Subdivision Surfaces

COS 426, Spring 2017
Princeton University
3D Object Representations

- Raw data
 - Range image
 - Point cloud

- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Application specific
Subdivision Surfaces

- Used in movie and game industries
- Supported by most 3D modeling software
Subdivision Surfaces

- Used in movie and game industries
- Supported by most 3D modeling software
Geri’s Game

• “served as a demonstration of a new animation tool called subdivision surfaces” (Wikipedia)

• Subdivision used for head, hands & some clothing

• Academy Award winner
Geri’s Game

• Guest performance in Toy Story 2
Subdivision Surfaces

- An alternative to NURBS, overcoming:
 - Many patches
 - Difficult to mark sharp features

- Irregularities after deformation

Stanford Graphics course notes
Subdivision Surfaces

• What makes a good surface representation?
 • Accurate
 • Concise
 • Intuitive specification
 • Local support
 • Affine invariant
 • Arbitrary topology
 • Guaranteed continuity
 • Natural parameterization
 • Efficient display
 • Efficient intersections

Reif & Schroeder 2000
Subdivision Surfaces

- What makes a good surface representation?
 - Accurate
 - Concise
 - Intuitive specification
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed continuity
 - Natural parameterization
 - Efficient display
 - Efficient intersections

Reif & Schroeder 2000
A curve / surface with G^k continuity has a continuous k-th derivative, geometrically.
Continuity

Similar, but not exactly C^k continuity

- Geometric, not of algebraic (e.g.: $f_x(u) = r_x \cos(2\pi u)$)
- Different only when algebraic gradient $\nabla f = 0$
Subdivision

• How do you make a curve with guaranteed continuity?
Subdivision

- How do you make a curve with guaranteed continuity? …
Subdivision

• How do you make a surface with guaranteed continuity?
Subdivision Surfaces

- Repeated application of
 - Topology refinement (splitting faces)
 - Geometry refinement (weighted averaging)
Subdivision Surfaces – Examples

• Base mesh
Subdivision Surfaces – Examples

• Topology refinement
Subdivision Surfaces – Examples

- Geometry refinement
Subdivision Surfaces – Examples

- Topology refinement
Subdivision Surfaces – Examples

- Geometry refinement
Subdivision Surfaces – Examples

• Topology refinement
Subdivision Surfaces – Examples

- Geometry refinement
Subdivision Surfaces – Examples

• Limit surface
Subdivision Surfaces – Examples

- Base mesh + limit surface

Meshlab demo
Design of Subdivision Rules

• What types of input?
 • Quad meshes, triangle meshes, etc.

• How to refine topology?
 • Simple implementations

• How to refine geometry?
 • Smoothness guarantees in limit surface
 » Continuity (C^0, C^1, C^2, \ldots?)
 • Provable relationships between limit surface and original control mesh
 » Interpolation of vertices?
Linear Subdivision

• Type of input
 • Quad mesh -- four-sided polygons (quads)
 • Any number of quads may touch each vertex

• Topology refinement rule
 • Split every quad into four at midpoints

• Geometry refinement rule
 • Average vertex positions

This is a simple example to demonstrate how subdivision schemes work
Linear Subdivision
Linear Subdivision

- Topology refinement
Linear Subdivision

• Geometry refinement
Linear Subdivision

LinearSubivision \((F_0, V_0, k)\)

for \(i = 1 \ldots k\) levels

\((F_i, V_i) = \text{RefineTopology}(F_{i-1}, V_{i-1})\)

