a variational approach to the defini-
tion of refinement schemes can also be used for the definition of
schemes which produce smooth surfaces by refining a given trian-
gular or quarilateral net. However, due to the global dependence
of the new points from the given net, the convergence analysis of
such schemes strongly depends on the topology of the net to be
refined and is still an open question. Numerical experiments with
such schemes show that this approach is very promising. In this
paper we will only address the analysis of univariate schemes.

1.2 Known results

Given an arbitrary (open/closed) polygonPm= (pm
i), thedifference

polygon4kPm denotes the polygon whose vertices are the vectors

4kpm
i :=

k

∑
j=0

�
k
j

�
(�1)k+ j pm

i+ j :

In (Kobbelt, 1995b) the following characterization of sequences
of polygons(Pm) generated by the iterative application of an inter-
polatory refinement scheme is given:

Lemma 1 Let (Pm) be a sequence of polygons. The scheme by
which they are generated is an interpolatory refinement scheme
(i.e., pm

i = pm+1
2i for all i and m) if and only if for all m;k 2 IN

the condition

4kpm
i =

k

∑
j=0

�
k
j

�
4kpm+1

2i+ j

holds for all indices i of the polygon4kPm.

Also in (Kobbelt, 1995b), the following sufficient convergence
criterion is proven which we will use in the convergence analysis in
the next sections.

Theorem 2 Let (Pm) be a sequence of polygons generated by
the iterative application of an arbitrary interpolatory refinement
scheme. If

∞

∑
m=0

k2km4k+l Pmk∞ < ∞

for some l2 IN then the sequence(Pm) uniformly converges to a
k-times continuously differentiable curveP∞.

This theorem holds for all kinds of interpolatory schemes on
open and closed polygons. However, in this paper we will only
apply it to linear schemes whose support is global.

1.3 A variational approach to interpolatory
refinement

In this and the next two sections we focus on the refinement of
closedpolygons, since this simplifies the description of the refine-
ment schemes. Open polygons will be considered in Section 1.6.

Let Pm = (pm
0 ; : : : ;p

m
n�1) be a given polygon. We wantPm+1 =

(pm+1
0 ; : : : ;pm+1

2n�1) to be the smoothest polygon for which the inter-

polation conditionpm+1
2i = pm

i holds. Since the roughness at some
vertexpm+1

i is a local property we measure it by a an operator

K(pm+1
i) :=

k

∑
j=0

α j pm+1
i+ j�r :

The coefficientsα j in this definition can be an arbitrary finite se-
quence of real numbers. The indices of the verticespm+1

i are taken
modulo2n according to the topological structure of the closed poly-
gonPm+1. To achieve full generality we introduce the shiftr such
that K(pm+1

i) depends onpm+1
i�r ; : : : ;pm+1

i+k�r . Every discrete mea-
sure of roughnessK is associated with a characteristic polynomial

α(z) =
k

∑
j=0

α j zj :

Our goal is to minimize the total strain energy over the whole
polygonPm+1. Hence we define

E(Pm+1) :=
2n�1

∑
i=0

K(pm+1
i)2 (1)

to be the energy functional which should become minimal. Since
the pointspm+1

2i of Pm+1 with even indices are fixed due to the in-
terpolation condition, the pointspm+1

2i+1 with odd indices are the only
free parameters of this optimization problem. The unique minimum
of the quadratic functional is attained at the common root of all par-
tial derivatives:

∂
∂pm+1

2l+1

E(Pm+1) =
k

∑
i=0

∂
∂pm+1

2l+1

K(pm+1
2l+1+r�i)

2

= 2
k

∑
i=0

αi

k

∑
j=0

α j pm+1
2l+1�i+ j

= 2
k

∑
i=�k

βi pm+1
2l+1+i

(2)

with the coefficients

β�i = βi =
k�i

∑
j=0

α j α j+i ; i = 0; : : : ;k: (3)

Hence, the strain energyE(Pm+1) becomes minimal if the new
pointspm+1

2i+1 are the solution of the linear system

0
B@

β0 β2 β4 : : : β2
β2 β0 β2 : : : β4
...

...
...

. . .

1
CA
0
BBB@

pm+1
1

pm+1
3
...

pm+1
2n�1

1
CCCA =

0
B@

�β1 �β1 �β3 : : : �β3
�β3 �β1 �β1 : : : �β5

...
...

...
. . .

1
CA
0
BB@

pm
0

pm
1
...

pm
n�1

1
CCA

(4)

which follows from (2) by separation of the fixed pointspm+1
2i =

pm
i from the variables. Here, both matrices are circulant and (al-

most) symmetric. A consequence of this symmetry is that the new
points do not depend on the orientation by which the vertices are
numbered (left to right or vice versa).

To emphasize the analogy between curve fairing and interpola-
tory refinement by variational methods, we call the equation

k

∑
i=�k

βi pm+1
2l+1+i = 0; l = 0; : : : ;n�1 (5)

theEuler-Lagrange-equation.

Theorem 3 The minimization of E(Pm+1) has a well-defined solu-
tion if and only if the characteristic polynomialα(z) for the local
measure K has no diametric roots z= �ω on the unit circle with
Arg(ω) 2 π IN=n. (Proof to be found in the original paper)

Remark The setπ IN=2m becomes dense in IR for increasing re-
finement depthm! ∞. Since we are interested in the smoothness
properties of the limiting curveP∞, we should drop the restriction
that the diametric roots have to have Arg(ω) 2 π IN=n. Forstability
reasons we requireα(z) to have no diametric roots on the unit circle
at all.

The optimization by which the new points are determined is a
geometric process. In order to obtain meaningful schemes, we have
to introduce more restrictions on the energy functionalsE or on the
measures of roughnessK.

For the expressionK2(pi) to be valid,K has to be vector valued,
i.e., the sum of the coefficientsα j has to be zero. This is equivalent
to α(1) = 0. Since

k

∑
i=�k

βi =
k

∑
i=0

k

∑
j=0

αi α j =

� k

∑
j=0

α j

�2

the sum of the coefficientsβi also vanishes in this case andaffine
invarianceof the (linear) scheme is guaranteed because constant
functions are reproduced.

1.4 Implicit refinement schemes

In the last section we showed that the minimization of a quadratic
energy functional (1) leads to the conditions (5) which determine
the solution. Dropping the variational background, we can more
generally prescribe arbitrary real coefficientsβ�k; : : : ;βk (with

β�i = βi to establish symmetry and∑βi = 0 for affine invariance)
and define an interpolatory refinement scheme which chooses the
new pointspm+1

2i+1 of the refined polygonPm+1 such that the homo-
geneous constraints

k

∑
i=�k

βi pm+1
2l+1+i = 0; l = 0; : : : ;n�1 (6)

are satisfied. We call these schemes:implicit refinement schemes
to emphasize the important difference to other refinement schemes
where usually the new points are computed by one or twoexplicitly
given rules (cf. the termimplicit curvesfor curves represented by
f (x;y) = 0). The stationary refinement schemes are a special case
of the implicit schemes whereβ2 j = δ j;0. In general, the implicit
schemes are non-stationary since the resulting weight coefficients
by which the new pointspm+1

2i+1 are computed depend on the number
of vertices inPm.

In (Kobbelt, 1995b) a general technique is presented which al-
lows to analyse the smoothness properties of the limiting curve gen-
erated by a given implicit refinement scheme.

The next theorem reveals that the class of implicit refinement
schemes is not essentially larger than the class of variational
schemes.

Theorem 4 Let β�k; : : : ;βk be an arbitrary symmetric set of real
coefficients(β�i = βi). Then there always exists a (potentially com-
plex valued) local roughness measure K such that (6) is the Euler-
Lagrange-equation corresponding to the minimization of the energy
functional (1). (Proof to be found in the original paper)

Remark We do not consider implicit refinement schemes with
complex coefficientsβi since then (6) in general has no real solu-
tions.

Example To illustrate the statement of the last theorem we look
at the 4-point scheme of (Dubuc, 1986). This is a stationary re-
finement scheme where the new pointspm+1

2i+1 are computed by the
rule

pm+1
2i+1 =

9
16

(pm
i +pm

i+1)�
1
16

(pm
i�1+pm

i+2):

The scheme can be written in implicit form (6) withk = 3 and
β�3 = 1, β�2 = 0, β�1 = �9, β0 = 16 since the common factor
1
16 is not relevant. The roots ofβ(z) are z1 = : : : = z4 = 1 and
z5;6 =�2�p3. From the construction of the last proof we obtain

α(z) = (2+
p

3)� (3+
p

12)z+
p

3z2+z3

as one possible solution. Hence, the quadratic strain energy
which is minimized by the 4-point scheme is based on the local
roughness estimate

K(pi) = (2+
p

3)pi � (3+
p

12)pi+1+
p

3pi+2+pi+3:

1.5 Minimization of differences

Theorem 2 asserts that a fast contraction rate of some higher differ-
ences is sufficient for the convergence of a sequence of polygons to
a (k times) continuously differentiable limit curve. Thus it is nat-
ural to look for refinement schemes with a maximum contraction
of differences. This obviously is an application of the variational
approach. For the quadratic energy functional we make the ansatz

Ek(Pm+1) :=
2n�1

∑
i=0

k4kpm+1
i k2: (7)

The partial derivatives take a very simple form in this case

∂
∂pm+1

2l+1

Ek(Pm+1) =
k

∑
i=0

∂
∂pm+1

2l+1

k4kpm+1
2l+1�ik2

= 2
k

∑
i=0

(�1)k+i
�

k
i

�
4kpm+1

2l+1�i

= 2(�1)k42kpm+1
2l+1�k:

and the corresponding Euler-Lagrange-equation is

42kpm+1
2l+1�k = 0; l = 0; : : : ;n�1 (8)

where, again, the indices of thepm+1
i are takenmodulo2n. The

characteristic polynomial of the underlying roughness measureK
is α(z) = (z�1)k and thus solvability and affine invariance of the
refinement scheme are guaranteed. The solution of (8) only requires
the inversion of a banded circulant matrix with bandwidth 2b k

2c+1.

Theorem 5 The refinement scheme based on the minimization of
Ek in (7) produces at least Ck-curves. (Proof to be found in the
original paper)

In order to prove even higher regularities of the limiting curve
one has to combine more refinement steps. In (Kobbelt, 1995b)
a simple technique is presented that allows to do the convergence
analysis of such multi-step schemes numerically. Table 1 shows
some results wherer denotes the number of steps that have to be
combined in order to obtain these differentiabilities.

In analogy to the non-discrete case where the minimization of the
integral over the squaredk-th derivative has piecewise polynomial
C2k�2 solutions (B-splines), it is very likely that the limiting curves
generated by iterative minimization ofEk are actually inC2k�2 too.
The results given in Table 1 can be improved by combining more
than r steps. Fork = 2;3, however, sufficiently many steps have
already been combined to verifyP∞ 2C2k�2.

k r diff’ty k r diff’ty

2 2 C2 7 6 C10

3 11 C4 8 4 C11

4 2 C5 9 6 C13

5 7 C7 10 4 C14

6 3 C8 11 6 C16

Table 1: Lower bounds on the differentiability ofP∞ generated by
iterative minimization ofEk(Pm).

For illustration and to compare the quality of the curves gener-
ated by these schemes, some examples are given in Fig. 3. The
curves result from applying different schemes to the initial data
P0 = (: : : ;0;1;0; : : :). We only show the middle part of one peri-
odic interval ofP∞. As expected, the decay of the function becomes
slower as the smoothness increases.

Remark Considering Theorem 2 it would be more appropri-
ate to minimize the maximum differencek4k Pmk∞ instead of
k4k Pmk2. However, this leads to non-linear refinement schemes
which are both, hard to compute and difficult to analyse. More-
over, in (Kobbelt, 1995a) it is shown that a contraction rate of

F E2

E3 E5

Figure 3: Discrete curvature plots of finite approximations to the curves generated by the four-point schemeF (P∞ 2C1) and the iterative
minimization ofE2 (P∞ 2C2), E3 (P∞ 2C4) andE5 (P∞ 2C7).

k42k Pmk∞ = O(2�mk) impliesk4k Pmk∞ = O(2�m(k�ε)) for ev-
ery ε > 0. It is further shown thatk4k Pmk∞ = O(2�mk) is the
theoretical fastest contraction which can be achieved by interpola-
tory refinement schemes. Hence, the minimization ofk4k Pmk∞
cannot improve the asymptotic behavior of the contraction.

1.6 Interpolatory refinement of open polygons

The convergence analysis of variational schemes in the case of open
finite polygons is much more difficult than it is in the case of closed
polygons. The problems arise at both ends of the polygonsPm
where the regular topological structure is disturbed. Therefore, we
can no longer describe the refinement operation in terms of Toeplitz
matrices but we have to use matrices which are Toeplitz matrices al-
most everywhere except for a finite number of rows, i.e., except for
the first and the last few rows.

However, one can show that in a middle region of the polygon
to be refined the smoothing properties of an implicit refinement
scheme applied to an open polygon do not differ very much from
the same scheme applied to a closed polygon. This is due to the fact
that in both cases the influence of the old pointspm

i on a new point
pm+1

2 j+1 decrease exponentially with increasing topological distance
ji� j j for all asymptotically stable schemes (Kobbelt, 1995a).

For the refinement schemes which iteratively minimize forward
differences, we can at least prove the following.

Theorem 6 The interpolatory refinement of open polygons by it-
eratively minimizing the2k-th differences, generates at least Ck�1-
curves. (Proof to be found in the original paper)

The statement of this theorem only gives a lower bound for the
differentiability of the limiting curveP∞. However, the author con-
jects that the differentiabilities agree in the open and closed polygon
case. For special cases we can prove better results.

Theorem 7 The interpolatory refinement of open polygons by it-
eratively minimizing the second differences, generates at least C2-
curves. (Proof to be found in the original paper)

1.7 Local refinement schemes

By now we only considered refinement schemes which are based
on aglobal optimization problem. In order to construct local re-
finement schemes we can restrict the optimization to some local
subpolygon. This means a new pointpm+1

2l+1 is computed by mini-
mizing some energy functional over awindowpm

l�r ; : : : ;p
m
l+1+r . As

the indexl varies, the window is shifted in the same way.

Let E be a given quadratic energy functional. The solution of
its minimization over the windowpm

l�r ; : : : ;p
m
l+1+r is computed by

solving an Euler-Lagrange-equation

B (pm+1
2l+1+2i)

r
i=�r = C (pm

l+i)
r+1
i=�r : (9)

The matrix ofB�1 C can be computed explicitly and the weight
coefficients by which a new pointpm+1

2l+1 is computed, can be read

off from the corresponding row inB�1 C . Since the coefficients
depend onE andr only, this construction yields a stationary refine-
ment scheme.

For such local schemes the convergence analysis is independent
from the topological structure (open/closed) of the polygons to be
refined. The formalisms of (Cavaretta et al., 1991), (Dyn & Levin,
1990) or (Kobbelt, 1995b) can be applied.

Minimizing the special energy functionalEk(P) from (7) over
open polygons allows the interesting observation that the resulting
refinement scheme has polynomial precision of degreek�1. This
is obvious since for points lying equidistantly parameterized on a
polynomial curve of degreek� 1, all k-th differences vanish and
Ek(P) = 0 clearly is the minimum of the quadratic functional.

Since the 2r + 2 points which form the subpolygon
pm

l�r ; : : : ;p
m
l+1+r uniquely define an interpolating polynomial

of degree 2r + 1, it follows that the local schemes based on
the minimization ofEk(P) are identical fork � 2r + 2. These
schemes coincide with the Lagrange-schemes of (Deslauriers &
Dubuc, 1989). Notice thatk� 4r +2 is necessary because higher
differences are not possible on the polygonpm+1

2(l�r); : : : ;p
m+1
2(l+1+r)

and minimizingEk(P)� 0 makes no sense.
The local variational schemes provide a nice feature for prac-

tical purposes. One can use the refinement rules defined by the
coefficients in the rows ofB�1 C in (9) to compute points which
subdivide edges near the ends of open polygons. Pure stationary
refinement schemes do not have this option and one therefore has
to deal withshrinking ends. This means one only subdivides those
edges which allow the application of the given subdivision mask
and cuts off the remaining part of the unrefined polygon.

If k� 2r +2 then the use of these auxiliary rules causes the lim-
iting curve to have a polynomial segment at both ends. This can
be seen as follows. LetP0 = (p0

0; : : : ;p
0
n) be a given polygon and

denote the polynomial of degree 2r +1� k�1 uniformly interpo-
lating the pointsp0

0; : : : ;p
0
2r+1 by f (x).

