

Sampling, Resampling, and Warping

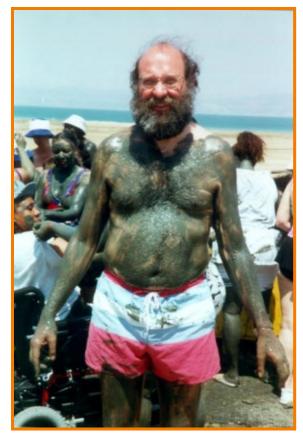
COS 426

Digital Image Processing

- - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Histogram equalization
- Filtering over neighborhoods
 - Blur & sharpen
 - Detect edges
 - Median
 - Bilateral filter

- Changing pixel values
 Moving image locations
 - Scale
 - Rotate
 - Warp
 - Combining images
 - Composite
 - Morph
 - Quantization
 - Spatial / intensity tradeoff
 - Dithering

Move pixels of an image

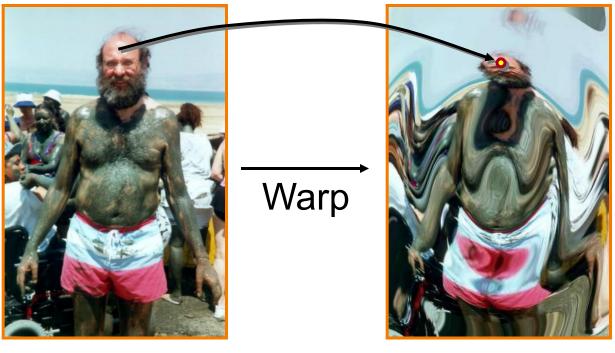


Source image

Warp

Destination image

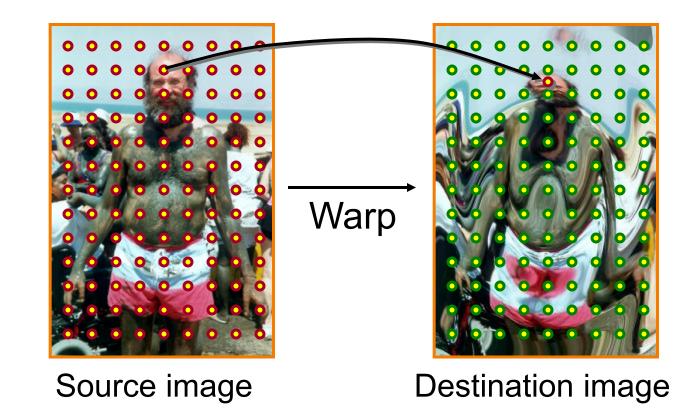
- Issues:
 - Specifying where every pixel goes (mapping)



