Global Illumination

COS 426
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Scattering at surfaces

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Rendering equation
 ◦ Recursive ray tracing
 ◦ More advanced ray tracing
 ◦ Radiosity

Kajiya 1986
Direct Illumination (last lecture)

- For each ray traced from camera
 - Sum radiance reflected from each light

\[I_i = \frac{I_0}{c_a + l_a d + q_a d^2} \]

\[I = I_E + K_A I_{AL} + \sum_i \left(K_D (N \cdot L_i) + K_S (V \cdot R_i)^n \right) I_i \]
Example

Red’s Dream (Pixar Animation Studios)
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Scattering at surfaces

➢ Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Rendering equation
 ◦ Recursive ray tracing
 ◦ More advanced ray tracing
 ◦ Radiosity
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Scattering at surfaces

• Global illumination
 ➢ Shadows
 ◦ Inter-object reflections
 ◦ Rendering equation
 ◦ Recursive ray tracing
 ◦ More advanced ray tracing
 ◦ Radiosity
Shadows

- Hard shadows from point light sources
 - Cast ray towards light; \(S_L = 0 \) if blocked, \(S_L = 1 \) otherwise

\[
I = I_E + K_A I_{AL} + \sum_{i \in \text{lights}} \left(K_D (N \cdot L_i) + K_S (V \cdot R_i)^n \right) S_i I_i
\]
Shadows

- Soft shadows from area light sources
 - Umbra = fully shadowed
 - Penumbra = partially shadowed
Shadows

- Soft shadows from area light sources
 - Average illumination for M sample rays per light

\[
I = \cdots + \sum_{i \in \text{AreaLights}} \frac{1}{M} \sum_{j \in \text{samples}} \left(K_D (N \cdot L_i) + K_S (V \cdot R_i)^n \right) S_{ij} I_{ij}
\]
Shadows

- Soft shadows from circular area light sources
 - Average illumination for M sample rays per light

\[I_i = \frac{I_0 (D \cdot L)}{c_a + l_a d + q_a d^2} \]

\[
I = \cdots + \sum_{i \in \text{AreaLights}} \frac{1}{M} \sum_{j \in \text{samples}} \left(K_D (N \cdot L_i) + K_S (V \cdot R_i)^n \right) S_{ij} I_{ij}
\]
Shadows

• Soft shadows from circular area light sources
 ◦ Average illumination for M sample rays per light
 ▪ Generate M random sample points on area light (e.g., with rejection sampling)
 ▪ Compute illumination for every sample
 ▪ Average

\[
I = \cdots + \sum_{i \in \text{AreaLights}} \frac{1}{M} \sum_{j \in \text{samples}} \left(K_D (N \cdot L_i) + K_S (V \cdot R_i)^n \right) S_{ij} I_{ij}
\]
Direct Illumination

- Illumination from polygonal area light sources
 - Average illumination for M sample rays per light

\[
I = \cdots + \sum_{i \in \text{AreaLights}} \frac{1}{M} \sum_{j \in \text{samples}} (K_D (N \cdot L_i) + K_S (V \cdot R_i)^n) S_{ij} I_{ij}
\]
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Scattering at surfaces

• Global illumination
 ◦ Shadows
 ➢ Inter-object reflections
 ◦ Rendering equation
 ◦ Recursive ray tracing
 ◦ More advanced ray tracing
 ◦ Radiosity

Greg Ward
Inter-Object Reflection
Inter-Object Reflection

- Radiance leaving point x on surface is sum of reflected irradiance arriving from other surfaces.
Solid Angle

- Angle in radians

\[\text{Length } \ell \]
\[\text{Angle } \theta = \ell/r \]

- Solid angle in steradians

\[\text{Area } A \]
\[\text{Solid angle } \omega = A/r^2 \]
Light Emitted from a Surface