The first vertex of the refined polygonP1 which not necessarily
lies on f (x) is p1

2r+3. Applying the same refinement scheme itera-
tively, we see that ifpm

δm
is the first vertex ofPm which does not lie

on f (x) thenpm+1
δm+1

= pm+1
2δm�2r�1 is the first vertex ofPm+1 with this

property. Letδ0 = 2r +2 and consider the sequence

lim
m!∞

δm

2m = (2r +2)� (2r +1) lim
m!∞

m

∑
i=1

2�i = 1:

Hence, the limiting curveP∞ has a polynomial segmentf (x)
between the pointsp0

0 and p0
1. An analog statement holds at the

opposite end betweenp0
n�1 andp0

n.
This feature also arises naturally in the context of Lagrange-

schemes where the new points near the ends of an open polygon
can be chosen to lie on the first or last well-defined polynomial. It
can be used to exactly compute the derivatives at the endpointsp0

0
andp0

n of the limiting curve and it also provides the possibility to
smoothly connect refinement curves and polynomial splines.

1.8 Computational Aspects

Since for the variational refinement schemes the computation of the
new pointspm+1

2i+1 involves the solution of a linear system, the algo-
rithmic structure of these schemes is slightly more complicated than
it is in the case of stationary refinement schemes. However, for the
refinement of an open polygonPm the computational complexity is
still linear in the length ofPm. The matrix of the system that has
to be solved, is a banded Toeplitz-matrix with a small number of
pertubations at the boundaries.

In the closed polygon case, the best we can do is to solve the
circulant system in the Fourier domain. In particular, we transform
the initial polygonP0 once and then performm refinement steps
in the Fourier domain where the convolution operator becomes a
diagonal operator. The refined spectrumbPm is finally transformed
back in order to obtain the resultPm. The details can be found in
(Kobbelt, 1995c). For this algorithm, the computational costs are
dominated by the discrete Fourier transformation ofbPm which can
be done inO(n log(n)) = O(2mm) steps. This is obvious since the
numbern = 2mn0 of points in the refined polygonPm allows to
applymsteps of the fast Fourier transform algorithm.

The costs for computingPm are thereforeO(m) per point com-
pared toO(1) for stationary schemes. However, since in practice
only a small number of refinement steps are computed, the constant
factors which are hidden within these asymptotic estimates are rele-
vant. Thus, the fact that implicit schemes need a smaller bandwidth
than stationary schemes to obtain the same differentiability of the
limiting curve (cf. Table 1) equalizes the performance of both.

In the implementation of these algorithms it turned out that all
these computational costs are dominated by the ‘administrative’
overhead which is necessary, e.g., to build up the data structures.
Hence, the differences in efficiency between stationary and implicit
refinement schemes can be neglected.

References

[Cavaretta et al., 1991] Cavaretta, A. and Dahmen, W. and Mic-
chelli, C. (1991), Stationary Subdivision, Memoirs of the
AMS 93, 1–186

[Clegg, 1970] Clegg, J. (1970),Variationsrechnung, Teubner Ver-
lag, Stuttgart

[Deslauriers & Dubuc, 1989] Deslauriers, G. and Dubuc, S.
(1989), Symmetric iterative interpolation processes,
Constructive Approximation 5, 49–68

[Dubuc, 1986] Dubuc, S. (1986), Interpolation through an iterative
scheme, Jour. of Mathem. Anal. and Appl. 114, 185–204

[Dyn et al., 1987] Dyn, N. and Gregory, J. and Levin, D. (1987),
A 4-point interpolatory subdivision scheme for curve de-
sign, CAGD 4, 257–268

[Dyn & Levin, 1990] Dyn, N. and Levin, D. (1990), Interpolating
subdivision schemes for the generation of curves and sur-
faces, in: Haußmann W. and Jetter K. eds.,Multivari-
ate Approximation and Interpolation, Birkhäuser Verlag,
Basel

[Dyn et al., 1992] Dyn, N. and Levin, D. and Liu, D. (1992), Inter-
polatory convexity-preserving subdivision schemes for
curves and surfaces, CAD 24, 221–216

[Dyn, 1991] Dyn, N. (1991), Subdivision schemes in computer
aided geometric design, in: Light, W. ed.,Advances in
Numerical Analysis II, Wavelets, Subdivisions and Ra-
dial Functions, Oxford University Press

[Golub & Van Loan, 1989] Golub, G. and Van Loan, C. (1989),
Matrix Computations, John Hopkins University Press

[Kobbelt, 1995a] Kobbelt, L. (1995a),Iterative Erzeugung glatter
Interpolanten, Universität Karlsruhe

[Kobbelt, 1995b] Kobbelt, L. (1995b), Using the Discrete Fourier-
Transform to Analyze the Convergence of Subdivision
Schemes, Appl. Comp. Harmonic Anal. 5 (1998), pp. 68–
91

[Kobbelt, 1995c] Kobbelt, L. (1995c), Interpolatory Refinement is
Low Pass Filtering, in Daehlen, M. and Lyche, T. and
Schumaker, L. eds., Math. Meth in CAGD III

[Meier & Nowacki, 1987] Meier, H. and Nowacki, H. (1987), In-
terpolating curves with gradual changes in curvature,
CAGD 4, 297–305

[Le Méhauté & Utreras, 1994] Le M´ehauté A. and Utreras, F.
(1994), Convexity-preserving interpolatory subdivision,
CAGD 11, 17–37

[Paluszny et al., 1994] Paluszny M. and Prautzsch H. and Sch¨afer,
M. (1994), Corner cutting and interpolatory refinement,
Preprint

[Sapidis, 1994] Sapidis, N. (1994),Designing Fair Curves and
Surfaces, SIAM, Philadelphia

[Widom, 1965] Widom, H. (1965), Toeplitz matrices, in:
Hirschmann, I. ed.,Studies in Real and Complex
Analysis, MAA Studies in Mathematics 3

II Discrete Fairing

Many mathematical problems in geometric modeling are merely
due to the difficulties of handling piecewise polynomial parameter-
izations of surfaces (e.g., smooth connection of patches, evaluation
of geometric fairness measures). Dealing with polygonal meshes is
mathematically much easier although infinitesimal smoothness can
no longer be achieved. However, transferring the notion of fairness
to the discrete setting of triangle meshes allows to develop very
efficient algorithms for many specific tasks within the design pro-
cess of high quality surfaces. The use of discrete meshes instead
of continuous spline surfaces is tolerable in all applications where
(on an intermediate stage) explicit parameterizations are not nec-
essary. We explain the basic technique ofdiscrete fairingand give
a survey of possible applications of this approach.

The original paper has been published in:

L. Kobbelt
Variational Design with Parametric Meshes
of Arbitrary Topology,
in Creating fair and shape preserving curves
and surfaces, Teubner, 1998

2.1 Introduction

Piecewise polynomial spline surfaces have been the standard repre-
sentation for free form surfaces in all areas of CAD/CAM over the
last decades (and still are). However, although B-splines are op-
timal with respect to certain desirable properties (differentiability,
approximation order, locality,. . .), there are several tasks that can-
not be performed easily when surface parameterizations are based
on piecewise polynomials. Such tasks include the construction of
globally smooth closed surfaces and the shape optimization by min-
imizing intrinsically geometric fairness functionals [5, 12].

Whenever it comes to involved numerical computations on free
form surfaces — for instance in finite element analysis of shells —
the geometry is usually sampled at discrete locations and converted
into a piecewise linear approximation, i.e., into a polygonal mesh.

Between these two opposite poles, i.e., thecontinuousrepresen-
tation of geometric shapes by spline patches and thediscreterep-
resentation by polygonal meshes, there is a compromise emerging
from the theory ofsubdivision surfaces[9]. Those surfaces are de-
fined by abase meshroughly describing its shape, and arefinement
rule that allows one to split the edges and faces in order to obtain a
finer and smoother version of the mesh.

Subdivision schemes started as a generalization ofknot insertion
for uniform B-splines [11]. Consider a control mesh[ci; j] and the
knot vectors[ui] = [ihu] and [vi] = [ihv] defining a tensor product
B-spline surfaceS . The same surface can be given with respect to
the refined knot vectors[ûi] = [ihu=2] and [v̂i] = [ihv=2] by com-
puting the corresponding control vertices[ĉi; j], eachĉi; j being a
simple linear combination of original verticesci; j . It is well known
that the iterative repetition of this process generates a sequence of
meshesCm which converges to the spline surfaceS itself.

The generic subdivision paradigm generalizes this concept by
allowing arbitrary rules for the computation of the new control ver-
ticesĉi; j from the givenci; j . The generalization also includes that
we are no longer restricted to tensor product meshes but can use
rules that are adapted to the different topological special cases in
meshes with arbitrary connectivity. As a consequence, we can use
any (manifold) mesh for the base mesh and generate smooth sur-
faces by iterative refinement.

The major challenge is to find appropriate rules that guarantee
the convergence of the meshesCm generated during the subdivision
process to a smooth limit surfaceS = C∞. Besides the classical

stationary schemes that exploit the piecewise regular structure of
iteratively refined meshes [2, 4, 9], there are more complex geo-
metric schemes [15, 8] that combine the subdivision paradigm with
the concept of optimal design by energy minimization (fairing).

The technical and practical advantages provided by the repre-
sentation of surfaces in the form of polygonal meshes stem from
the fact that we do not have to worry about infinitesimal inter-patch
smoothness and the refinement rules do not have to rely on the ex-
istence of a globally consistent parameterization of the surface. In
contrast to this, spline based approaches have to introduce com-
plicated non-linear geometric continuity conditions to achieve the
flexibility to model closed surfaces of arbitrary shape. This is due
to the topologically rather rigid structure of patches with triangular
or quadrilateral parameter domain and fixed polynomial degree of
cross boundary derivatives. The non-linearity of such conditions
makes efficient optimization difficult if not practically impossible.
On discrete meshes however, we can derivelocal interpolants ac-
cording to local parameterizations (charts) which gives the freedom
to adapt the parameterization individually to the local geometry and
topology.

In the following we will shortly describe the concept ofdiscrete
fairing which is an efficient way to characterize and compute dense
point sets on high quality surfaces that observe prescribed interpo-
lation or approximation constraints. We then show how this ap-
proach can be exploited in several relevant fields within the area of
free form surface modeling.

The overall objective behind all the applications will be the at-
tempt to avoid, bypass, or at least delay the mathematically involved
generation of spline CAD-models whenever it is appropriate. Espe-
cially in the early design stages it is usually not necessary to have an
explicit parameterization of a surface. The focus on polygonal mesh
representations might help to free the creative designer from being
confined by mathematical restrictions. In later stages the conver-
sion into a spline model can be based on more reliable information
about the intended shape. Moreover, since technical engineers are
used to performing numerical simulations on polygonal approxima-
tions of the true model anyway, we also might find short-cuts that
allow to speed up the turn-around cycles in the design process, e.g.,
we could alter the shape of a mechanical part by modifying the FE-
mesh directly without converting back and forth between different
CAD-models.

2.2 Fairing triangular meshes

The observation that in many applications the global fairness of a
surface is much more important than infinitesimal smoothness mo-
tivates thediscrete fairingapproach [10]. Instead of requiringG1

or G2 continuity, we simply approximate a surface by a plain trian-
gularC0– mesh. On such a mesh we can think of the (discrete) cur-
vature being located at the vertices. The termfairing in this context
means to minimize these local contributions to the total (discrete)
curvature and to equalize their distribution across the mesh.

We approximate local curvatures at every vertexp by divided
differences with respect to a locally isometric parameterizationµp.
This parameterization can be found by estimating a tangent plane
Tp (or the normal vectornp) at p and projecting the neighboring
verticespi into that plane. The projected points yield the parameter
values(ui ;vi) if represented with respect to an orthonormal basis
feu;evg spanning the tangent plane

pi �p = ui eu+vi ev+di np:

Another possibility is to assign parameter values according to the
lengths and the angles between adjacent edges (discrete exponential

map) [15, 10].
To obtain reliable curvature information atp, i.e., second order

partial derivatives with respect to the locally isometric parameteri-
zationµp, we solve the normal equation of the Vandermonde system

VT V
h

1
2 fuu; fuv;

1
2 fvv

iT
= VT [di]i

with V = [u2
i ;uivi ;v2

i]i by which we get the best approximating
quadratic polynomial in the least squares sense. The rows of the in-
verse matrix(VT V)�1VT =: [αi; j] by which the Taylor coefficients
f� of this polynomial are computed from the data[di]i , contain the
coefficients of the corresponding divided difference operatorsΓ�.

Computing a weighted sum of the squared divided differences is
equivalent to the discrete sampling of the corresponding continuous
fairness functional. Consider for example

Z
S

κ2
1+κ2

2 dS

which is approximated by

∑
pi

ωi

�
kΓuu(p j �pi)k2 +

2kΓuv(p j �pi)k2 + kΓvv(p j �pi)k2
�
:

(10)

Notice that the value of (10) is independent of the particular choices
feu;evg for each vertex due to the rotational invariance of the func-
tional. The discrete fairing approach can be understood as a gen-
eralization of the traditional finite difference method to parametric
meshes where divided difference operators are defined with respect
to locally varying parameterizations. In order to make the weighted
sum (10) of local curvature values a valid quadrature formula, the
weightsωi have to reflect the local area element which can be ap-
proximated by observing the relative sizes of the parameter trian-
gles in the local chartsµp : pi �p 7! (ui ;vi).

Since the objective functional (10) is made up of a sum over
squared local linear combinations of vertices (in fact, of vertices
being direct neighbors of one central vertex), the minimum is char-
acterized by the solution of a global but sparse linear system. The
rows of this system are the partial derivatives of (10) with respect
to the movable verticespi. Efficient algorithms are known for the
solution of such systems [6].

2.3 Applications to free form surface design

When generating fair surfaces from scratch we usually prescribe a
set of interpolation and approximation constraints and fix the re-
maining degrees of freedom by minimizing an energy functional.
In the context of discrete fairing the constraints are given by an ini-
tial triangular mesh whose vertices are to be approximated by a fair
surface being topologically equivalent. The necessary degrees of
freedom for the optimization are obtained by uniformly subdivid-
ing the mesh and thus introducing newmovablevertices.

The discrete fairing algorithm requires the definition of a local
parameterizationµp for each vertexp including the newly inserted
ones. However, projection into an estimated tangent plane does not
work here, because the final positions of the new vertices are ob-
viously not known a priori. In [10] it has been pointed out that
in order to ensure solvability and stability of the resulting linear
system, it is appropriate to define the local parameterizations (lo-
cal metrics) for the new vertices byblendingthe metrics of nearby
vertices from the original mesh. Hence, we only have to estimate
the local charts covering the original vertices to set-up the linear
system which characterizes the optimal surface. This can be done
prior to actually computing a solution and we omit an additional
optimization loop over the parameterization.

When solving the sparse linear system by iterative methods we
observe rather slow convergence. This is due to the low-pass fil-
ter characteristics of the iteration steps in a Gauß-Seidel or Jacobi
scheme. However since the mesh on which the optimization is per-
formed came out of a uniform refinement of the given mesh (subdi-
vision connectivity) we can easily find nested grids which allow the
application of highly efficient multi-grid schemes [6].

Moreover, in our special situation we can generate sufficiently
smooth starting configurations by midpoint insertion which allows
us to neglect the pre-smoothing phase and to reduce the V-cycle of
the multi-grid scheme to the alternation of binary subdivision and
iterative smoothing. The resulting algorithm has linear complexity
in the number of generated triangles.

The advantage of this discrete approach compared to the classi-
cal fair surface generation based on spline surfaces is that we do not
have to approximate a geometric functional that uses true curvatures
by one which replaces those by second order partial derivatives with
respect to the fixed parameterization of the patches. Since we can
use a custom tailored parameterization for each point evaluation of
the second order derivatives, we can choose this parameterization
to be isometric — giving us access to the true geometric functional.

Figure 4 shows an example of a surface generated this way. The
implementation can be done very efficiently. The shown surface
consists of about 50K triangles and has been generated on a SGI
R10000 (195MHz) within 10 seconds. The scheme is capable of
generating an arbitrarily dense set of points on the surface of min-
imal energy. It is worth to point out that the scheme works com-
pletely automatic: no manual adaption of any parameters is nec-
essary, yet the scheme produces good surfaces for a wide range of
input data.

2.4 Applications to interactive modeling

For subdivision schemes we can use any triangular mesh as a con-
trol mesh roughly describing the shape of an object to be modeled.
The flexibility of the schemes with respect to the connectivity of the
underlying mesh allows very intuitive modifications of the mesh.
The designer can move the control vertices just like for Bezier-
patches but she is no longer tied to the common restrictions on the
connectivity which is merely a consequence of the use of tensor
product spline bases.