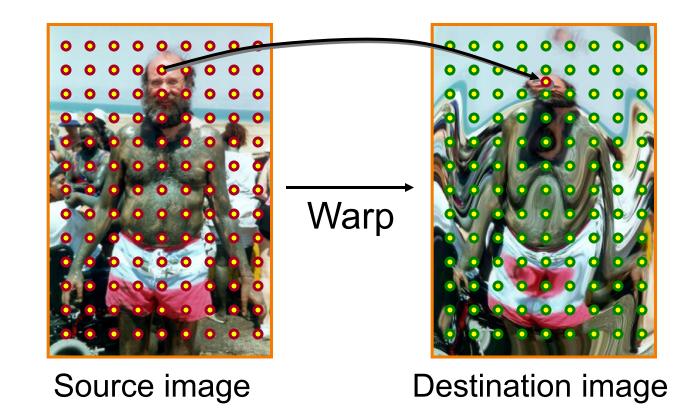
Source image

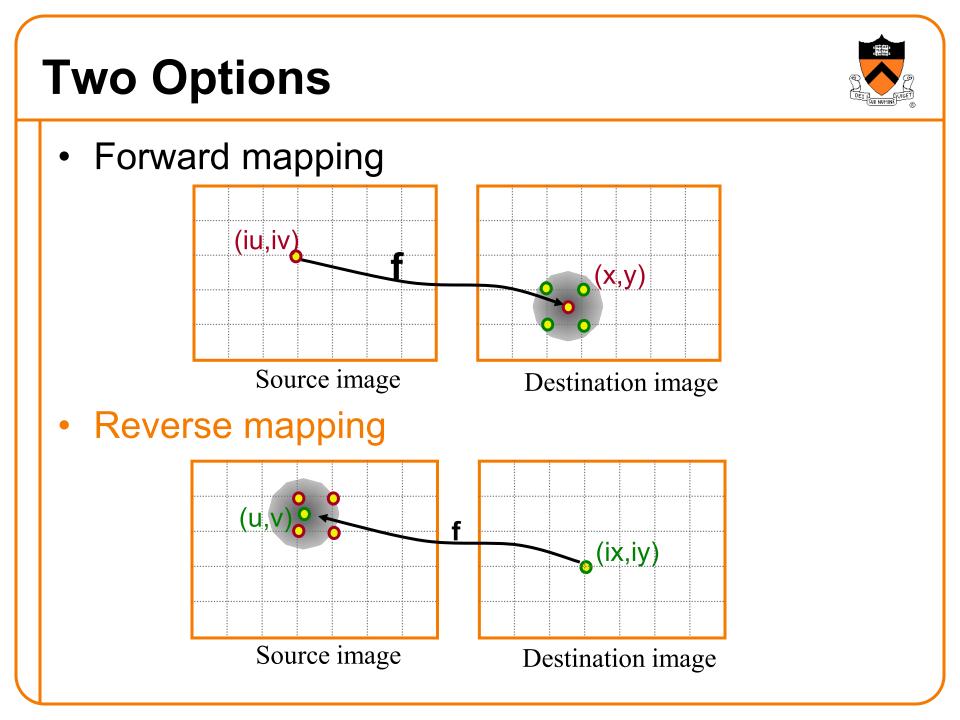
Destination image

- Issues:
 - Specifying where every pixel goes (mapping)
 - Computing colors at destination pixels (resampling)



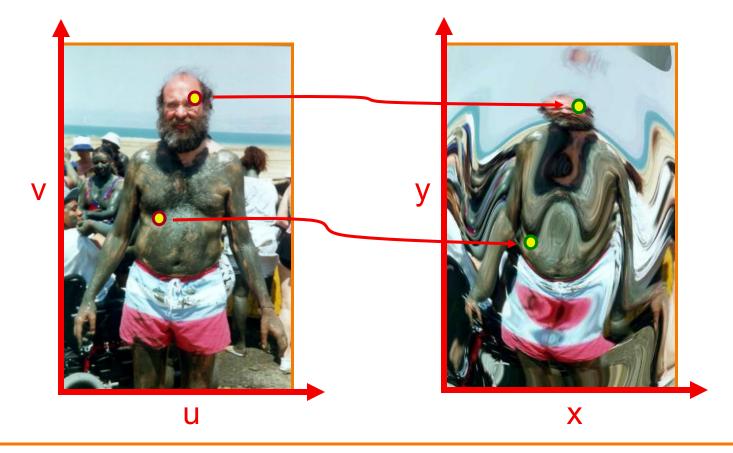
- Issues:
 - Specifying where every pixel goes (mapping)
 - Computing colors at destination pixels (resampling)





Mapping

- Define transformation
 - Describe the destination (x,y) for every source (u,v) (actually vice-versa, if reverse mapping)

