More on Transformations

COS 426
Agenda

Grab-bag of topics related to transformations:

• General rotations
 ◦ Euler angles
 ◦ Rodrigues’s rotation formula

• Maintaining camera transformations
 ◦ First-person
 ◦ Trackball

• How to transform normals
3D Coordinate Systems

- Right-handed vs. left-handed
3D Coordinate Systems

• **Right-handed** vs. **left-handed**

• Right-hand rule for rotations: positive rotation = counterclockwise rotation about axis
General Rotations

• Recall: set of rotations in 3-D is 3-dimensional
 ○ Rotation group SO(3)
 ○ Non-commutative
 ○ Corresponds to orthonormal 3×3 matrices with determinant $= +1$

• Need 3 parameters to represent a general rotation (Euler’s rotation theorem)
Euler Angles

• Specify rotation by giving angles of rotation about 3 coordinate axes

• 12 possible conventions for order of axes, but one standard is Z-X-Z
Euler Angles

- Another popular convention: X-Y-Z
- Can be interpreted as yaw, pitch, roll of airplane
Rodrigues’s Formula

- Even more useful: rotate by an arbitrary angle (1 number) about an arbitrary axis (3 numbers, but only 2 degrees of freedom since unit-length)
Rodrigues’s Formula

• An arbitrary point \(p \) may be decomposed into its components along and perpendicular to \(a \)

\[
p = a \left(p \cdot a \right) + \left[p - a \left(p \cdot a \right) \right]
\]
Rodrigues’s Formula

- Rotating component along \(\mathbf{a}\) leaves it unchanged
- Rotating component perpendicular to \(\mathbf{a}\) (call it \(\mathbf{p}_\perp\)) moves it to \(\mathbf{p}_\perp \cos \theta + (\mathbf{a} \times \mathbf{p}_\perp) \sin \theta\)
Rodrigues’s Formula

- Putting it all together:

\[R_\mathbf{p} = a (\mathbf{p} \cdot a) + \mathbf{p}_\perp \cos \theta + (a \times \mathbf{p}_\perp) \sin \theta \]

\[= aa^T \mathbf{p} + (\mathbf{p} - aa^T \mathbf{p}) \cos \theta + (a \times \mathbf{p}) \sin \theta \]

- So,

\[R = aa^T + (I - aa^T) \cos \theta + [a]_x \sin \theta \]

where \([a]_x\) is the “cross product matrix”

\[[a]_x = \begin{pmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{pmatrix} \]
Rotating One Direction into Another

- Given two directions d_1, d_2 (unit length), how to find transformation that rotates d_1 into d_2?
 - There are many such rotations!
 - Choose rotation with minimum angle

- Axis = $d_1 \times d_2$

- Angle = $\cos^{-1}(d_1 \cdot d_2)$

- More stable numerically: $\tan^{-12}(|d_1 \times d_2|, d_1 \cdot d_2)$
Agenda

Grab-bag of topics related to transformations:

• General rotations
 ◦ Euler angles
 ◦ Rodrigues’s rotation formula

• Maintaining camera transformations
 ◦ First-person
 ◦ Trackball

• How to transform normals
Camera Coordinates

Canonical camera coordinate system

- Convention is right-handed (looking down –z axis)
- Convenient for projection, clipping, etc.

- Camera right vector maps to X axis
- Camera up vector maps to Y axis
- Camera back vector maps to Z axis (pointing out of page)
Viewing Transformation

- Mapping from world to camera coordinates
 - Eye position maps to origin
 - Right vector maps to +X axis
 - Up vector maps to +Y axis
 - Back vector maps to +Z axis
Finding the viewing transformation

• We have the camera (in world coordinates)
• We want T taking objects from world to camera

\[p^c = T \ p^w \]

• Trick: find T^{-1} taking objects in camera to world

\[p^w = T^{-1} p^c \]

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{bmatrix} =
\begin{bmatrix}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l \\
 m & n & o & p
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix}
\]
Finding the Viewing Transformation

- Trick: map from camera coordinates to world
 - Origin maps to eye position
 - Z axis maps to Back vector
 - Y axis maps to Up vector
 - X axis maps to Right vector

\[
\begin{bmatrix}
 x' \\
y' \\
z' \\
w'
\end{bmatrix} =
\begin{bmatrix}
 R_x & U_x & B_x & E_x \\
 R_y & U_y & B_y & E_y \\
 R_z & U_z & B_z & E_z \\
 R_w & U_w & B_w & E_w
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}
\]

- This matrix is T^{-1} so we invert it to get T … easy!
Maintaining Viewing Transformation

For first-person camera control, need 2 operations:

- Turn: rotate(θ, 0, 1, 0) in local coordinates
- Advance: translate(0, 0, $-v^*\Delta t$) in local coordinates

- Key: transformations act on local, not global coords
- To accomplish: right-multiply by translation, rotation

\[M_{\text{new}} \leftarrow M_{\text{old}} T_{-v^*\Delta t, z} R_{\theta, y} \]
Maintaining Viewing Transformation

Object manipulation: “trackball” or “arcball” interface

• Map mouse positions to surface of a sphere

• Compute rotation axis, angle

• Apply rotation to global coords: left-multiply

\[
\mathbf{M}_{\text{new}} \leftarrow R_{\theta,a} \mathbf{M}_{\text{old}}
\]
Agenda

Grab-bag of topics related to transformations:

• General rotations
 ◦ Euler angles
 ◦ Rodrigues’s rotation formula

• Maintaining camera transformations
 ◦ First-person
 ◦ Trackball

• How to transform normals
Transforming Normals

Normals do not transform the same way as points!

- Not affected by translation
- Not affected by shear perpendicular to the normal
Transforming Normals

• Key insight: normal remains perpendicular to surface tangent

• Let t be a tangent vector and n be the normal

$$t \cdot n = 0 \quad \text{or} \quad t^T n = 0$$

• If matrix M represents an affine transformation, it transforms t as

$$t \rightarrow M_L t$$

where M_L is the linear part (upper-left 3×3) of M
Transforming Normals

• So, after transformation, want

\[(M_L t)^T n_{\text{transformed}} = 0\]

• But we know that

\[t^T n = 0\]

\[t^T M_L (M_L^T)^{-1} n = 0\]

\[(M_L t)^T (M_L^T)^{-1} n = 0\]

• So,

\[n_{\text{transformed}} = (M_L^T)^{-1} n\]
Transforming Normals

• Conclusion: normals transformed by inverse transpose of linear part of transformation

• Note that for rotations, inverse = transpose, so inverse transpose = identity
 ◦ normals just rotated
COS 426 Midterm exam

• Thursday, 3/16

• Regular time/place: 3:00-4:20, CS105

• Covers color, image processing, shape representations, but not transformations
 ◦ Also responsible for knowing all required parts of first two programming assignments

• Closed book, no electronics, one page of notes / formulas