When modeling an object by Bezier-patches, the control vertices
are the handles to influence the shape and the de Casteljau algorithm
associates the control mesh with a smooth surface patch. In our
more general setting, the designer can work on anarbitrary triangle
mesh and the connection to a smooth surface is provided by the
discrete fairing algorithm. The advantages are that control vertices
are interpolated which is a more intuitive interaction metaphor and
the topology of the control structure can adapt to the shape of the
object.

Figure 5 shows the model of a mannequin head. A rather coarse
triangular mesh allows already to define the global shape of the
head (left). If we add more control vertices in the areas where more
detail is needed, i.e., around the eyes, the mouth and the ears, we
can construct the complex surface at the far right. Notice how the
discrete fairing scheme does not generate any artifacts in regions
where the level of detail changes.

2.5 Applications to mesh smoothing

In the last sections we saw how the discrete fairing approach can be
used to generate fair surfaces that interpolate the vertices of a given
triangular mesh. A related problem is to smooth out high frequency
noise from a givendetailedmesh without further refinement. Con-
sider a triangulated surface emerging for example from 3D laser
scanning or iso-surface extraction out of CT volume data. Due to
measurement errors, those surfaces usually show oscillations that
do not stem from the original geometry.

Figure 4: A fair surface generated by the discrete fairing scheme. The flexibility of the algorithm allows to interpolate rather complex data by
high quality surfaces. The process is completely automatic and it took about 10 sec to compute the refined mesh with 50K triangles. On the
right you see the reflection lines on the final surface.

Figure 5: Control meshes with arbitrary connectivity allow to adapt the control structure to the geometry of the model. Notice that the
influence of one control vertex in a tensor product mesh is always rectangular which makes it difficult to model shapes with non-rectangular
features.

Constructing the above mentioned local parameterizations, we
are able to quantify the noise by evaluating the local curvature.
Shifting the vertices while observing a maximum tolerance can re-
duce the total curvature and hence smooth out the surface. From a
signal processing point of view, we can interpret the iterative solv-
ing steps for the global sparse system as the application of recursive
digital low-pass filters [13]. Hence it is obvious that the process
will reduce the high frequency noise while maintaining the low fre-
quency shape of the object.

Figure 6 shows an iso-surface extracted from a CT scan of an
engine block. The noise is due to inexact measurement and insta-
bilities in the extraction algorithm. The smoothed surface remains
within a tolerance which is of the same order of magnitude as the
diagonal of one voxel in the CT data.

2.6 Applications to surface interrogation

Deriving curvature information on a discrete mesh is not only use-
ful for fair interpolation or post-processing of measured data. It can
also be used to visualize artifacts on a surface by plotting the color
coded discrete curvature directly on the mesh. Given for example
the output of the numerical simulation of a physical process: since
deformation has occurred during the simulation, this output typi-
cally consists merely of a discrete mesh and no continuous surface
description is available.

Figure 6: An iso-surface extracted from a CT scan of an engine
block. On the left, one can clearly see the noise artifacts due to
measurement and rounding errors. The right object was smoothed
by minimizing the discrete fairing energy. Constraints on the posi-
tional delocation were imposed.

Using classical techniques from differential geometry would re-
quire to fit an interpolating spline surface to the data and then vi-
sualize the surface quality by curvature plots. The availability of

samples of second order partial derivatives with respect to locally
isometric parameterizations at every vertex enables us to show this
information directly without the need for a continuous surface.

Figure 7 shows a mesh which came out of the FE-simulation of
a loaded cylindrical shell. The shell is clamped at the boundaries
and pushed down by a force in normal direction at the center. The
deformation induced by this load is rather small and cannot be de-
tected by looking, e.g., at the reflection lines. The discrete mean
curvature plot however clearly reveals the deformation. Notice that
histogram equalization has been used to optimize the color contrast
of the plot.

2.7 Applications to hole filling and blending

Another area where the discrete fairing approach can help is the
filling of undefined regions in a CAD model or in a measured data
set. Of course, all these problems can be solved by fairing schemes
based on spline surfaces as well. However, the discrete fairing ap-
proach allows one to split the overall (quite involved) task into sim-
ple steps: we always start by constructing a triangle mesh defining
the global topology. This is easy because noG1 or higher bound-
ary conditions have to be satisfied. Then we can apply the discrete
fairing algorithm to generate a sufficiently dense point set on the ob-
jective surface. This part includes the refinement and energy mini-
mization but it is almost completely automatic and does not have to
be adapted to the particular application. In a last step we fit poly-
nomial patches to the refined data. Here we can restrict ourselves
to pure fitting since the fairing part has already been taken care of
during the generation of the dense data. In other words, the discrete
fairing has recovered enough information about an optimal surface
such that staying as close as possible to the generated points (in a
least squares sense) is expected to lead to high quality surfaces. To
demonstrate this methodology we give two simple examples.

First, consider the point data in Figure 8. The very sparsely
scattered points in the middle region make the task of interpolation
rather difficult since the least squares matrix for a locally supported
B-spline basis might become singular. To avoid this, fairing terms
would have to be included into the objective functional. This how-
ever brings back all the problems mentioned earlier concerning the
possibly poor quality of parameter dependent energy functionals
and the prohibitive complexity of non-linear optimization.

Alternatively, we can connect the points to build a spatial tri-
angulation. Uniform subdivision plus discrete fairing recovers the
missing information under the assumption that the original surface
was sufficiently fair. The un-equal distribution of the measured data
points and the strong distortion in the initial triangulation do not
cause severe instabilities since we can define individual parameteri-
zations for every vertex. These allow one to take the local geometry
into account.

Another standard problem in CAD is theblendingor filleting
between surfaces. Consider the simple configuration in Figure 9
where several plane faces (dark grey) are to be connected smoothly.
We first close the gap by a simple coarse triangular mesh. Such
a mesh can easily be constructed for any reasonable configuration
with much less effort than constructing a piecewise polynomial rep-
resentation. The boundary of this initial mesh is obtained by sam-
pling the surfaces to be joined.

We then refine the mesh and, again, apply the discrete fairing
machinery. The smoothness of the connection to the predefined
parts of the geometry is guaranteed by letting the blend surface
mesh overlap with the given faces by one row of triangles (all nec-
essary information is obtained by sampling the given surfaces). The
vertices of the triangles belonging to the original geometry are not
allowed to move but since they participate in the global fairness
functional they enforce a smooth connection. In fact this technique
allows to define Hermite-type boundary conditions.

Figure 8: The original data on the left is very sparse in the mid-
dle region of the object. Triangulating the points in space and dis-
cretely fairing the iteratively refined mesh recovers more informa-
tion which makes least squares approximation much easier. On the
right, reflection lines on the resulting surface are shown.

2.8 Conclusion

In this paper we gave a survey of currently implemented applica-
tions of the discrete fairing algorithm. This general technique can
be used in all areas of CAD/CAM where an approximation of the
actual surface by a reasonably fine triangular mesh is a sufficient
representation. If compatibility to standard CAD formats matters, a
spline fitting post-process can always conclude the discrete surface
generation or modification. This fitting step can rely on more infor-
mation about the intended shape than was available in the original
setting since adenseset of points has been generated.

As we showed in the previous sections, mesh smoothing and hole
filling can be done on the discrete structurebeforeswitching to a
continuous representation. Hence, the bottom line of this approach
is to do most of the work in the discrete setting such that the math-
ematically more involved algorithms to generate piecewise poly-
nomial surfaces can be applied to enhanced input data with most
common artifacts removed.

We do not claim that splines could ever be completely replaced
by polygonal meshes but in our opinion we can save a considerable
amount of effort if we use spline models only where it is really
necessary and stick to meshes whenever it is possible. There seems
to be a huge potential of applications where meshes do the job if we
find efficient algorithms.

The major key to cope with the genuine complexity of highly
detailed triangle meshes is the introduction of a hierarchical struc-
ture. Hierarchies could emerge from classical multi-resolution tech-
niques like subdivision schemes but could also be a by-product of
mesh simplification algorithms.

An interesting issue for future research is to find efficient and
numerically stable methods to enforce convexity preservation in the
fairing scheme. At least local convexity can easily be maintained
by introducing non-linear constraints at the vertices.

Prospective work also has to address the investigation of explicit
and reliable techniques to exploit the discrete curvature information
for the detection of feature lines in the geometry in order to split a
given mesh into geometrically coherent segments. Further, we can
try to identify regions of a mesh where the value of the curvature
is approximately constant — those regions correspond to special
geometries like spheres, cylinders or planes. This will be the topic
of a forthcoming paper.

References

[1] E. Catmull, J. Clark,Recursively generated B-spline surfaces
on arbitrary topological meshes, CAD 10 (1978), pp. 350–355

Figure 7: Visualizing the discrete curvature on a finite element mesh allows to detect artifacts without interpolating the data by a continuous
surface.

Figure 9: Creating a “monkey saddle“ blend surface to join six planes. Any blend surface can be generated by closing the gap with a triangular
mesh first and then applying discrete fairing.

[2] Celniker G. and D. Gossard,Deformable curve and surface
finite elements for free-form shape design, ACM Computer
Graphics25 (1991), 257–265.

[3] D. Doo and M. Sabin,Behaviour of Recursive Division Sur-
faces Near Extraordinary Points, CAD 10 (1978), pp. 356–
360

[4] N. Dyn, Subdivision Schemes in Computer Aided Geometric
Design, Adv. Num. Anal. II, Wavelets, Subdivisions and Ra-
dial Functions, W.A. Light ed., Oxford Univ. Press, 1991, pp.
36–104.

[5] Greiner G.,Variational design and fairing of spline surfaces,
Computer Graphics Forum13 (1994), 143–154.

[6] Hackbusch W., Multi-Grid Methods and Applications,
Springer Verlag 1985, Berlin.

[7] Hagen H. and G. Schulze,Automatic smoothing with geomet-
ric surface patches, CAGD 4 (1987), 231–235.

[8] Kobbelt L., A variational approach to subdivision, CAGD 13
(1996), 743–761.

[9] Kobbelt L., Interpolatory subdivision on open quadrilateral
nets with arbitrary topology, Comp. Graph. Forum15 (1996),
409–420.

[10] Kobbelt L.,Discrete fairing, Proceedings of the Seventh IMA
Conference on the Mathematics of Surfaces, 1997, pp. 101–
131.

[11] J. Lane and R. Riesenfeld,A Theoretical Development for
the Computer Generation and Display of Piecewise Polyno-
mial Surfaces, IEEE Trans. on Pattern Anal. and Mach. Int.,
2 (1980), pp. 35–46

[12] Moreton H. and C. S´equin, Functional optimization for fair
surface design, ACM Computer Graphics26 (1992), 167–
176.

[13] Taubin G.,A signal processing approach to fair surface de-
sign, ACM Computer Graphics29 (1995), 351–358

[14] Welch W. and A. Witkin,Variational surface modeling, ACM
Computer Graphics26 (1992), 157–166

[15] Welch W. and A. Witkin,Free-form shape design using trian-
gulated surfaces, ACM Computer Graphics28 (1994), 247–
256

Chapter 9

Parameterization, remeshing, and

compression using subdivision

Speaker: Wim Sweldens

MAPS: Multiresolution Adaptive Parameterization of Surfaces

Aaron W. F. Lee∗

Princeton University
Wim Sweldens†

Bell Laboratories
Peter Schr¨oder‡

Caltech
Lawrence Cowsar§

Bell Laboratories
David Dobkin¶

Princeton University

Figure 1: Overview of our algorithm. Top
left: a scanned input mesh (courtesy Cyber-
ware). Next the parameter or base domain,
obtained through mesh simplification. Top
right: regions of the original mesh colored
according to their assigned base domain
triangle. Bottom left: adaptive remeshing
with subdivision connectivity (ε = 1%).
Bottom middle: multiresolution edit.

Abstract

We construct smooth parameterizations of irregular connectivity tri-
angulations of arbitrary genus 2-manifolds. Our algorithm uses hi-
erarchical simplification to efficiently induce a parameterization of
the original mesh over a base domain consisting of a small num-
ber of triangles. This initial parameterization is further improved
through a hierarchical smoothing procedure based on Loop sub-
division applied in the parameter domain. Our method supports
both fully automatic and user constrained operations. In the lat-
ter, we accommodate point and edge constraints to force the align-

∗wailee@cs.princeton.edu
†wim@bell-labs.com
‡ps@cs.caltech.edu
§cowsar@bell-labs.com
¶dpd@cs.princeton.edu

ment of iso-parameter lines with desired features. We show how
to use the parameterization for fast, hierarchical subdivision con-
nectivity remeshing with guaranteed error bounds. The remeshing
algorithm constructs an adaptively subdivided mesh directly with-
out first resorting to uniform subdivision followed by subsequent
sparsification. It thus avoids the exponential cost of the latter. Our
parameterizations are also useful for texture mapping and morphing
applications, among others.

CR Categories and Subject Descriptors:I.3.3 [Computer Graphics]:Picture/Image
Generation – Display Algorithms, Viewing Algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling - Curve, Surface, Solid and Object
Representations, Hierarchy and Geometric Transformations, Object Hierarchies.

Additional Key Words and Phrases: Meshes, surface parameterization, mesh sim-

plification, remeshing, texture mapping, multiresolution, subdivision surfaces, Loop

scheme.

1 Introduction

Dense triangular meshes routinely result from a number of 3D ac-
quisition techniques, e.g., laser range scanning and MRI volumetric
imaging followed by iso-surface extraction (see Figure 1 top left).
The triangulations form a surface of arbitrary topology—genus,
boundaries, connected components—and have irregular connectiv-
ity. Because of their complex structure and tremendous size, these
meshes are awkward to handle in such common tasks as storage,
display, editing, and transmission.

Multiresolution representations are now established as a funda-
mental component in addressing these issues. Two schools exist.
One approach extends classical multiresolution analysis and subdi-
vision techniques to arbitrary topology surfaces [19, 20, 7, 3]. The
alternative is more general and is based on sequential mesh simplifi-
cation, e.g., progressive meshes (PM) [12]; see [11] for a review. In
either case, the objective is to represent triangulated 2-manifolds in
an efficient and flexible way, and to use this description in fast algo-
rithms addressing the challenges mentioned above. Our approach
fits in the first group, but draws on ideas from the second group.

An important element in the design of algorithms which manip-
ulate mesh approximations of 2-manifolds is the construction of
“nice” parameterizations when none are given. Ideally, the man-
ifold is parameterized over a base domain consisting of a small
number of triangles. Once a surface is understood as a function
from the base domain intoR3 (or higher-D when surface attributes
are considered), many tools from areas such as approximation the-
ory, signal processing, and numerical analysis are at our disposal.
In particular, classical multiresolution analysis can be used in the
design and analysis of algorithms. For example, error controlled,
adaptive remeshing can be performed easily and efficiently. Fig-
ure 1 shows the outline of our procedure: beginning with an irregu-
lar input mesh (top left), we find a base domain through mesh sim-
plification (top middle). Concurrent with simplification, a mapping
is constructed which assigns every vertex from the original mesh to
a base triangle (top right). Using this mapping an adaptive remesh
with subdivision connectivity can be built (bottom left) which is
now suitable for such applications as multiresolution editing (bot-
tom middle). Additionally, there are other practical payoffs to good
parameterizations, for example in texture mapping and morphing.

In this paper we present an algorithm for the fast computation
of smooth parameterizations of dense 2-manifold meshes with ar-
bitrary topology. Specifically, we make the following contribu-
tions
• We describe anO(N logN) time and storage algorithm to con-

struct a logarithmic level hierarchy of arbitrary topology, ir-
regular connectivity meshes based on the Dobkin-Kirkpatrick
(DK) algorithm. Our algorithm accommodates geometric crite-
ria such as area and curvature as well as vertex and edge con-
straints.

• We construct a smooth parameterization of the original mesh
over the base domain. This parameterization is derived through
repeated conformal remapping during graph simplification fol-
lowed by a parameter space smoothing procedure based on the
Loop scheme. The resulting parameterizations are of high visual
and numerical quality.

• Using the smooth parameterization, we describe an algorithm
for adaptive, hierarchical remeshing of arbitrary meshes into
subdivision connectivity meshes. The procedure is fully auto-
matic, but also allows for user intervention in the form of fixing
point or path features in the original mesh. The remeshed man-
ifold meets conservative approximation bounds.

Even though the ingredients of our construction are reminiscent
of mesh simplification algorithms, we emphasize that our goal is
not the construction of another mesh simplification procedure, but
rather the construction of smooth parameterizations. We are par-
ticularly interested in using these parameterizations for remeshing,
although they are useful for a variety of applications.