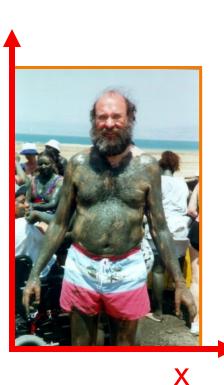


Parametric Mappings

- Scale by *factor*:
 - x = factor * u
 - y = factor * v

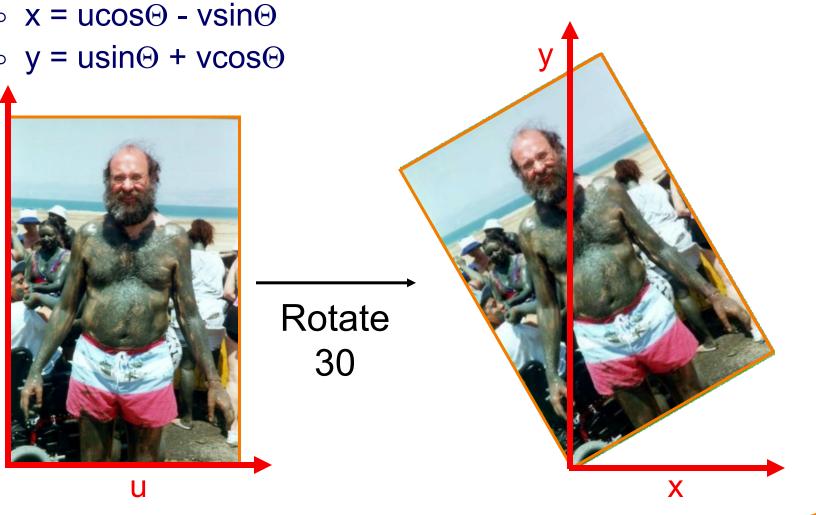
V

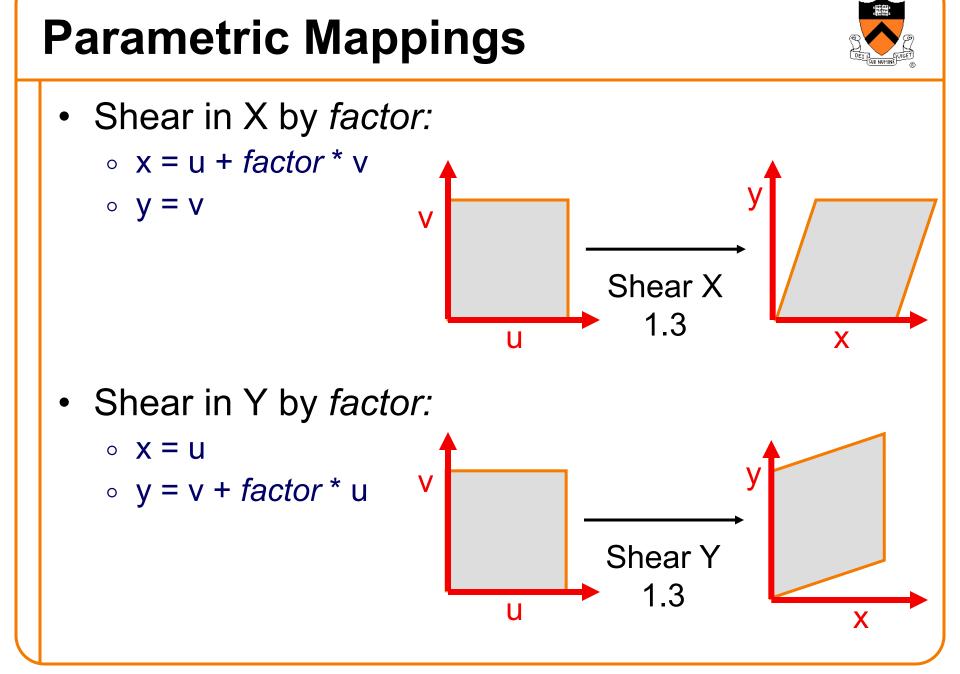
V



Parametric Mappings

• Rotate by Θ degrees: • $x = u\cos\Theta - v\sin\Theta$ • $y = usin\Theta + vcos\Theta$



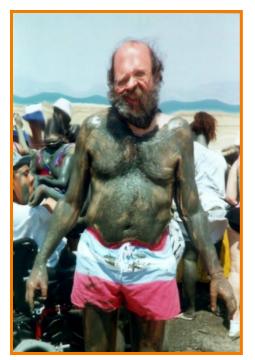


Other Parametric Mappings

- Any function of u and v:
 - $x = f_x(u,v)$ • $y = f_y(u,v)$

Fish-eye

"Swirl"



"Rain"

COS426 Examples

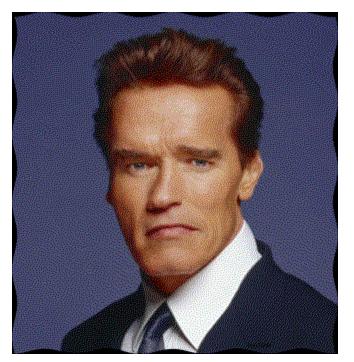
Aditya Bhaskara

Wei Xiang

More COS426 Examples

Sid Kapur

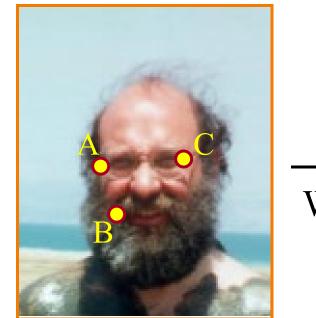
Michael Oranato



Eirik Bakke

Point Correspondence Mappings

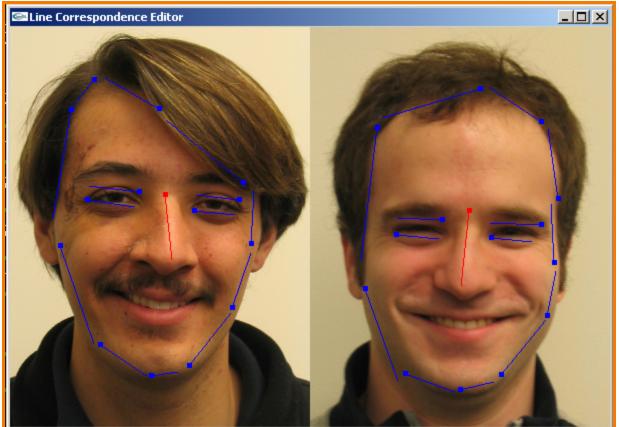
- Mappings implied by correspondences:
 A ↔ A'
 - $\circ B \leftrightarrow B'$
 - $\circ C \leftrightarrow C'$