\text{RefineGeometry}(F_i, V_i)

return \((F_k, V_k)\)
Linear Subdivision

RefineTopology (F, V)

newV = V
newF = {}

for each face Fi
 Insert new vertex c at centroid of Fi into newV
 for j = 1 to 4
 Insert in newV new vertex ej at
 centroid of each edge (Fi,j, Fi,j+1)
 for j = 1 to 4
 Insert new face (Fi,j, ej, c, ej-1) into newF

return (newF, newV)
Linear Subdivision

RefineGeometry(F, V)

newV = V
newF = F

for each vertex \(V_i \) in newV

weight = 0;
newV[i] = (0,0,0)

for each face \(F_j \) connected to \(V_i \)

\[\text{newV}[i] += \text{centroid of } F_j \]
weight += 1.0;

newV[i] /= weight

return (newF, newV)
Linear Subdivision

• Example

Input mesh
Linear Subdivision

• Example
Linear Subdivision

• Example

Geometry refinement
Linear Subdivision

• Example

Topology refinement
Linear Subdivision

• Example

Geometry refinement
Linear Subdivision

- Example

Topology refinement

Scott Schaefer
Linear Subdivision

• Example

Geometry refinement

Scott Schaefer
Linear Subdivision

- Example

Topology refinement

Scott Schaefer
Linear Subdivision

• Example

Final result
Subdivision Schemes

- Common subdivision schemes
 - Catmull-Clark
 - Loop
 - Many others

- Differ in ...
 - Input topology
 - How refine topology
 - How refine geometry

... which makes differences in ...
- Provable properties
Catmull-Clark Subdivision
Catmull-Clark Subdivision

Scott Schaefer
Catmull-Clark Subdivision

Scott Schaefer
Catmull-Clark Subdivision
Catmull-Clark Subdivision
Catmull-Clark Subdivision

Scott Schaefer
Catmull-Clark Subdivision

New $\bullet = \left(4 \times \text{avg of } \bullet - 1 \times \text{avg of } \bullet + (n-3) \times \bullet \right) / n$
Catmull-Clark Subdivision
Catmull-Clark Subdivision

Scott Schaefer
Catmull-Clark Subdivision

Scott Schaefer
Catmull-Clark Subdivision

Linear Subdivision

Catmull-Clark Subdivision

Scott Schaefer
Catmull-Clark Subdivision
Catmull-Clark Subdivision

Scott Schaefer
Catmull-Clark Subdivision
Catmull-Clark Subdivision
Catmull-Clark Subdivision

https://www.youtube.com/watch?v=4hbHa8deT90
Catmull-Clark Subdivision

- One round of subdivision produces all quads
- Smoothness of limit surface
 - C^2 almost everywhere
 - C^1 at vertices with valence $\neq 4$
- Relationship to control mesh
 - Does not interpolate input vertices
 - Within convex hull
- Most commonly used subdivision scheme in the movies…
Subdivision Schemes

- Common subdivision schemes
 - Catmull-Clark
 - Loop
 - Many others

- Differ in ...
 - Input topology
 - How refine topology
 - How refine geometry

... which makes differences in ...
 - Provable properties
Loop Subdivision

• Operates on pure triangle meshes

• Subdivision rules
 • Linear subdivision
 • Averaging rules for “even / odd” (white / black) vertices
Loop Subdivision

- Averaging rules
 - Weights for “odd” and “even” vertices

Odd:

Even:
Loop Subdivision

- Rules for *extraordinary vertices* and *boundaries*:

 a. *Masks for odd vertices*

 b. *Masks for even vertices*
Loop Subdivision

• How to choose β?
 • Analyze properties of limit surface
 • Interested in continuity of surface and smoothness
 • Involves calculating eigenvalues of matrices

» Original Loop

$$\beta = \frac{1}{n} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{n} \right)^2 \right)$$

» Warren

$$\beta = \begin{cases}
\frac{3}{8n} & n > 3 \\
\frac{3}{16} & n = 3
\end{cases}$$
Loop Subdivision

- Operates only on triangle meshes
- Smoothness of limit surface
 - C^2 almost everywhere
 - C^1 at vertices with valence $\neq 6$
- Relationship to control mesh
 - Does not interpolate input vertices
 - Within convex hull
Subdivision Schemes