1.1 Related Work

A number of researchers have considered—either explicitly or
implicitly—the problem of building parameterizations for arbitrary
topology, triangulated surfaces. This work falls into two main cat-
egories: (1) algorithms which build a smoothly parameterized ap-

proximation of a set of samples (e.g. [14, 1, 17]), and (2) algorithms
which remesh an existing mesh with the goal of applying classical
multiresolution approaches [7, 8].

A related, though quite different problem, is the maintenance of
a givenparameterization during mesh simplification [4]. We em-
phasize that our goal is theconstructionof mappings when none
are given.

In the following two sections, we discuss related work and con-
trast it to our approach.

1.1.1 Approximation of a Given Set of Samples

Hoppe and co-workers [14] describe a fully automatic algorithm
to approximate a given polyhedral mesh with Loop subdivision
patches [18] respecting features such as edges and corners. Their
algorithm uses a non-linear optimization procedure taking into ac-
count approximation error and the number of triangles of the base
domain. The result is a smooth parameterization of the original
polyhedral mesh over the base domain. Since the approach only
uses subdivision, small features in the original mesh can only be re-
solved accurately by increasing the number of triangles in the base
domain accordingly. A similar approach, albeit using A-patches,
was described by Bajaj and co-workers [1]. From the point of view
of constructing parameterizations, the main drawback of algorithms
in this class is that the number of triangles in the base domain de-
pends heavily on the geometric complexity of the goal surface.

This problem was addressed in work of Krishnamurthy and
Levoy [17]. They approximate densely sampled geometry with bi-
cubic spline patches and displacement maps. Arguing that a fully
automatic system cannot put iso-parameter lines where a skilled
animator would want them, they require the user to lay out the en-
tire network of top level spline patch boundaries. A coarse to fine
matching procedure with relaxation is used to arrive at a high qual-
ity patch mesh whose base domain need not mimic small scale ge-
ometric features.

The principal drawback of their procedure is that the user is re-
quired to define theentire base domain rather then only selected
features. Additionally, given that the procedure works from coarse
to fine, it is possible for the procedure to “latch” onto the wrong
surface in regions of high curvature [17, Figure 7].

1.1.2 Remeshing

Lounsbery and co-workers [19, 20] were the first to propose al-
gorithms to extend classical multiresolution analysis to arbitrary
topology surfaces. Because of its connection to the mathematical
foundations of wavelets, this approach has proven very attractive
(e.g. [22, 7, 27, 8, 3, 28]). The central requirement of these meth-
ods is that the input mesh have subdivision connectivity. This is
generally not true for meshes derived from 3D scanning sources.

To overcome this problem, Eck and co-workers [7] developed
an algorithm to compute smooth parameterizations of high resolu-
tion polyhedral meshes over a low face count base domain. Using
such a mapping, the original surface can be remeshed using subdi-
vision connectivity. After this conversion step, adaptive simplifica-
tion, compression, progressive transmission, rendering, and editing
become simple and efficient operations [3, 8, 28].

Eck et al. arrive at the base domain through a Voronoi tiling of the
original mesh. Using a sequence of local harmonic maps, a param-
eterization which is smooth over each triangle in the base domain
and which meets withC0 continuity at base domain edges [7, Plate
1(f)] is constructed. Runtimes for the algorithm can be long be-
cause of the many harmonic map computations. This problem was
recently addressed by Duchamp and co-workers [6], who reduced
the harmonic map computations from their initialO(N2) complex-
ity to O(N logN) through hierarchical preconditioning. The hier-

archy construction they employed for use in a multigrid solver is
related to our hierarchy construction.

The initial Voronoi tile construction relies on a number of heuris-
tics which render the overall algorithm fragile (for an improved
version see [16]). Moreover, there is no explicit control over the
number of triangles in the base domain or the placement of patch
boundaries.

The algorithm generates only uniformly subdivided meshes
which later can be decimated through classical wavelet methods.
Many extra globally subdivided levels may be needed to resolve
one small local feature; moreover, each additional level quadruples
the amount of work and storage. This can lead to the intermedi-
ate construction of many more triangles than were contained in the
input mesh.

1.2 Features of MAPS

Our algorithm was designed to overcome the drawbacks of previ-
ous work as well as to introduce new features. We use a fast coar-
sification strategy to define the base domain, avoiding the potential
difficulties of finding Voronoi tiles [7, 16]. Since our algorithm pro-
ceeds from fine to coarse, correspondence problems found in coarse
to fine strategies [17] are avoided, and all features are correctly re-
solved. We use conformal maps for continued remapping during
coarsification to immediately produce a global parameterization of
the original mesh. This map is further improved through the use
of a hierarchical Loop smoothing procedure obviating the need for
iterative numerical solvers [7]. Since the procedure is performed
globally, derivative discontinuities at the edges of the base domain
are avoided [7]. In contrast to fully automatic methods [7], the al-
gorithm supports vertex and edge tags [14] to constrain the param-
eterization to align with selected features; however, the user is not
required to specify the entire patch network [17]. During remeshing
we take advantage of the original fine to coarse hierarchy to output
a sparse, adaptive, subdivision connectivity mesh directly without
resorting to a depth first oracle [22] or the need to produce a uni-
form subdivision connectivity mesh at exponential cost followed by
wavelet thresholding [3].

2 Hierarchical Surface Representation

In this section we describe the main components of our algorithm,
coarsification and map construction. We begin by fixing our nota-
tion.

2.1 Notation

When describing surfaces mathematically, it is useful to separate
the topological and geometric information. To this end we in-
troduce some notation adapted from [24]. We denote a triangu-
lar mesh as a pair(P,K), whereP is a set ofN point positions
pi = (xi, yi, zi) ∈ R3 with 1 ≤ i ≤ N , andK is anabstract sim-
plicial complexwhich contains all the topological, i.e., adjacency
information. The complexK is a set of subsets of{1, . . . , N}.
These subsets are called simplices and come in 3 types: vertices
v = {i} ∈ K, edgese = {i, j} ∈ K, and facesf = {i, j, k} ∈ K,
so that any non-empty subset of a simplex ofK is again a simplex
of K, e.g., if a face is present so are its edges and vertices.

Let ei denote the standardi-th basis vector inRN . For each
simplexs, its topological realization|s| is the strictly convex hull
of {ei | i ∈ s}. Thus|{i}| = ei, |{i, j}| is the open line segment
betweenei and ej , and |{i, j, k}| is an open equilateral triangle.
The topological realization|K| is defined as∪s∈K|s|. Thegeomet-
ric realizationϕ(|K|) relies on a linear mapϕ : RN → R3 defined

by ϕ(ei) = pi. The resulting polyhedron consists of points, seg-
ments, and triangles inR3.

Two vertices{i} and{j} areneighborsif {i, j} ∈ K. A set
of vertices isindependentif no two vertices are neighbors. A set
of vertices ismaximally independentif no larger independent set
contains it (see Figure 3, left side). The 1-ring neighborhood of a
vertex{i} is the set

N (i) = {j | {i, j} ∈ K}.

TheoutdegreeKi of a vertex is its number of neighbors. Thestar
of a vertex{i} is the set of simplices

star(i) =
⋃

i∈s, s∈K

s.

We say that|K| is a two dimensional manifold (or 2-manifold)
with boundaries if for eachi, |star(i)| is homeomorphic to a disk
(interior vertex) or half-disk (boundary vertex) inR2. An edge
e = {i, j} is called aboundary edgeif there is only one facef with
e ⊂ f .

We define a conservative curvature estimate,κ(i) = |κ1|+ |κ2|
at pi, using the principal curvaturesκ1 andκ2. These are esti-
mated by the standard procedure of first establishing a tangent plane
at pi and then using a second degree polynomial to approximate
ϕ(|star(i)|).

2.2 Mesh Hierarchies

An important part of our algorithm is the construction of a mesh
hierarchy. The original mesh(P,K) = (PL,KL) is successively
simplified into a series of homeomorphic meshes(P l,Kl) with 0 ≤
l < L, where(P0,K0) is the coarsest or base mesh (see Figure 4).

Several approaches for such mesh simplification have been pro-
posed, most notably progressive meshes (PM) [12]. In PM the basic
operation is the “edge collapse.” A sequence of such atomic oper-
ations is prioritized based on approximation error. The linear se-
quence of edge collapses can be partially ordered based on topolog-
ical dependence [25, 13], which defines levels in a hierarchy. The
depth of these hierarchies appears “reasonable” in practice, though
can vary considerably for the same dataset [13].

Our approach is similar in spirit, but inspired by the hierarchy
proposed by Dobkin and Kirkpatrick (DK) [5], which guarantees
that the number of levelsL isO(logN). While the original DK hi-
erarchy is built for convex polyhedra, we show how the idea behind
DK can be used for general polyhedra. The DK atomic simplifi-
cation step is avertex remove, followed by a retriangulation of the
hole.

The two basic operations “vertex remove” and “edge collapse”
are related since an edge collapse into one of its endpoints corre-
sponds to a vertex remove with a particular retriangulation of the
resulting hole (see Figure 2). The main reason we chose an algo-
rithm based on the ideas of the DK hierarchy is that it guarantees a
logarithmic bound on the number of levels. However, we empha-
size that the ideas behind our map constructions apply equally well
to PM type algorithms.

2.3 Vertex Removal

One DK simplification stepKl → Kl−1 consists of removing a
maximally independent set of vertices with low outdegree (see Fig-
ure 3). To find such a set, the original DK algorithm used a greedy
approach based only ontopological information. Instead, we use
a priority queue based on bothgeometric and topologicalinforma-
tion.

At the start of each level of the original DK algorithm, none of
the vertices are marked and the set to be removed is empty. The

General Edge collapse operation

Half edge collapse as vertex removal with special retriangulation

Vertex removal followed by retriangulation

Figure 2:Examples of different atomic mesh simplification steps. At
the top vertex removal, in the middle half-edge collapse, and edge
collapse at the bottom.

algorithm randomly selects a non-marked vertex of outdegree less
than 12, removes it and its star fromKl, marks its neighbors as
unremovable and iterates this until no further vertices can be re-
moved. In a triangulated surface the average outdegree of a vertex
is 6. Consequently, no more than half of the vertices can be of out-
degree12 or more. Thus it is guaranteed that at least1/24 of the
vertices will be removed at each level [5]. In practice, it turns out
one can remove roughly1/4 of the vertices reflecting the fact that
the graph is four-colorable. Given that a constant fraction can be
removed on each level, the number of levels behaves asO(logN).
The entire hierarchy can thus be constructed in linear time.

In our approach, we stay in the DK framework, but replace the
random selection of vertices by a priority queue based on geometric
information. Roughly speaking, vertices with small and flat 1-ring
neighborhoods will be chosen first. At levell, for a vertexpi ∈
P l, we consider its 1-ring neighborhoodϕ(|star(i)|) and compute
its areaa(i) and estimate its curvatureκ(i). These quantities are
computed relative toKl, the current level. We assign a priority to
{i} inversely proportional to a convex combination of relative area
and curvature

w(λ, i) = λ
a(i)

maxpi∈Pl a(i)
+ (1− λ)

κ(i)

maxpi∈Pl κ(i)
.

(We foundλ = 1/2 to work well in our experiments.) Omitting all
vertices of outdegree greater than 12 from the queue, removal of a
constant fraction of vertices is still guaranteed. Because of the sort
implied by the priority queue, the complexity of building the entire
hierarchy grows toO(N logN).

Figure 4 shows three stages (original, intermediary, coarsest) of
the DK hierarchy. Given that the coarsest mesh is homeomorphic
to the original mesh, it can be used as the domain of a parameteri-
zation.

Mesh at level l Mesh at level l-1

Figure 3: On the left a mesh with a maximally independent set of
vertices marked by heavy dots. Each vertex in the independent set
has its respective star highlighted. Note that the star ’s of the inde-
pendent set do not tile the mesh (two triangles are left white). The
right side gives the retriangulation after vertex removal.

2.4 Flattening and Retriangulation

To findKl−1, we need to retriangulate the holes left by removing
the independent set. One possibility is to find a plane into which to
project the 1-ring neighborhoodϕ(|star(i)|) of a removed vertex
ϕ(|i|) without overlapping triangles and then retriangulate the hole
in that plane. However, finding such a plane, which may not even
exist, can be expensive and involves linear programming [4].

Instead, we use the conformal mapza [6] which minimizes met-
ric distortion to map the neighborhood of a removed vertex into the
plane. Let{i} be a vertex to be removed. Enumerate cyclically
theKi vertices in the 1-ringN (i) = {jk | 1 ≤ k ≤ Ki} such
that {jk−1, i, jk} ∈ Kl with j0 = jKi . A piecewise linear ap-
proximation ofza, which we denote byµi, is defined by its values
for the center point and 1-ring neighbors; namely,µi(pi) = 0 and
µi(pjk) = rak exp(iθk a), whererk = ‖pi − pjk‖,

θk =

k∑
l=1

6 (pjl−1 , pi, pjl),

anda = 2π/θKi . The advantages of the conformal map are nu-
merous: it always exists, it is easy to compute, it minimizes metric
distortion, and it is a bijection and thus never maps two triangles on
top of each other. Once the 1-ring is flattened, we can retriangulate
the hole using, for example, a constrained Delaunay triangulation
(CDT) (see Figure 5). This tells us how to buildKl−1.

When the vertex to be removed is a boundary vertex, we map to a
half disk by settinga = π/θKi (assumingj1 andjKi are boundary
vertices and settingθ1 = 0). Retriangulation is again performed
with a CDT.

3 Initial Parameterization

To find a parameterization, we begin by constructing a bijection
Π from ϕ(|KL|) to ϕ(|K0|). The parameterization of the original
mesh over the base domain follows fromΠ−1(ϕ(|K0|)). In other
words, the mapping of a pointp ∈ ϕ(|KL|) throughΠ is a point
p0 = Π(v) ∈ ϕ(|K0|), which can be written as

p0 = αpi + β pj + γ pk,

where{i, j, k} ∈ K0 is a face of the base domain andα, β andγ
are barycentric coordinates, i.e.,α+ β + γ = 1.

Intermediate mesh (level 6)

Coarsest mesh (level 0)

Original mesh (level 14)

Figure 4: Example of a modified DK mesh hierarchy. At the top
the finest (original) meshϕ(|KL|) followed by an intermediate
mesh, and the coarsest (base) meshϕ(|K0|) at the bottom (orig-
inal dataset courtesy University of Washington).

The mapping can be computed concurrently with the hierarchy
construction. The basic idea is to successively compute piecewise
linear bijectionsΠl betweenϕ(|KL|) andϕ(|Kl|) starting with
ΠL, which is the identity, and ending withΠ0 = Π.

Notice that we only need to compute the value ofΠl at the ver-
tices ofKL. At any other point it follows from piecewise linearity.1

Assume we are givenΠl and want to computeΠl−1. Each vertex
{i} ∈ KL falls into one of the following categories:

1. {i} ∈ Kl−1: The vertex is not removed on levell and sur-
vives on levell − 1. In this case nothing needs to be done.
Πl−1(pi) = Πl(pi) = pi.

2. {i} ∈ Kl \Kl−1: The vertex gets removed when going from
l to l− 1. Consider the flattening of the 1-ring aroundpi (see
Figure 5). After retriangulation, the origin lies in a triangle
which corresponds to some facet = {j, k,m} ∈ Kl−1 and
has barycentric coordinates(α, β, γ) with respect to the ver-
tices of that face, i.e.,αµi(pj) + β µi(pk) + γ µi(pm) (see
Figure 6). In that case, letΠl−1(pi) = αpj + β pk + γ pm.

3. {i} ∈ KL \Kl: The vertex was removed earlier, thus

1In the vicinity of vertices inKl a triangle{i, j, k} ∈ KL can straddle
multiple triangles inKl. In this case the map depends on the flattening
strategy used (see Section 2.4).

3 space

retriangulation

Flattening into parameter plane

Figure 5:In order to remove a vertexpi, its star(i) is mapped from
3-space to a plane using the mapza. In the plane the central vertex
is removed and the resulting hole retriangulated (bottom right).

k

m

jpoint in new triangle
coordinates to old
assign barycentric

Figure 6:After retriangulation of a hole in the plane (see Figure 5),
the just removed vertex gets assigned barycentric coordinates with
respect to the containing triangle on the coarser level. Similarly, all
the finest level vertices that were mapped to a triangle of the hole
now need to be reassigned to a triangle of the coarser level.

Πl(pi) = α′ pj′ + β′ pk′ + γ′ pm′ for some trianglet′ =

{j′, k′,m′} ∈ Kl. If t′ ∈ Kl−1, nothing needs to be
done; otherwise, the independent set guarantees that ex-
actly one vertex oft′ is removed, say{j′}. Consider the
conformal mapµj′ (Figure 6). After retriangulation, the
µj′(pi) lies in a triangle which corresponds to some face
t = {j, k,m} ∈ Kl−1 with barycentric coordinates(α, β, γ)
(black dots within highlighted face in Figure 6). In that case,
let Πl−1(pi) = αpj + β pk + γ pm (i.e., all vertices in Fig-
ure 6 are reparameterized in this way).