• Power per unit area per unit solid angle – Radiance (L)
 ○ Measured in W/m²/sr

\[L = \frac{d\Phi}{dA
d\omega} \]
Rendered Equation [Kajiya 86]

- Compute radiance in outgoing direction by integrating reflections over all incoming directions

\[
L_o(x', \omega') = L_e(x', \omega') + \int_{\Omega} f_r(x', \omega, \omega')(\omega \cdot \hat{n}) L_i(x', \omega) \, d\omega
\]
Compute radiance in outgoing direction by integrating reflections over all incoming directions.

\[L_o (x', \vec{\omega}') = L_e (x', \vec{\omega}') + \int_{\Omega} f_r (x', \vec{\omega}, \vec{\omega}') (\vec{\omega} \cdot \vec{n}) L_i (x', \vec{\omega}) \, d\vec{\omega} \]
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Scattering at surfaces

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Rendering equation
 ➢ Recursive ray tracing
 ◦ More advanced ray tracing
 ◦ Radiosity
Recursive Ray Tracing

- Assume only significant irradiance is in directions of light sources, specular reflection, and refraction.

\[
L_o(x', \omega') = L_e(x', \omega') + \int_{\Omega} f_r(x', \omega, \omega') (\omega \cdot \hat{n}) L_i(x', \omega) d\omega
\]
Recursive Ray Tracing

- Compute radiance in outgoing direction by summing reflections from directions of lights specular reflections, and refractions

\[I = I_E + K_A I_{AL} + \sum L \left(K_D (N \cdot L_i) + K_S (V \cdot R_i)^n \right) S_L I_L + K_S I_R + K_T I_T \]
Recursive Ray Tracing

- Same as ray casting, but trace secondary rays for specular (mirror) reflection and refraction

\[I = I_E + K_A I_{AL} + \sum_{L} \left(K_D (N \cdot L_i) + K_S (V \cdot R_i)^n \right) S_L I_L + K_S I_R + K_T I_T \]
Specular Reflection

- Trace secondary ray in direction of mirror reflection
 - Evaluate radiance along secondary ray and include it into illumination model

\[I = I_E + K_A I_{AL} + \sum L \left(K_D (N \cdot L_i) + K_S (V \cdot R_i)^n \right) S_L I_L + K_S I_R + K_T I_T \]
Refraction

- Trace secondary ray in direction of refraction
 - Evaluate radiance along secondary ray and include it into illumination model

\[I = I_E + K_A I_A L + \sum_L \left(K_D (N \cdot L_i) + K_S (V \cdot R_i)^n \right) S_L I_L + K_S I_R + K_T I_T \]
Recursive Ray Tracing

• ComputeRadiance is called recursively

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray, R3Intersection& hit)
{
 R3Ray specular_ray = SpecularRay(ray, hit);
 R3Ray refractive_ray = RefractiveRay(ray, hit);
 R3Rgb radiance = Phong(scene, ray, hit) +
 Ks * ComputeRadiance(scene, specular_ray) +
 Kt * ComputeRadiance(scene, refractive_ray);
 return radiance;
}
Recursive Ray Tracing

• Which paths?
Recursive Ray Tracing

- Specular reflection and refraction -- \(\text{LD}(S|R) \times E \)
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Scattering at surfaces

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Rendering equation
 ◦ Recursive ray tracing
 ➢ More advanced ray tracing
 ◦ Radiosity

Kajiya 1986
Greg Ward
Beyond Recursive Ray Tracing
Distributed Ray Tracing

- Estimate integral for each reflection by sampling incoming directions

\[L_o(x', \omega') = L_e(x', \omega') + \sum_{\text{samples}} f_r(x', \omega, \omega') (\omega \cdot \hat{n}) L_i(x', \omega) d\omega \]
Ordinary Ray Tracing vs. Distribution Ray Tracing

Ray tracing

Distributed ray tracing
Monte Carlo Path Tracing

- Estimate integral for each pixel by sampling paths from camera
Ray Tracing vs. Path Tracing