Loop

Catmull-Clark
Subdivision Schemes

Loop

Catmull-Clark
Subdivision Schemes

https://vimeo.com/118340176
Subdivision Schemes

- Common subdivision schemes
 - Catmull-Clark
 - Loop
 - Many others

- Differ in ...
 - Input topology
 - How refine topology
 - How refine geometry

... which makes differences in ...
- Provable properties
Subdivision Schemes

- Other subdivision schemes

<table>
<thead>
<tr>
<th>Primal (face split)</th>
<th>Triangular meshes</th>
<th>Quad Meshes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximating</td>
<td>Loop(C^2)</td>
<td>Catmull-Clark(C^2)</td>
</tr>
<tr>
<td>Interpolating</td>
<td>Mod. Butterfly(C^1)</td>
<td>Kobbelt(C^1)</td>
</tr>
</tbody>
</table>

Dual (vertex split)

- Doo-Sabin, Midedge(C^1)
- Biquartic(C^2)

Stanford graphics course notes
Other Subdivision Schemes

- Butterfly subdivision
Other Subdivision Schemes

- Butterfly subdivision
Other Subdivision Schemes

• Butterfly subdivision
Other Subdivision Schemes

- Butterfly subdivision

\[
E_1 = \frac{1}{2} \left(\mathbf{d}_1 + \mathbf{d}_2 \right) + \omega \left(\mathbf{d}_3 + \mathbf{d}_4 \right) - \frac{\omega}{2} \left(\mathbf{d}_5 + \mathbf{d}_6 + \mathbf{d}_7 + \mathbf{d}_8 \right)
\]

\[d'_i = d_i\]
Other Subdivision Schemes

• Butterfly subdivision

Stanford graphics course notes
Other Subdivision Schemes

- Vertex-split subdivision (Doo-Sabin, Midedge, Biquartic)

\[V_2 = \frac{1}{n} \times \sum_{j=1}^{n} d_j \]

\[E_i = \frac{1}{2} (d_1 + d_{2i}) \]

\[d'_{1,j} = \frac{1}{4} (d_1 + E_j + E_{j-1} + V_j) \]

One step of Doo-Sabin subdivision

Stanford graphics course notes
Other Subdivision Schemes

• Doo-Sabin Subdivision

Stanford graphics course notes
Other Subdivision Schemes

Comparison

Meshlab demo

Doo-Sabin
Catmull-Clark
Loop
Butterfly

Stanford graphics course notes
Other Subdivision Schemes

- Comparisons:
 - Interpolation vs. smoothness
 - Triangulation dependent asymmetry
 - Shrinking for approximating schemes
 - Similar for smooth meshes with uniform triangles

Loop Butterfly Catmull-Clark

Stanford graphics course notes
Drawing Subdivision Surfaces

• Goal:
 • Draw best approximation of smooth limit surface
 • With limited triangle budget
Drawing Subdivision Surfaces

• Goal:
 • Draw best approximation of smooth limit surface
 • With limited triangle budget

• Solution:
 • Stop subdivision at different levels across the surface
 • Stop-criterion depending on quality measure

• Quality of approximation can be defined by
 • Projected (screen) area of final triangles
 • Local surface curvature
Adaptive Subdivision

10072 Triangles

228654 Triangles

[Kobbelt 2000]
Subdivision Surface Summary

• Advantages:
 • Simple method for describing complex surfaces
 • Relatively easy to implement
 • Arbitrary topology
 • Intuitive specification
 • Local support
 • Guaranteed continuity
 • Multi-resolution

• Difficulties:
 • Parameterization
 • Intersections
Comparison

Parametric surfaces
- Provide parameterization
- More restriction on topology of control mesh
- Some require careful placement of control mesh vertices to guarantee continuity (e.g., Bezier)

Subdivision surfaces
- No parameterization
- Subdivision rules can be defined for arbitrary topologies
- Provable continuity for all placements of control mesh vertices
Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>Polygonal Mesh</th>
<th>Parametric Surface</th>
<th>Subdivision Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Concise</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Intuitive specification</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Local support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Affine invariant</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Arbitrary topology</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Guaranteed continuity</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Natural parameterization</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Efficient display</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Efficient intersections</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>