Note that on every level, the algorithm requires a sweep through all
the vertices of the finest level resulting in an overall complexity of
O(N logN).

Figure 7 visualizes the mapping we just computed. For each
pointpi from the original mesh, its mappingΠ(pi) is shown with a
dot on the base domain.

Caution: Given that every association between a 1-ring and its
retriangulated hole is a bijection, so is the mappingΠ. However,
Π does not necessarily map a finest level triangle to a triangular
region in the base domain. Instead the image of a triangle may be
a non-convex region. In that case connecting the mapped vertices
with straight lines can cause flipping, i.e., triangles may end up on

Figure 7:Base domainϕ(|K0|). For each pointpi from the original
mesh, its mappingΠ(pi) is shown with a dot on the base domain.

top of each other (see Figure 8 for an example). Two methods ex-
ist for dealing with this problem. First one could further subdivide
the original mesh in the problem regions. Given that the underlying
continuous map is a bijection, this is guaranteed to fix the prob-
lem. The alternative is to use some brute force triangle unflipping
mechanism. We have found the following scheme to work well:
adjust the parameter values of every vertex whose 2-neighborhood
contains a flipped triangle, by replacing them with the averaged pa-
rameter values of its 1-ring neighbors [7].

image of vertices

mapping onto base domain

image of triangle

original mesh

Figure 8: Although the mappingΠ from the original mesh to a
base domain triangle is a bijection, triangles do not in general
get mapped to triangles. Three vertices of the original mesh get
mapped to a concave configuration on the base domain, causing
the piecewise linear approximation of the map to flip the triangle.

3.1 Tagging and Feature Lines

In the algorithm described so far, there is noa priori control over
which vertices end up in the base domain or how they will be con-
nected. However, often there are features which one wants to pre-
serve in the base domain. These features can either be detected
automatically or specified by the user.

We consider two types of features on the finest mesh: vertices
and paths of edges. Guaranteeing that a certain vertex of the orig-
inal mesh ends up in the base domain is straightforward. Simply
mark that vertex as unremovable throughout the DK hierarchy.

We now describe an algorithm to guarantee that a certain path of
edges on the finest mesh gets mapped to an edge of the base do-
main. Let{vi | 1 ≤ i ≤ I} ⊂ KL be a set of vertices on the
finest level which form a path, i.e.,{vi, vi+1} is an edge. Tag all
the edges in the path as feature edges. First tagv1 andvI , so called
dart points[14], as unremovable so they are guaranteed to end up
in the base domain. Letvi be the first vertex on the interior of the
path which gets marked for removal in the DK hierarchy, say, when
going from levell to l − 1. Because of the independent set prop-
erty,vi−1 andvi+1 cannot be removed and therefore must belong to
Kl−1. When flattening the hole aroundvi, tagged edges are treated
like a boundary. We first straighten out the edges{vi−1, vi} and

retriangulation

Flattening into parameter plane

3 space

Figure 9:When a vertex with two incident feature edges is removed,
we want to ensure that the subsequent retriangulation adds a new
feature edge to replace the two old ones.

{vi, vi+1} along thex-axis, and use two boundary type conformal
maps to the half disk above and below (cf. the last paragraph of
Section 2.4). When retriangulating the hole aroundvi, we put the
edge{vi−1, vi+1} in Kl−1, tag it as a feature edge, and compute
a CDT on the upper and lower parts (see Figure 9). If we apply
similar procedures on coarser levels, we ensure thatv1 andvI re-
main connected by a path (potentially a single edge) on the base
domain. This guarantees thatΠ maps the curved feature path onto
the coarsest level edge(s) betweenv1 andvI .

In general, there will be multiple feature paths which may be
closed or cross each other. As usual, a vertex with more than 2
incident feature edges is considered a corner, and marked as unre-
movable.

The feature vertices and paths can be provided by the user or
detected automatically. As an example of the latter case, we con-
sider every edge whose dihedral angle is below a certain threshold
to be a feature edge, and every vertex whose curvature is above a
certain threshold to be a feature vertex. An example of this strategy
is illustrated in Figure 13.

3.2 A Quick Review

Before we consider the problem of remeshing, it may be helpful
to review what we have at this point. We have established an ini-
tial bijectionΠ of the original surfaceϕ(|KL|) onto a base domain
ϕ(|K0|) consisting of a small number of triangles (e.g. Figure 7).
We use a simplification hierarchy (Figure 4) in which the holes af-
ter vertex removal are flattened and retriangulated (Figures 5 and 9).
Original mesh points get successively reparametrized over coarser
triangulations (Figure 6). The resulting mapping is always a bijec-
tion; triangle flipping (Figure 8) is possible but can be corrected.

4 Remeshing

In this section, we consider remeshing using subdivision connectiv-
ity triangulations since it is both a convenient way to illustrate the
properties of a parameterization and is an important subject in its
own right. In the process, we compute a smoothed version of our
initial parameterization. We also show how to efficiently construct
an adaptive remeshing with guaranteed error bounds.

4.1 Uniform Remeshing

SinceΠ is a bijection, we can useΠ−1 to map the base domain
to the original mesh. We follow the strategy used in [7]: regu-
larly (1:4) subdivide the base domain and use the inverse map to
obtain a regular connectivity remeshing. This introduces a hierar-
chy of regular meshes(Qm,Rm) (Q is the point set andR is the
complex) obtained fromm-fold midpoint subdivision of the base
domain(P0,K0) = (Q0,R0). Midpoint subdivision implies that
all new domain points liein the base domain,Qm ⊂ ϕ(|R0|) and
|Rm| = |R0|. All vertices ofRm \R0 have outdegree 6. The
uniform remeshing of the original mesh on levelm is given by
(Π−1(Qm),Rm).

We thus need to computeΠ−1(q) whereq is a point in the base
domain with dyadic barycentric coordinates. In particular, we need
to compute which triangle ofϕ(|KL|) containsΠ−1(q), or, equiv-
alently, which triangle ofΠ(ϕ(|KL|)) containsq. This is a stan-
dardpoint locationproblem in an irregular triangulation. We use
the point location algorithm of Brown and Faigle [2] which avoids
looping that can occur with non-Delaunay meshes [10, 9]. Once we
have found the triangle{i, j, k} which containsq, we can writeq
as

q = αΠ(pi) + βΠ(pj) + γΠ(pk),

and thus

Π−1(q) = αpi + β pj + γ pk ∈ ϕ(|KL|).

Figure 10 shows the result of this procedure: a level 3 uniform
remeshing of a 3-holed torus using theΠ−1 map.

A note on complexity: The point location algorithm is essen-
tially a walk on the finest level mesh with complexityO(

√
N). Hi-

erarchical point location algorithms, which have asymptotic com-
plexityO(logN), exist [15] but have a much larger constant. Given
that we schedule the queries in a systematic order, we almost always
have an excellent starting guess and observe a constant number of
steps. In practice, the finest level “walking” algorithm beats the hi-
erarchical point location algorithms for all meshes we encountered
(up to100K faces).

Figure 10:Remeshing of 3 holed torus using midpoint subdivision.
The parameterization is smooth within each base domain triangle,
but clearly not across base domain triangles.

4.2 Smoothing the Parameterization

It is clear from Figure 10 that the mapping we used is not smooth
across global edges. One way to obtain global smoothness is to
consider a map that minimizes a global smoothness functional and
goes fromϕ(|KL|) to |K0| rather than toϕ(|K0|). This would
require an iterative PDE solver. We have found computation of
mappings to topological realizations that live in a high dimensional
space to be needlessly cumbersome.

Instead, we use a much simpler and cheaper smoothing tech-
nique based on Loop subdivision. The main idea is to computeΠ−1

at a smoothed version of the dyadic points, rather then at the dyadic
points themselves (which can equivalently be viewed as changing
the parameterization). To that end, we define a mapL from the base
domain to itself by the following modification of Loop:
• If all the points of the stencil needed for computing either a new

point or smoothing an old point are inside the same triangle of
the base domain, we can simply apply the Loop weights and the
new points will be in that same face.

• If the stencil stretches across two faces of the base domain, we
flatten them out using a “hinge” map at their common edge.
We then compute the point’s position in this flattened domain
and extract the triangle in which the point lies together with its
barycentric coordinates.

• If the stencil stretches across multiple faces, we use the confor-
mal flattening strategy discussed earlier.

Note that the modifications to Loop forceL to map the base do-
main onto the base domain. We emphasize that we donot apply the
classic Loop scheme (which would produce a “blobby” version of
the base domain). Nor are the surface approximations that we later
produce Loop surfaces.

The composite mapΠ−1 ◦ L is oursmoothed parameterization
that maps the base domain onto the original surface. Them-th
level of uniform remeshing with the smoothed parameterization is
(Π−1 ◦ L(Qm),Rm), whereQm, as before, are the dyadic points
on the base domain. Figure 11 shows the result of this procedure:
a level 3 uniform remeshing of a 3-holed torus using the smoothed
parameterization.

When the mesh is tagged, we cannot apply smoothing across the
tagged edges since this would break the alignment with the features.
Therefore, we use modified versions of Loop which can deal with
corners, dart points and feature edges [14, 23, 26] (see Figure 13).

Figure 11:The same remeshing of the 3-holed torus as in Figure 10,
but this time with respect to a Loop smoothed parameterization.
Note: Because the Loop scheme only enters in smoothing thepa-
rameterizationthe surface shown is still a sampling of the original
mesh,not a Loop surface approximation of the original.

4.3 Adaptive Remeshing

One of the advantages of meshes with subdivision connectivity is
that classical multiresolution and wavelet algorithms can be em-
ployed. The standard wavelet algorithms used, e.g., in image com-
pression, start from the finest level, compute the wavelet transform,
and then obtain an efficient representation by discarding small
wavelet coefficients. Eck et al. [7, 8] as well as Certain et al. [3] fol-
low a similar approach: remesh using a uniformly subdivided grid
followed by decimation through wavelet thresholding. This has the
drawback that in order to resolve a small local feature on the origi-
nal mesh, one may need to subdivide to a very fine level. Each extra

level quadruples the number of triangles, most of which will later
be decimated using the wavelet procedure. Imagine, e.g., a plane
which is coarsely triangulated except for a narrow spike. Making
the spike width sufficiently small, the number of levels needed to
resolve it can be made arbitrarily high.

In this section we present an algorithm which avoids first build-
ing a full tree and later pruning it. Instead, we immediately build the
adaptive mesh with a guaranteed conservative error bound. This is
possible because the DK hierarchy contains the information on how
much subdivision is needed in any given area. Essentially, we let
the irregular DK hierarchy “drive” the adaptive construction of the
regular pyramid.

We first compute for each trianglet ∈ K0 the following error
quantity:

E(t) = max
pi∈PLandΠ(pi)∈ϕ(|t|)

dist(pi, ϕ(|t|)).

This measures the distance between one triangle in the base domain
and the vertices of the finest level mapped to that triangle.

The adaptive algorithm is now straightforward. Set a certain rel-
ative error thresholdε. ComputeE(t) for all triangles of the base
domain. IfE(t)/B, whereB is the largest side of the bounding
box, is larger thanε, subdivide the domain triangle using the Loop
procedure above. Next, we need to reassign vertices to the triangles
of levelm = 1. This is done as follows: For each pointpi ∈ PL
consider the trianglet of K0 to which it it is currently assigned.
Next consider the 4 children oft on level 1,tj with j = 0, 1, 2, 3
and compute the distance betweenpi and each of theϕ(|tj |). As-
signpi to the closest child. Once the finest level vertices have been
reassigned to level 1 triangles, the errors for those triangles can be
computed. Now iterate this procedure until all triangles have an
error below the threshold. Because all errors are computed from
the finest level, we are guaranteed to resolve all features within the
error bound. Note that we are not computing the true distance be-
tween the original vertices and a given approximation, but rather an
easy to compute upper bound for it.

In order to be able to compute the Loop smoothing mapL on
an adaptively subdivided grid, the grid needs to satisfy avertex re-
striction criterion, i.e., if a vertex has a triangle incident to it with
depthi, then it must have a complete 1-ring at leveli−1 [28]. This
restriction may necessitate subdividing some triangles even if they
are below the error threshold. Examples of adaptive remeshing can
be seen in Figure 1 (lower left), Figure 12, and Figure 13.

Figure 12:Example remesh of a surface with boundaries.

5 Results

We have implemented MAPS as described above and applied it to
a number of well known example datasets, as well as some new

ones. The application was written in C++ using standard compu-
tational geometry data structures, see e.g. [21], and all timings re-
ported in this section were measured on a 200 MHz PentiumPro
personal computer.

Figure 13: Left (top to bottom): three levels in the DK pyramid,
finest (L = 15) with 12946, intermediate (l = 8) with 1530, and
coarsest (l = 0) with 168 triangles. Feature edges, dart and cor-
ner vertices survive on the base domain. Right (bottom to top):
adaptive mesh withε = 5% and 1120 triangles (bottom),ε = 1%
and 3430 triangles (middle), and uniform level 3 (top). (Original
dataset courtesy University of Washington.)

The first example used throughout the text is the 3-holed torus.
The original mesh contained 11776 faces. These were reduced in
the DK hierarchy to 120 faces over 14 levels implying an average
removal of 30% of the faces on a given level. The remesh of Fig-
ure 11 used 4 levels of uniform subdivision for a total of 30720
triangles.

The original sampled geometry of the 3-holed torus is smooth
and did not involve any feature constraints. A more challenging
case is presented by the fandisk shown in Figure 13. The original
mesh (top left) contains 12946 triangles which were reduced to 168

Figure 14: Example of a constrained parameterization based on user input. Top: original input mesh (100000 triangles) with edge tags
superimposed in red, green lines show some smooth iso-parameter lines of our parameterization. The middle shows an adaptive subdivision
connectivity remesh. The bottom one patches corresponding to the eye regions (right eye was constrained, left eye was not) are highlighted to
indicate the resulting alignment of top level patches with the feature lines. (Dataset courtesy Cyberware.)

faces in the base domain over 15 levels (25% average face removal
per level). The initial mesh had all edges with dihedral angles be-
low 75o tagged (1487 edges), resulting in 141 tagged edges at the
coarsest level. Adaptive remeshing to withinε = 5% andε = 1%
(fraction of longest bounding box side) error results in the meshes
shown in the right column. The top right image shows a uniform
resampling to level 3, in effect showing iso-parameter lines of the
parameterization used for remeshing. Note how the iso-parameter
lines conform perfectly to the initially tagged features.

This dataset demonstrates one of the advantages of our method—
inclusion of feature constraints—over the earlier work of Eck et
al. [7]. In the original PM paper [12, Figure 12], Hoppe shows the
simplification of the fandisk based on Eck’s algorithm which does
not use tagging. He points out that the multiresolution approxima-
tion is quite poor at low triangle counts and consequently requires
many triangles to achieve high accuracy. The comparison between
our Figure 13 and Figure 12 in [12] demonstrates that our multires-
olution algorithm which incorporates feature tagging solves these
problems.

Another example of constrained parameterization and subse-
quent adaptive remeshing is shown in Figure 14. The original
dataset (100000 triangles) is shown on the left. The red lines in-
dicate user supplied feature constraints which may facilitate subse-
quent animation. The green lines show some representative iso-
parameter lines of our parameterization subject to the red fea-
ture constraints. Those can be used for computing texture coor-
dinates. The middle image shows an adaptive subdivision connec-
tivity remesh with 74698 triangles (ε = 0.5%). On the right we
have highlighted a group of patches, 2 over the right (constrained)
eye and 1 over the left (unconstrained) eye. This indicates how user
supplied constraints force domain patches to align with desired fea-
tures. Other enforced patch boundaries are the eyebrows, center
of the nose, and middle of lips (see red lines in left image). This

example illustrates how one places constraints like Krishnamurthy
and Levoy [17]. We remove the need in their algorithms to specify
the entire base domain. A user may want to control patch outlines
for editing in one region (e.g., on the face), but may not care about
what happens in other regions (e.g., the back of the head).

We present a final example in Figure 1. The original mesh
(96966 triangles) is shown on the top left, with the adaptive, subdi-
vision connectivity remesh on the bottom left. This remesh was
subsequently edited in a interactive multiresolution editing sys-
tem [28] and the result is shown on the bottom middle.