Ray tracing

Path tracing

Kajiya
Photon Mapping

- Trace rays *forward* from light sources (recursively)
- Store hits on surfaces: “photon map”
- Final “gather” pass backwards from camera: still compute direct lighting, but look up indirect lighting in photon map
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Scattering at surfaces

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Rendering equation
 ◦ Recursive ray tracing
 ◦ More advanced ray tracing
 ➢ Radiosity

Greg Ward
Radiosity

- Indirect diffuse illumination – LD*E
Rendering Equation (1)

\[L_o(x', \omega') = L_e(x', \omega') + \int_{\Omega} f_r(x', \omega, \omega') (\omega \cdot \hat{n}) L_i(x', \omega) d\omega \]
Rendering Equation (2)

\[L(x' \rightarrow x'') = L_e(x' \rightarrow x'') + \int_{s} f_r(x \rightarrow x' \rightarrow x'') L(x \rightarrow x') V(x, x') G(x, x') \, dA \]

\[G(x, x') = \frac{\cos \Theta_i \cos \Theta_o}{\|x - x'\|^2} \]
Radiosity Equation

\[L(x' \rightarrow x'') = L_e(x' \rightarrow x'') + \int_{S} f_r(x \rightarrow x' \rightarrow x'') L(x \rightarrow x') V(x, x') G(x, x') \, dA \]

Assume everything is Lambertian

\[\rho(x') = f_r(x \rightarrow x' \rightarrow x'') \pi \]

\[L(x') = L_e(x') + \frac{\rho(x')}{\pi} \int_{S} L(x) V(x, x') G(x, x') \, dA \]

Convert to Radiosities

\[B = \int_{\Omega} L_o \cos \theta \, d\omega \]

\[L = \frac{B}{\pi} \]

\[B(x') = B_e(x') + \frac{\rho(x')}{\pi} \int_{S} B(x) V(x, x') G(x, x') \, dA \]
Radiosity Approximation

\[B(x') = B_e(x') + \frac{\rho(x')}{\pi} \int_S B(x) V(x, x') G(x, x') \, dA \]

Discretize the surfaces into “elements”

\[B_i = E_i + \rho_i \sum_{j=1}^{N} B_j F_{ij} \]

where \(F_{ij} = \frac{1}{A_i} \int_{A_i} \int_{A_j} \frac{V_{ij} \cos \Theta'_i \cos \Theta'_o}{\pi r^2} \, dA_j dA_i \)
Radiosity Approximation
System of Equations

\[B_i = E_i + \rho_i \sum_{j=1}^{N} B_j F_{ij} \]

\[E_i = B_i - \rho_i \sum_{j=1}^{N} B_j F_{ij} \]

\[B_i - \rho_i \sum_{j=1}^{N} B_j F_{ij} = E_i \]

\[\left(1 - \rho_i \sum_{j=1}^{N} F_{ii}\right)B_i - \rho_i \sum_{j=1}^{N} F_{ij}B_j = E_i \]

\[B_i A_i = E_i A_i + \rho_i \sum_{j=1}^{N} F_{ji}B_j A_j \]

This is an energy balance equation
Compare with Direct Illumination

Direct Illumination

Radiosity

Hugo Elias, Wikipedia
Radiosity

• Application
 ◦ Interior lighting design
 ◦ LD*E

• Issues
 ◦ Computing form factors
 ◦ Selecting basis functions for radiosities
 ◦ Solving large linear system of equations
 ◦ Meshing surfaces into elements
 ◦ Rendering images
Summary

• Global illumination
 ◦ Rendering equation

• Solution methods
 ◦ Sampling
 ▪ Ray tracing
 ▪ Distributed ray tracing
 ▪ Monte Carlo path tracing
 ◦ Discretization
 ▪ Radiosity

Photorealistic rendering with global illumination is an integration problem.