6 Conclusions and Future Research

We have described an algorithm which establishes smooth parame-
terizations for irregular connectivity, 2-manifold triangular meshes
of arbitrary topology. Using a variant of the DK hierarchy con-
struction, we simplify the original mesh and use piecewise linear
approximations of conformal mappings to incrementally build a
parameterization of the original mesh over a low face count base
domain. This parameterization is further improved through a hier-
archical smoothing procedure which is based on Loop smoothing in
parameter space. The resulting parameterizations are of high qual-
ity, and we demonstrated their utility in an adaptive, subdivision
connectivity remeshing algorithm that has guaranteed error bounds.
The new meshes satisfy the requirements of multiresolution repre-
sentations which generalize classical wavelet representations and
are thus of immediate use in applications such as multiresolution
editing and compression. Using edge and vertex constraints, the
parameterizations can be forced to respect feature lines of interest
without requiring specification of the entire patch network.

In this paper we have chosen remeshing as the primary applica-
tion to demonstrate the usefulness of the parameterizations we pro-

Dataset Input size Hierarchy Levels P0 size Remeshing Remesh Output size
(triangles) creation (triangles) tolerance creation (triangles)

3-hole 11776 18 (s) 14 120 (NA) 8 (s) 30720
fandisk 12946 23 (s) 15 168 1% 10 (s) 3430
fandisk 12946 23 (s) 15 168 5% 5 (s) 1130
head 100000 160 (s) 22 180 0.5% 440 (s) 74698
horse 96966 163 (s) 21 254 1% 60 (s) 15684
horse 96966 163 (s) 21 254 0.5% 314 (s) 63060

Table 1:Selected statistics for the examples discussed in the text. All times are in seconds on a 200 MHz PentiumPro.

duce. The resulting meshes may also find application in numerical
analysis algorithms, such as fast multigrid solvers. Clearly there
are many other applications which benefit from smooth parame-
terizations, e.g., texture mapping and morphing, which would be
interesting to pursue in future work. Because of its independent set
selection the standard DK hierarchy creates topologically uniform
simplifications. We have begun to explore how the selection can
be controlled using geometric properties. Alternatively, one could
use a PM framework to control geometric criteria of simplification.
Perhaps the most interesting question for future research is how to
incorporate topology changes into the MAPS construction.

Acknowledgments

Aaron Lee and David Dobkin were partially supported by NSF Grant CCR-9643913

and the US Army Research Office Grant DAAH04-96-1-0181. Aaron Lee was also

partially supported by a Wu Graduate Fellowship and a Summer Internship at Bell Lab-

oratories, Lucent Technologies. Peter Schr¨oder was partially supported by grants from

the Intel Corporation, the Sloan Foundation, an NSF CAREER award (ASC-9624957),

a MURI (AFOSR F49620-96-1-0471), and Bell Laboratories, Lucent Technologies.

Special thanks to Timothy Baker, Ken Clarkson, Tom Duchamp, Tom Funkhouser,

Amanda Galtman, and Ralph Howard for many interesting and stimulation discus-

sions. Special thanks also to Andrei Khodakovsky, Louis Thomas, and Gary Wu for

invaluable help in the production of the paper. Our implementation uses the triangle

facet data structure and code of Ernst M¨ucke.

References
[1] BAJAJ, C. L., BERNADINI , F., CHEN, J., AND SCHIKORE, D. R. Automatic

Reconstruction of 3D CAD Models. Tech. Rep. 96-015, Purdue University,
February 1996.

[2] BROWN, P. J. C.,AND FAIGLE, C. T. A Robust Efficient Algorithm for Point
Location in Triangulations. Tech. rep., Cambridge University, February 1997.

[3] CERTAIN, A., POPOVIĆ, J., DEROSE, T., DUCHAMP, T., SALESIN, D., AND

STUETZLE, W. Interactive Multiresolution Surface Viewing. InComputer
Graphics (SIGGRAPH 96 Proceedings), 91–98, 1996.

[4] COHEN, J., MANOCHA, D., AND OLANO, M. Simplifying Polygonal Models
Using Successive Mappings. InProceedings IEEE Visualization 97, 395–402,
October 1997.

[5] DOBKIN, D., AND KIRKPATRICK, D. A Linear Algorithm for Determining the
Separation of Convex Polyhedra.Journal of Algorithms 6(1985), 381–392.

[6] DUCHAMP, T., CERTAIN, A., DEROSE, T., AND STUETZLE, W. Hierarchical
Computation of PL harmonic Embeddings. Tech. rep., University of Washington,
July 1997.

[7] ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND

STUETZLE, W. Multiresolution Analysis of Arbitrary Meshes. InComputer
Graphics (SIGGRAPH 95 Proceedings), 173–182, 1995.

[8] ECK, M., AND HOPPE, H. Automatic Reconstruction of B-Spline Surfaces of
Arbitrary Topological Type. InComputer Graphics (SIGGRAPH 96 Proceed-
ings), 325–334, 1996.

[9] GARLAND , M., AND HECKBERT, P. S. Fast Polygonal Approximation of Ter-
rains and Height Fields. Tech. Rep. CMU-CS-95-181, CS Dept., Carnegie Mel-
lon U., September 1995.

[10] GUIBAS, L., AND STOLFI, J. Primitives for the Manipulation of General Subdi-
visions and the Computation of Voronoi Diagrams.ACM Transactions on Graph-
ics 4, 2 (April 1985), 74–123.

[11] HECKBERT, P. S.,AND GARLAND , M. Survey of Polygonal Surface Simplifi-
cation Algorithms. Tech. rep., Carnegie Mellon University, 1997.

[12] HOPPE, H. Progressive Meshes. InComputer Graphics (SIGGRAPH 96 Pro-
ceedings), 99–108, 1996.

[13] HOPPE, H. View-Dependent Refinement of Progressive Meshes. InComputer
Graphics (SIGGRAPH 97 Proceedings), 189–198, 1997.

[14] HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEAD, M., JIN, H., MCDON-
ALD , J., SCHWEITZER, J., AND STUETZLE, W. Piecewise Smooth Surface
Reconstruction. InComputer Graphics (SIGGRAPH 94 Proceedings), 295–302,
1994.

[15] KIRKPATRICK, D. Optimal Search in Planar Subdivisions.SIAM J. Comput. 12
(1983), 28–35.

[16] KLEIN, A., CERTAIN, A., DEROSE, T., DUCHAMP, T., AND STUETZLE, W.
Vertex-based Delaunay Triangulation of Meshes of Arbitrary Topological Type.
Tech. rep., University of Washington, July 1997.

[17] KRISHNAMURTHY, V., AND LEVOY, M. Fitting Smooth Surfaces to Dense
Polygon Meshes. InComputer Graphics (SIGGRAPH 96 Proceedings), 313–
324, 1996.

[18] LOOP, C. Smooth Subdivision Surfaces Based on Triangles. Master’s thesis,
University of Utah, Department of Mathematics, 1987.

[19] LOUNSBERY, M. Multiresolution Analysis for Surfaces of Arbitrary Topological
Type. PhD thesis, Department of Computer Science, University of Washington,
1994.

[20] LOUNSBERY, M., DEROSE, T., AND WARREN, J. Multiresolution Analysis for
Surfaces of Arbitrary Topological Type.Transactions on Graphics 16, 1 (January
1997), 34–73.

[21] MÜCKE, E. P. Shapes and Implementations in Three-Dimensional Geome-
try. Technical Report UIUCDCS-R-93-1836, University of Illinois at Urbana-
Champaign, 1993.

[22] SCHRÖDER, P., AND SWELDENS, W. Spherical Wavelets: Efficiently Repre-
senting Functions on the Sphere. InComputer Graphics (SIGGRAPH 95 Pro-
ceedings), Annual Conference Series, 1995.

[23] SCHWEITZER, J. E. Analysis and Application of Subdivision Surfaces. PhD
thesis, University of Washington, 1996.

[24] SPANIER, E. H. Algebraic Topology. McGraw-Hill, New York, 1966.

[25] XIA , J. C.,AND VARSHNEY, A. Dynamic View-Dependent Simplification for
Polygonal Models. InProceedings Visualization 96, 327–334, October 1996.

[26] ZORIN, D. Subdivision and Multiresolution Surface Representations. PhD the-
sis, California Institute of Technology, 1997.

[27] ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. Interpolating Subdivision
for Meshes with Arbitrary Topology. InComputer Graphics (SIGGRAPH 96
Proceedings), 189–192, 1996.

[28] ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. Interactive Multiresolution
Mesh Editing. InComputer Graphics (SIGGRAPH 97 Proceedings), 259–268,
1997.

Chapter 10

Subdivision Surfaces in the Making of

Geri’s Game

Speaker: Tony DeRose

Subdivision Surfaces in Character Animation

Tony DeRose Michael Kass Tien Truong

Pixar Animation Studios

Figure 1: Geri.

Abstract

The creation of believable and endearing characters in computer
graphics presents a number of technical challenges, including the
modeling, animation and rendering of complex shapes such as
heads, hands, and clothing. Traditionally, these shapes have been
modeled with NURBS surfaces despite the severe topological re-
strictions that NURBS impose. In order to move beyond these re-
strictions, we have recently introduced subdivision surfaces into our
production environment. Subdivision surfaces are not new, but their
use in high-end CG production has been limited.

Here we describe a series of developments that were required
in order for subdivision surfaces to meet the demands of high-end
production. First, we devised a practical technique for construct-

ing provably smooth variable-radius fillets and blends. Second, we
developed methods for using subdivision surfaces in clothing sim-
ulation including a new algorithm for efficient collision detection.
Third, we developed a method for constructing smooth scalar fields
on subdivision surfaces, thereby enabling the use of a wider class
of programmable shaders. These developments, which were used
extensively in our recently completed short filmGeri’s game, have
become a highly valued feature of our production environment.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling; I.3.3 [Computer Graphics]: Pic-
ture/Image Generation.

1 Motivation

The most common way to model complex smooth surfaces such
as those encountered in human character animation is by using a
patchwork of trimmed NURBS. Trimmed NURBS are used pri-
marily because they are readily available in existing commercial
systems such as Alias-Wavefront and SoftImage. They do, how-
ever, suffer from at least two difficulties:

1. Trimming is expensive and prone to numerical error.

2. It is difficult to maintain smoothness, or even approximate
smoothness, at the seams of the patchwork as the model is

Figure 2: The control mesh for Geri’s head, created by digitizing a
full-scale model sculpted out of clay.

animated. As a case in point, considerable manual effort was
required to hide the seams in the face of Woody, a principal
character inToy Story.

Subdivision surfaces have the potential to overcome both of these
problems: they do not require trimming, and smoothness of the
model is automatically guaranteed, even as the model animates.

The use of subdivision in animation systems is not new, but for a
variety of reasons (several of which we address in this paper), their
use has not been widespread. In the mid 1980s for instance, Sym-
bolics was possibly the first to use subdivision in their animation
system as a means of creating detailed polyhedra. The LightWave
3D modeling and animation system from NewTek also uses subdi-
vision in a similar fashion.

This paper describes a number of issues that arose when we
added a variant of Catmull-Clark [2] subdivision surfaces to our
animation and rendering systems, Marionette and RenderMan [17],
respectively. The resulting extensions were used heavily in the cre-
ation of Geri (Figure 1), a human character in our recently com-
pleted short filmGeri’s game. Specifically, subdivision surfaces
were used to model the skin of Geri’s head (see Figure 2), his hands,
and his clothing, including his jacket, pants, shirt, tie, and shoes.

In contrast to previous systems such as those mentioned above,
that use subdivision as a means to embellish polygonal models, our
system uses subdivision as a means to define piecewise smooth sur-
faces. Since our system reasons about the limit surface itself, polyg-
onal artifacts are never present, no matter how the surface animates
or how closely it is viewed.

The use of subdivision surfaces posed new challenges through-
out the production process, from modeling and animation to ren-
dering. In modeling, subdivision surfaces free the designer from
worrying about the topological restrictions that haunt NURBS mod-
elers, but they simultaneously prevent the use of special tools that
have been developed over the years to add features such as variable
radius fillets to NURBS models. In Section 3, we describe an ap-
proach for introducing similar capabilities into subdivision surface
models. The basic idea is to generalize the infinitely sharp creases
of Hoppeet. al. [10] to obtain semi-sharp creases – that is, creases
whose sharpness can vary from zero (meaning smooth) to infinite.

Once models have been constructed with subdivision surfaces,
the problems of animation are generally easier than with corre-
sponding NURBS surfaces because subdivision surface models are
seamless, so the surface is guaranteed to remain smooth as the
model is animated. Using subdivision surfaces for physically-based

(a) (b)

(c) (d)

Figure 3: Recursive subdivision of a topologically complicated
mesh: (a) the control mesh; (b) after one subdivision step; (c) after
two subdivision steps; (d) the limit surface.

animation of clothing, however, poses its own difficulties which we
address in Section 4. First, it is necessary to express the energy
function of the clothing on subdivision meshes in such a way that
the resulting motion does not inappropriately reveal the structure
of the subdivision control mesh. Second, in order for a physical
simulator to make use of subdivision surfaces it must compute col-
lisions very efficiently. While collisions of NURBS surfaces have
been studied in great detail, little work has been done previously
with subdivision surfaces.

Having modeled and animated subdivision surfaces, some
formidable challenges remain before they can be rendered. The
topological freedom that makes subdivision surfaces so attractive
for modeling and animation means that they generally do not
admit parametrizations suitable for texture mapping. Solid tex-
tures [12, 13] and projection textures [9] can address some pro-
duction needs, but Section 5.1 shows that it is possible to go a good
deal further by using programmable shaders in combination with
smooth scalar fields defined over the surface.

The combination of semi-sharp creases for modeling, an appro-
priate and efficient interface to physical simulation for animation,
and the availability of scalar fields for shading and rendering have
made subdivision surfaces an extremely effective tool in our pro-
duction environment.

2 Background

A single NURBS surface, like any other parametric surface, is lim-
ited to representing surfaces which are topologically equivalent to
a sheet, a cylinder or a torus. This is a fundamental limitation for
any surface that imposes a global planar parameterization. A single
subdivision surface, by contrast, can represent surfaces of arbitrary
topology. The basic idea is to construct a surface from an arbitrary
polyhedron by repeatedly subdividing each of the faces, as illus-
trated in Figure 3. If the subdivision is done appropriately, the limit
of this subdivision process will be a smooth surface.

Catmull and Clark [2] introduced one of the first subdivision
schemes. Their method begins with an arbitrary polyhedron called

the control mesh. The control mesh, denotedM0 (see Figure 3(a)),
is subdivided to produce the meshM1 (shown in Figure 3(b)) by
splitting each face into a collection of quadrilateral subfaces. A
face havingn edges is split inton quadrilaterals. The vertices of
M1 are computed using certain weighted averages as detailed be-
low. The same subdivision procedure is used again onM1 to pro-
duce the meshM2 shown in Figure 3(c). The subdivision surface is
defined to be the limit of the sequence of meshesM0;M1; ::: created
by repeated application of the subdivision procedure.

To describe the weighted averages used by Catmull and Clark it
is convenient to observe that each vertex ofMi+1 can be associated
with either a face, an edge, or a vertex ofMi ; these are called face,
edge, and vertex points, respectively. This association is indicated
in Figure 4 for the situation around a vertexv0 of M0. As indicated
in the figure, we usef ’s to denote face points,e’s to denote edge
points, andv’s to denote vertex points. Face points are positioned
at the centroid of the vertices of the corresponding face. An edge
point ei+1

j , as indicated in Figure 4 is computed as

ei+1
j =

vi +ei
j + f i+1

j�1+ f i+1
j

4
; (1)

where subscripts are taken modulo the valence of the central vertex
v0. (The valence of a vertex is the number of edges incident to it.)
Finally, a vertex pointvi is computed as

vi+1 =
n�2

n
vi +

1
n2 ∑

j
ei

j +
1
n2 ∑

j
f i+1
j (2)

Vertices of valence 4 are called ordinary; others are called extraor-
dinary.

v1

v0

e1
1

e1
0

en
0

e2
0

f 1
1

f 2
1

e3
1

e2
1

f n
1

e3
0

Figure 4: The situation around a vertexv0 of valencen.

These averaging rules — also called subdivision rules, masks, or
stencils — are such that the limit surface can be shown to be tangent
plane smooth no matter where the control vertices are placed [14,
19].1

Whereas Catmull-Clark subdivision is based on quadrilaterals,
Loop’s surfaces [11] and the Butterfly scheme [6] are based on tri-
angles. We chose to base our work on Catmull-Clark surfaces for
two reasons:

1. They strictly generalize uniform tensor product cubic B-
splines, making them easier to use in conjunction with exist-
ing in-house and commercial software systems such as Alias-
Wavefront and SoftImage.

2. Quadrilaterals are often better than triangles at capturing the
symmetries of natural and man-made objects. Tube-like sur-
faces — such as arms, legs, and fingers — for example, can
be modeled much more naturally with quadrilaterals.

1Technical caveat for the purist: The surface is guaranteed to be smooth
except for control vertex positions in a set of measure zero.

Figure 5: Geri’s hand as a piecewise smooth Catmull-Clark surface.
Infinitely sharp creases are used between the skin and the finger
nails.

Figure 6: A surface where boundary edges are tagged as sharp and
boundary vertices of valence two are tagged as corners. The control
mesh is yellow and the limit surface is cyan.

Following Hoppeet. al.[10] it is possible to modify the subdivi-
sion rules to create piecewise smooth surfaces containing infinitely
sharp features such as creases and corners. This is illustrated in
Figure 5 which shows a close-up shot of Geri’s hand. Infinitely
sharp creases were used to separate the skin of the hand from the
finger nails. Sharp creases can be modeled by marking a subset
of the edges of the control mesh as sharp and then using specially
designed rules in the neighborhood of sharp edges. Appendix A
describes the necessary special rules and when to use them.

Again following Hoppeet. al., we deal with boundaries of the
control mesh by tagging the boundary edges as sharp. We have also
found it convenient to tag boundary vertices of valence 2 as corners,
even though they would normally be treated as crease vertices since
they are incident to two sharp edges. We do this to mimic the behav-
ior of endpoint interpolating tensor product uniform cubic B-spline
surfaces, as illustrated in Figure 6.

3 Modeling fillets and blends

As mentioned in Section 1 and shown in Figure 5, infinitely sharp
creases are very convenient for representing piecewise-smooth sur-
faces. However, real-world surfaces are never infinitely sharp. The
corner of a tabletop, for instance, is smooth when viewed suffi-
ciently closely. For animation purposes it is often desirable to cap-
ture such tightly curved shapes.

To this end we have developed a generalization of the Catmull-

Clark scheme to admit semi-sharp creases – that is, creases of con-
trollable sharpness, a simple example of which is shown in Figure 7.

(a) (b)

(c) (d)

(e)

Figure 7: An example of a semi-sharp crease. The control mesh for
each of these surfaces is the unit cube, drawn in wireframe, where
crease edges are red and smooth edges are yellow. In (a) the crease
sharpness is 0, meaning that all edges are smooth. The sharpnesses
for (b), (c), (d), and (e) are 1, 2, 3, and infinite, respectively.

One approach to achieve semi-sharp creases is to develop subdi-
vision rules whose weights are parametrized by the sharpnesss of
the crease. This approach is difficult because it can be quite hard
to discover rules that lead to the desired smoothness properties of
the limit surfaces. One of the roadblocks is that subdivision rules
around a crease break a symmetry possessed by the smooth rules:
typical smooth rules (such as the Catmull-Clark rules) are invariant
under cyclic reindexing, meaning that discrete Fourier transforms
can be used to prove properties for vertices of arbitrary valence (cf.
Zorin [19]). In the absence of this invariance, each valence must
currently be considered separately, as was done by Schweitzer [15].
Another difficulty is that such an approach is likely to lead to a
zoo of rules depending on the number and configuration of creases
through a vertex. For instance, a vertex with two semi-sharp creases
passing through it would use a different set of rules than a vertex
with just one crease through it.

Our approach is to use a very simple process we call hybrid sub-
division. The general idea is to use one set of rules for a finite but

arbitrary number of subdivision steps, followed by another set of
rules that are applied to the limit. Smoothness therefore depends
only on the second set of rules. Hybrid subdivision can be used to
obtain semi-sharp creases by using infinitely sharp rules during the
first few subdivision steps, followed by use of the smooth rules for
subsequent subdivision steps. Intuitively this leads to surfaces that
are sharp at coarse scales, but smooth at finer scales.

Now the details. To set the stage for the general situation where
the sharpness can vary along a crease, we consider two illustrative
special cases.

Case 1: A constant integer sharpnesss crease: We subdivide
s times using the infinitely sharp rules, then switch to the smooth
rules. In other words, an edge of sharpnesss> 0 is subdivided us-
ing the sharp edge rule. The two subedges created each have sharp-
nesss� 1. A sharpnesss= 0 edge is considered smooth, and it
stays smooth for remaining subdivisions. In the limit wheres! ∞
the sharp rules are used for all steps, leading to an infinitely sharp
crease. An example of integer sharpness creases is shown in Fig-
ure 7. A more complicated example where two creases of different
sharpnesses intersect is shown in Figure 8.

(a) (b)

(c) (d)

Figure 8: A pair of crossing semi-sharp creases. The control mesh
for all surfaces is the octahedron drawn in wire frame. Yellow de-
notes smooth edges, red denotes the edges of the first crease, and
magenta denotes the edges of the second crease. In (a) the crease
sharpnesses are both zero; in (b), (c), and (d) the sharpness of the
red crease is 4. The sharpness of the magenta crease in (b), (c), and
(d) is 0, 2, and 4, respectively.

Case 2:A constant, but not necessarily integer sharpnesss: the
main idea here is to interpolate between adjacent integer sharp-
nesses. Lets# ands" denote the floor and ceiling ofs, respectively.
Imagine creating two versions of the crease: the first obtained by
subdividings# times using the sharp rules, then subdividing one ad-
ditional time using the smooth rules. Call the vertices of this first
versionv#0;v#1; :::. The second version, the vertices of which we
denote byv"0;v"1; :::, is created by subdividings" times using the
sharp rules. We take thes"-times subdivided semi-sharp crease to

Figure 9: A simple example of a variable sharpness crease. The
edges of the bottom face of the cubical control mesh are infinitely
sharp. Three edges of the top face form a single variable sharpness
crease with edge sharpnesses set to 2 (the two magenta edges), and
4 (the red edge).

have vertex positionsvs"
i computed via simple linear interpolation:

vs"
i = (1�σ)v#i +σv"i (3)

whereσ = (s�s#)=(s" �s#). Subsequent subdivisions are done us-
ing the smooth rules. In the case where all creases have the same
non-integer sharpnesss, the surface produced by the above process
is identical to the one obtained by linearly interpolating between
the integer sharpness limit surfaces corresponding tos# ands". Typ-
ically, however, crease sharpnesses will not all be equal, meaning
that the limit surface is not a simple blend of integer sharpness sur-
faces.

The more general situation where crease sharpness is non-integer
and varies along a crease is presented in Appendix B. Figure 9 de-
picts a simple example. A more complex use of variable sharpness
is shown in Figure 10.

4 Supporting cloth dynamics

The use of simulated physics to animate clothing has been widely
discussed in the literature (cf. [1, 5, 16]). Here, we address the
issues that arise when interfacing a physical simulator to a set of
geometric models constructed out of subdivision surfaces. It is not
our intent in this section to detail our cloth simulation system fully
– that would require an entire paper of its own. Our goal is rather to
highlight issues related to the use of subdivision surfaces to model
both kinematic and dynamic objects.

In Section 4.1 we define the behavior of the cloth material by
constructing an energy functional on the subdivision control mesh.
If the material properties such as the stiffness of the cloth vary over
the surface, one or more scalar fields (see Section 5.1) must be de-
fined to modulate the local energy contributions. In Section 4.2 we
describe an algorithm for rapidly identifying potential collisions in-
volving the cloth and/or kinematic obstacles. Rapid collision detec-
tion is crucial to achieving acceptable performance.

Figure 10: A more complex example of variable sharpness creases.
This model, inspired by an Edouard Lanteri sculpture, contains nu-
merous variable sharpness creases to reduce the size of the control
mesh. The control mesh for the model made without variable sharp-
ness creases required 840 faces; with variable sharpness creases the
face count dropped to 627. Model courtesy of Jason Bickerstaff.

4.1 Energy functional

For physical simulation, the basic properties of a material are gen-
erally specified by defining an energy functional to represent the
attraction or resistance of the material to various possible deforma-
tions. Typically, the energy is either specified as a surface integral
or as a discrete sum of terms which are functions of the positions of
surface samples or control vertices. The first type of specification
typically gives rise to a finite-element approach, while the second
is associated more with finite-difference methods.

Finite-element approaches are possible with subdivision sur-
faces, and in fact some relevant surface integrals can be computed
analytically [8]. In general, however, finite-element surface in-
tegrals must be estimated through numerical quadrature, and this
gives rise to a collection of special cases around extraordinary
points. We chose to avoid these special cases by adopting a finite-
difference approach, approximating the clothing with a mass-spring
model [18] in which all the mass is concentrated at the control
points.

Away from extraordinary points, Catmull-Clark meshes under
subdivision become regular quadrilateral grids. This makes them
ideally suited for representing woven fabrics which are also gen-
erally described locally by a gridded structure. In constructing the
energy functions for clothing simulation, we use the edges of the
subdivision mesh to correspond with the warp and weft directions
of the simulated woven fabrics.

Since most popular fabrics stretch very little along the warp
or weft directions, we introduce relatively strong fixed rest-length
springs along each edge of the mesh. More precisely, for each edge
from p1 to p2, we add an energy termksEs(p1; p2) where

Es(p1; p2) =
1
2

�
jp1� p2j

jp�1� p�2j
�1

�2

: (4)

Here,p�1 and p�2 are the rest positions of the two vertices, andks is

the corresponding spring constant.
With only fixed-length springs along the mesh edges, the simu-

lated clothing can undergo arbitrary skew without penalty. One way
to prevent the skew is to introduce fixed-length springs along the
diagonals. The problem with this approach is that strong diagonal
springs make the mesh too stiff, and weak diagonal springs allow
the mesh to skew excessively. We chose to address this problem
by introducing an energy term which is proportional to the product
of the energies of two diagonal fixed-length springs. Ifp1 and p2
are vertices along one diagonal of a quadrilateral mesh face andp3
andp4 are vertices along the other diagonal, the energy is given by
kdEd(p1; p2; p3; p4) wherekd is a scalar parameter that functions
analagously to a spring constant, and where

Ed(p1; p2; p3; p4) = Es(p1; p2)Es(p3; p4): (5)

The energyEd(p1; p2; p3; p4) reaches its minimum at zero when
either of the diagonals of the quadrilateral face are of the original
rest length. Thus the material can fold freely along either diago-
nal, while resisting skew to a degree determined bykd. We some-
times use weak springs along the diagonals to keep the material
from wrinkling too much.

With the fixed-length springs along the edges and the diagonal
contributions to the energy, the simulated material, unlike real cloth,
can bend without penalty. To add greater realism to the simulated
cloth, we introduce an energy term that establishes a resistance to
bending along virtual threads. Virtual threads are defined as a se-
quence of vertices. They follow grid lines in regular regions of the
mesh, and when a thread passes through an extraordinary vertex of
valencen, it continues by exiting along the edgebn=2c-edges away
in the clockwise direction. Ifp1; p2; and p3 are three points along
a virtual thread, the anti-bending component of the energy is given
by kpEp(p1; p2; p3) where

Ep(p1; p2; p3) =
1
2
� [C(p1; p2; p3)�C(p�1; p

�
2; p

�
3)]

2 (6)

C(p1; p2; p3) =

���� p3� p2

jp�3� p�2j
�

p2� p1

jp�2� p�1j

���� (7)

andp�1; p
�
2; andp�3 are the rest positions of the three points.

By adjustingks, kd and kp both globally and locally, we have
been able to simulate a reasonably wide variety of cloth behavior. In
the production ofGeri’s game, we found that Geri’s jacket looked a
great deal more realistic when we modulatedkp over the surface of
the jacket in order to provide more stiffness on the shoulder pads, on
the lapels, and in an area under the armpits which is often reinforced
in real jackets. Methods for specifying scalar fields likekp over a
subdivision surface are discussed in more detail in section 5.1.

4.2 Collisions

The simplest approach to detecting collisions in a physical simula-
tion is to test each geometric element (i.e. point, edge, face) against
each other geometric element for a possible collision. WithN geo-
metric elements, this would takeN2 time, which is prohibitive for
largeN. To achieve practical running times for large simulations,
the number of possible collisions must be culled as rapidly as possi-
ble using some type of spatial data structure. While this can be done
in a variety of different ways, there are two basic strategies: we
can distribute the elements into a two-dimensional surface-based
data structure, or we can distribute them into a three-dimensional
volume-based data structure. Using a two-dimensional structure
has several advantages if the surface connectivity does not change.
First, the hierarchy can be fixed, and need not be regenerated each
time the geometry is moved. Second, the storage can all be stati-
cally allocated. Third, there is never any need to rebalance the tree.

Finally, very short edges in the surface need not give rise to deep
branches in the tree, as they would using a volume-based method.

It is a simple matter to construct a suitable surface-based data
structure for a NURBS surface. One method is to subdivide the
(s;t) parameter plane recursively into an quadtree. Since each node
in the quadtree represents a subsquare of the parameter plane, a
bounding box for the surface restricted to the subsquare can be
constructed. An efficient method for constructing the hierarchy of
boxes is to compute bounding boxes for the children using the con-
vex hull property; parent bounding boxes can then be computed in a
bottom up fashion by unioning child boxes. Having constructed the
quadtree, we can find all patches withinε of a point p as follows.
We start at the root of the quadtree and compare the bounding box
of the root node with a box of size 2ε centered onp. If there is
no intersection, then there are no patches withinε of p. If there is
an intersection, then we repeat the test on each of the children and
recurse. The recursion terminates at the leaf nodes of the quadtree,
where bounding boxes of individual subpatches are tested against
the box aroundp.

Subdivision meshes have a natural hierarchy for levels finer than
the original unsubdivided mesh, but this hierarchy is insufficient
because even the unsubdivided mesh may have too many faces to
test exhaustively. Since there is there is no global(s;t) plane from
which to derive a hierarchy, we instead construct a hierarchy by
“unsubdividing” or “coarsening” the mesh: We begin by forming
leaf nodes of the hierarchy, each of which corresponds to a face
of the subdivision surface control mesh. We then hierarchically
merge faces level by level until we finish with a single merged face
corresponding to the entire subdivision surface.

The process of merging faces proceeds as follows. In order to
create thè th level in the hierarchy, we first mark all non-boundary
edges in thè �1st level as candidates for merging. Then until all
candidates at thèth level have been exhausted, we pick a candidate
edgee, and remove it from the mesh, thereby creating a “superface”
f � by merging the two facesf1 and f2 that sharede: The hierarchy
is extended by creating a new node to representf � and making its
children be the nodes corresponding tof1 and f2. If f � were to
participate immediately in another merge, the hierarchy could be-
come poorly balanced. To ensure against that possibility, we next
remove all edges off � from the candidate list. When all the candi-
date edges at one level have been exhausted, we begin the next level
by marking non-boundary edges as candidates once again. Hierar-
chy construction halts when only a single superface remains in the
mesh.

The coarsening hierarchy is constructed once in a preprocessing
phase. During each iteration of the simulation, control vertex posi-
tions change, so the bounding boxes stored in the hierarchy must be
updated. Updating the boxes is again a bottom up process: the cur-
rent control vertex positions are used to update the bounding boxes
at the leaves of the hierarchy. We do this efficiently by storing with
each leaf in the hierarchy a set of pointers to the vertices used to
construct its bounding box. Bounding boxes are then unioned up
the hierarchy. A point can be “tested against” a hierarchy to find
all faces withinε of the point by starting at the root of the hierar-
chy and recursively testing bounding boxes, just as is done with the
NURBS quadtree.

We build a coarsening hierarchy for each of the cloth meshes, as
well as for each of the kinematic obstacles. To determine collisions
between a cloth mesh and a kinematic obstacle, we test each vertex
of the cloth mesh against the hierarchy for the obstacle. To deter-
mine collisions between a cloth mesh and itself, we test each vertex
of the mesh against the hierarchy for the same mesh.

5 Rendering subdivision surfaces

In this section, we introduce the idea of smoothly varying scalar
fields defined over subdivision surfaces and show how they can be
used to apply parametric textures to subdivision surfaces. We then
describe a collection of implementation issues that arose when sub-
division surfaces and scalar fields were added to RenderMan.

5.1 Texturing using scalar fields

NURBS surfaces are textured using four principal methods: para-
metric texture mapping, procedural texture, 3D paint [9], and solid
texture [12, 13]. It is straightforward to apply 3D paint and solid
texturing to virtually any type of primitive, so these techniques
can readily be applied to texture subdivision surfaces. It is less
clear, however, how to apply parametric texture mapping, and more
generally, procedural texturing to subdivision surfaces since, unlike
NURBS, they are not defined parametrically.

With regard to texture mapping, subdivision surfaces are more
akin to polygonal models since neither possesses a global(s;t)
parameter plane. The now-standard method of texture mapping
a polygonal model is to assign texture coordinates to each of the
vertices. If the faces of the polygon consist only of triangles and
quadrilaterals, the texture coordinates can be interpolated across
the face of the polygon during scan conversion using linear or bi-
linear interpolation. Faces with more than four sides pose a greater
challenge. One approach is to pre-process the model by splitting
such faces into a collection of triangles and/or quadrilaterals, us-
ing some averaging scheme to invent texture coordinates at newly
introduced vertices. One difficulty with this approach is that the
texture coordinates are not differentiable across edges of the origi-
nal or pre-processed mesh. As illustrated in Figures 11(a) and (b),
these discontinuities can appear as visual artifacts in the texture,
especially as the model is animated.

(a) (b)

(c) (d)

Figure 11: (a) A texture mapped regular pentagon comprised of
5 triangles; (b) the pentagonal model with its vertices moved; (c)
A subdivision surface whose control mesh is the same 5 triangles
in (a), and where boundary edges are marked as creases; (d) the
subdivision surface with its vertices positioned as in (b).

Fortunately, the situation for subdivision surfaces is profoundly
better than for polygonal models. As we prove in Appendix C,
smoothly varying texture coordinates result if the texture coordi-
nates(s;t) assigned to the control vertices are subdivided using
the same subdivision rules as used for the geometric coordinates
(x;y;z). (In other words, control point positions and subdivision can
be thought of as taking place in a 5-space consisting of(x;y;z;s;t)
coordinates.) This is illustrated in Figure 11(c), where the surface
is treated as a Catmull-Clark surface with infinitely sharp bound-
ary edges. A more complicated example of parametric texture on a
subdivision surface is shown in Figure 12.

As is generally the case in real productions, we used a combi-
nation of texturing methods to create Geri: the flesh tones on his
head and hands were 3D-painted, solid textures were used to add
fine detail to his skin and jacket, and we used procedural texturing
(described more fully below) for the seams of his jacket.

The texture coordinatess and t mentioned above are each in-
stances of a scalar field; that is, a scalar-valued function that varies
over the surface. A scalar fieldf is defined on the surface by as-
signing a valuefv to each of the control verticesv. The proof sketch
in Appendix C shows that the functionf (p) created through sub-
division (wherep is a point on the limit surface) varies smoothly
wherever the subdivision surface itself is smooth.

Scalar fields can be used for more than just parametric texture
mapping — they can be used more generally as arbitrary parameters
to procedural shaders. An example of this occurs on Geri’s jacket.
A scalar field is defined on the jacket that takes on large values for
points on the surface near a seam, and small values elsewhere. The
procedural jacket shader uses the value of the this field to add the
apparent seams to the jacket. We use other scalar fields to darken
Geri’s nostril and ear cavities, and to modulate various physical
parameters of the cloth in the cloth simulator.

We assign scalar field values to the vertices of the control mesh
in a variety of ways, including direct manual assignment. In some
cases, we find it convenient to specify the value of the field directly
at a small number of control points, and then determine the rest by
interpolation using Laplacian smoothing. In other cases, we spec-
ify the scalar field values by painting an intensity map on one or
more rendered images of the surface. We then use a least squares
solver to determine the field values that best reproduce the painted
intensities.

(a) (b)

Figure 12: Gridded textures mapped onto a bandanna modeled us-
ing two subdivision surfaces. One surface is used for the knot, the
other for the two flaps. In (a) texture coordinates are assigned uni-
formly on the right flap and nonuniformly using smoothing on the
left to reduce distortion. In (b) smoothing is used on both sides and
a more realistic texture is applied.

5.2 Implementation issues

We have implemented subdivision surfaces, specifically semi-sharp
Catmull-Clark surfaces, as a new geometric primitive in Render-
Man.

Our renderer, built upon the REYES architecture [4], demands
that all primitives be convertible into grids of micropolygons (i.e.
half-pixel wide quadrilaterals). Consequently, each type of prim-
itive must be capable of splitting itself into a collection of sub-
patches, bounding itself (for culling and bucketing purposes), and
dicing itself into a grid of micropolygons.

Each face of a Catmull-Clark control mesh can be associated
with a patch on the surface, so the first step in rendering a Catmull-
Clark surface is to split it in into a collection of individual patches.
The control mesh for each patch consists of a face of the control
mesh together with neighboring faces and their vertices. To bound
each patch, we use the knowledge that a Catmull-Clark surface lies
within the convex hull of its control mesh. We therefore take the
bounding box of the mesh points to be the bounding box for the
patch. Once bounded, the primitive is tested to determine if it is
diceable; it is not diceable if dicing would produce a grid with too
many micropolygons or a wide range of micropolygon sizes. If
the patch is not diceable, then we split each patch by performing a
subdivision step to create four new subpatch primitives. If the patch
is diceable, it is repeatedly subdivided until it generates a grid with
the required number of micropolygons. Finally, we move each of
the grid points to its limit position using the method described in
Halsteadet. al.[8].

An important property of Catmull-Clark surfaces is that they
give rise to bicubic B-splines patches for all faces except those in
the neighborhood of extraordinary points or sharp features. There-
fore, at each level of splitting, it is often possible to identify one or
more subpatches as B-spline patches. As splitting proceeds, more
of the surface can be covered with B-spline patches. Exploiting
this fact has three advantages. First, the fixed 4� 4 size of a B-
spline patch allows for efficiency in memory usage because there
is no need to store information about vertex connectivity. Second,
the fact that a B-spline patch, unlike a Catmull-Clark patch, can be
split independently in either parametric direction makes it possible
to reduce the total amount of splitting. Third, efficient and well
understood forward differencing algorithms are available to dice B-
spline patches [7].

We quickly learned that an advantage of semi-sharp creases over
infinitely sharp creases is that the former gives smoothly varying
normals across the crease, while the latter does not. This implies
that if the surface is displaced in the normal direction in a creased
area, it will tear at an infinitely sharp crease but not at a semi-sharp
one.

6 Conclusion

Our experience using subdivision surfaces in production has been
extremely positive. The use of subdivision surfaces allows our
model builders to arrange control points in a way that is natural
to capture geometric features of the model (see Figure 2), without
concern for maintaining a regular gridded structure as required by
NURBS models. This freedom has two principal consequences.
First, it dramatically reduces the time needed to plan and build an
initial model. Second, and perhaps more importantly, it allows the
initial model to be refined locally. Local refinement is not possi-
ble with a NURBS surface, since an entire control point row, or
column, or both must be added to preserve the gridded structure.
Additionally, extreme care must be taken either to hide the seams
between NURBS patches, or to constrain control points near the
seam to create at least the illusion of smoothness.

By developing semi-sharp creases and scalar fields for shading,

we have removed two of the important obstacles to the use of subdi-
vision surfaces in production. By developing an efficient data struc-
ture for culling collisions with subdivisions, we have made subdi-
vision surfaces well suited to physical simulation. By developing a
cloth energy function that takes advantage of Catmull-Clark mesh
structure, we have made subdivision surfaces the surfaces of choice
for our clothing simulations. Finally, by introducing Catmull-Clark
subdivision surfaces into our RenderMan implementation, we have
shown that subdivision surfaces are capable of meeting the demands
of high-end rendering.

A Infinitely Sharp Creases

Hoppe et. al. [10] introduced infinitely sharp features such as
creases and corners into Loop’s surfaces by modifying the subdi-
vision rules in the neighborhood of a sharp feature. The same can
be done for Catmull-Clark surfaces, as we now describe.

Face points are always positioned at face centroids, independent
of which edges are tagged as sharp. Referring to Figure 4, suppose
the edgevi ei

j has been tagged as sharp. The corresponding edge
point is placed at the edge midpoint:

ei+1
j =

vi +ei
j

2
: (8)

The rule to use when placing vertex points depends on the number
of sharp edges incident at the vertex. A vertex with one sharp edge
is called a dart and is placed using the smooth vertex rule from
Equation 2. A vertexvi with two incident sharp edges is called a
crease vertex. If these sharp edges areei

j v
i andviei

k, the vertex point

vi+1 is positioned using the crease vertex rule:

vi+1 =
ei

j +6vi +ei
k

8
: (9)

The sharp edge and crease vertex rules are such that an isolated
crease converges to a uniform cubic B-spline curve lying on the
limit surface. A vertexvi with three or more incident sharp edges
is called a corner; the corresonding vertex point is positioned using
the corner rule

vi+1 = vi (10)

meaning that corners do not move during subdivision. See
Hoppeet. al. [10] and Schweitzer [15] for a more complete dis-
cussion and rationale for these choices.

Hoppeet. al. found it necessary in proving smoothness proper-
ties of the limit surfaces in their Loop-based scheme to make further
distinctions between so-called regular and irregular vertices, and
they introduced additional rules to subdivide them. It may be nec-
essary to do something similar to prove smoothness of our Catmull-
Clark based method, but empirically we have noticed no anamolies
using the simple strategy above.

B General semi-sharp creases

Here we consider the general case where a crease sharpness is al-
lowed to be non-integer, and to vary along the crease. The follow-
ing procedure is relatively simple and strictly generalizes the two
special cases discussed in Section 3.

We specify a crease by a sequence of edgese1;e2; ::: in the con-
trol mesh, where each edgeei has an associated sharpnessei :s. We
associate a sharpness per edge rather than one per vertex since there
is no single sharpness that can be assigned to a vertex where two or
more creases cross.2

2In our implementation we do not allow two creases to share an edge.

ea eceab ebc

eb

Figure 13: Subedge labeling.

During subdivision, face points are always placed at face cen-
troids. The rules used when placing edge and vertex points are
determined by examining edge sharpnesses as follows:

� An edge point corresponding to a smooth edge (i.e,e:s= 0) is
computed using the smooth edge rule (Equation 1).

� An edge point corresponding to an edge of sharpnesse:s>= 1
is computed using the sharp edge rule (Equation 8).

� An edge point corresponding to an edge of sharpnesse:s< 1 is
computed using a blend between smooth and sharp edge rules:
specifically, letvsmoothandvsharpbe the edge points computed
using the smooth and sharp edge rules, respectively. The edge
point is placed at

(1�e:s)vsmooth+e:svsharp: (11)

� A vertex point corresponding to a vertex adjacent to zero or
one sharp edges is computed using the smooth vertex rule
(Equation 2).

� A vertex point corresponding to a vertexv adjacent to three
or more sharp edge is computed using the corner rule (Equa-
tion 10).

� A vertex point corresponding to a vertexv adjacent to two
sharp edges is computed using the crease vertex rule (Equa-
tion 9) if v:s� 1, or a linear blend between the crease vertex
and corner masks ifv:s< 1, wherev:s is the average of the
incidence edge sharpnesses.

When a crease edge is subdivided, the sharpnesses of the result-
ing subedges is determined using Chaikin’s curve subdivision algo-
rithm [3]. Specifically, ifea, eb, ec denote three adjacent edges of
a crease, then the subedgeseab andebc as shown in Figure 13 have
sharpnesses

eab:s = max(
ea:s+3eb:s

4
�1;0)

ebc:s = max(
3eb:s+ec:s

4
�1;0)

A 1 is subtracted after performing Chaikin’s averaging to ac-
count for the fact that the subedges (eab;ebc) are at a finer level than
their parent edges (ea;eb;ec). A maximum with zero is taken to
keep the sharpnesses non-negative. If eitherea or eb is infinitely
sharp, theneab is; if either eb or ec is infinitely sharp, thenebc
is. This relatively simple procedure generalizes cases 1 and 2 de-
scribed in Section 3. Examples are shown in Figures 9 and 10.

C Smoothness of scalar fields

In this appendix we wish to sketch a proof that a scalar fieldf is
smooth as a function on a subdivision surface wherever the surface
itself is smooth. To say that a function on a smooth surfaceS is
smooth to first order at a pointp on the surface is to say that there

exists a parametrizationS(s;t) for the surface in the neighborhood
of psuch thatS(0;0) = p, and such that the functionf (s;t) is differ-
entiable and the derivative varies continuously in the neighborhood
of (0;0).

The characteristic map, introduced by Reif [14] and extended by
Zorin [19], provides such a parametrization: the characteristic map
allows a subdivision surfaceS in three space in the neighborhood
of a pointp on the surface to be written as

S(s;t) = (x(s;t);y(s;t);z(s;t)) (12)

whereS(0;0) = p and where each ofx(s;t), y(s;t), andz(s;t) is
once differentiable if the surface is smooth atp. Since scalar fields
are subdivided according to the same rules as thex;y, andzcoordi-
nates of the control points, the functionf (s;t) must also be smooth.

Acknowledgments

The authors would like to thank Ed Catmull for creating theGeri’s
gameproject, Jan Pinkava for creating Geri and for writing and di-
recting the film, Karen Dufilho for producing it, Dave Haumann and
Leo Hourvitz for leading the technical crew, Paul Aichele for build-
ing Geri’s head, Jason Bickerstaff for modeling most of the rest of
Geri and for Figure 10, and Guido Quaroni for Figure 12. Finally,
we’d like to thank the entire crew ofGeri’s gamefor making our
work look so good.

References

[1] David E. Breen, Donald H. House, and Michael J. Wozny.
Predicting the drape of woven cloth using interacting parti-
cles. In Andrew Glassner, editor,Proceedings of SIGGRAPH
’94 (Orlando, Florida, July 24–29, 1994), Computer Graph-
ics Proceedings, Annual Conference Series, pages 365–372.
ACM SIGGRAPH, ACM Press, July 1994. ISBN 0-89791-
667-0.

[2] E. Catmull and J. Clark. Recursively generated B-spline sur-
faces on arbitrary topological meshes.Computer Aided De-
sign, 10(6):350–355, 1978.

[3] G. Chaikin. An algorithm for high speed curve generation.
Computer Graphics and Image Processing, 3:346–349, 1974.

[4] Robert L. Cook, Loren Carpenter, and Edwin Catmull. The
Reyes image rendering architecture. In Maureen C. Stone,
editor, Computer Graphics (SIGGRAPH ’87 Proceedings),
pages 95–102, July 1987.

[5] Martin Courshesnes, Pascal Volino, and Nadia Magnenat
Thalmann. Versatile and efficient techniques for simulating
cloth and other deformable objects. In Robert Cook, editor,
SIGGRAPH 95 Conference Proceedings, Annual Conference
Series, pages 137–144. ACM SIGGRAPH, Addison Wesley,
August 1995. held in Los Angeles, California, 06-11 August
1995.

[6] Nira Dyn, David Leven, and John Gregory. A butterfly subdi-
vision scheme for surface interpolation with tension control.
ACM Transactions on Graphics, 9(2):160–169, April 1990.

[7] James D. Foley, Andries van Dam, Steven K. Feiner, and
John F. Hughes.Computer Graphics: Principles and Prac-
tice. Prentice-Hall, 1990.

[8] Mark Halstead, Michael Kass, and Tony DeRose. Efficient,
fair interpolation using Catmull-Clark surfaces.Computer
Graphics, 27(3):35–44, August 1993.

[9] Pat Hanrahan and Paul E. Haeberli. Direct WYSIWYG paint-
ing and texturing on 3D shapes. In Forest Baskett, edi-
tor, Computer Graphics (SIGGRAPH ’90 Proceedings), vol-
ume 24, pages 215–223, August 1990.

[10] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin,
J. McDonald, J. Schweitzer, and W. Stuetzle. Piece-
wise smooth surface reconstruction.Computer Graphics,
28(3):295–302, July 1994.

[11] Charles T. Loop. Smooth subdivision surfaces based on trian-
gles. Master’s thesis, Department of Mathematics, University
of Utah, August 1987.

[12] Darwyn R. Peachey. Solid texturing of complex surfaces. In
B. A. Barsky, editor,Computer Graphics (SIGGRAPH ’85
Proceedings), volume 19, pages 279–286, July 1985.

[13] Ken Perlin. An image synthesizer. In B. A. Barsky, edi-
tor, Computer Graphics (SIGGRAPH ’85 Proceedings), vol-
ume 19, pages 287–296, July 1985.

[14] Ulrich Reif. A unified approach to subdivision algorithms.
Mathematisches Institute A 92-16, Universitaet Stuttgart,
1992.

[15] Jean E. Schweitzer.Analysis and Application of Subdivision
Surfaces. PhD thesis, Department of Computer Science and
Engineering, University of Washington, 1996.

[16] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleis-
cher. Elastically deformable models. In Maureen C. Stone,
editor, Computer Graphics (SIGGRAPH ’87 Proceedings),
volume 21, pages 205–214, July 1987.

[17] Steve Upstill.The RenderMan Companion. Addison-Wesley,
1990.

[18] Andrew Witkin, David Baraff, and Michael Kass. An intro-
duction to physically based modeling. SIGGRAPH Course
Notes, Course No. 32, 1994.

[19] Denis Zorin.Stationary Subdivision and Multiresolution Sur-
face Representations. PhD thesis, Caltech, Pasadena, 1997.