Warp

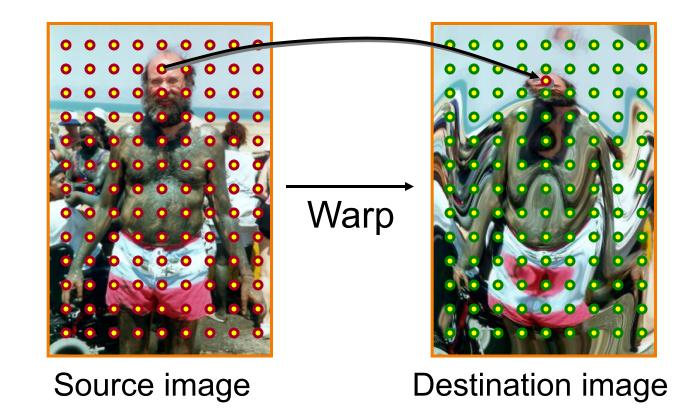
Line Correspondence Mappings

• Beier & Neeley use pairs of lines to specify warp



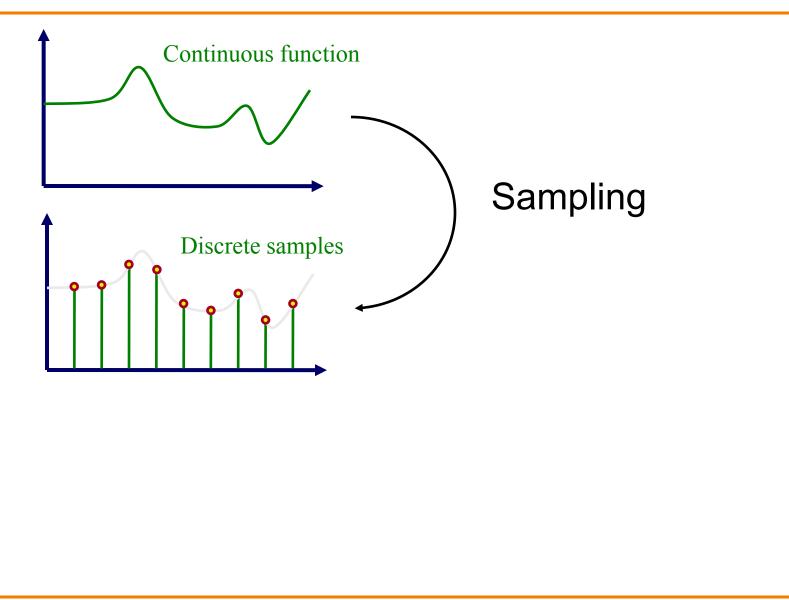
Beier & Neeley SIGGRAPH 92

- Issues:
 - Specifying where every pixel goes (mapping)
 - Computing colors at destination pixels (resampling)

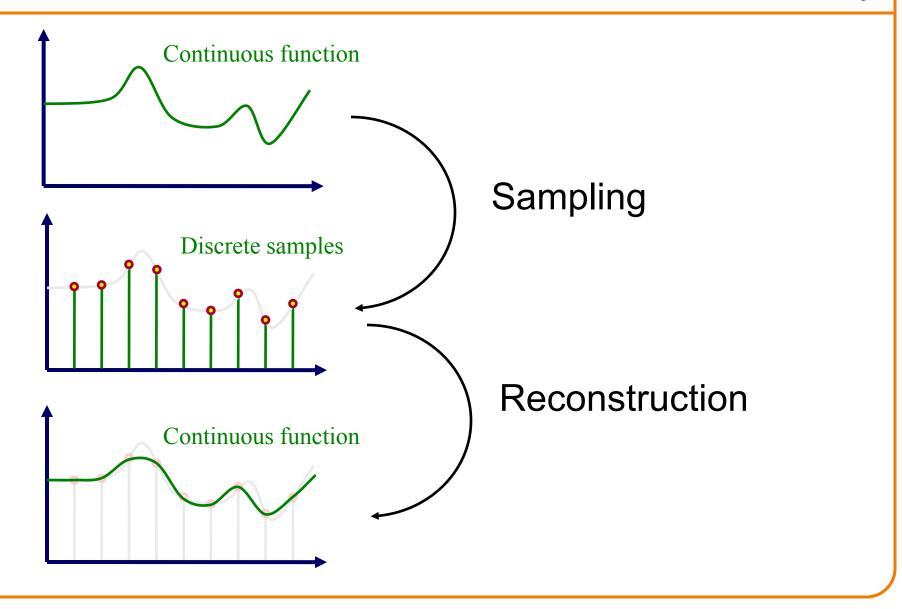


When implementing operations that move pixels, must account for the fact that digital images are sampled versions of continuous ones

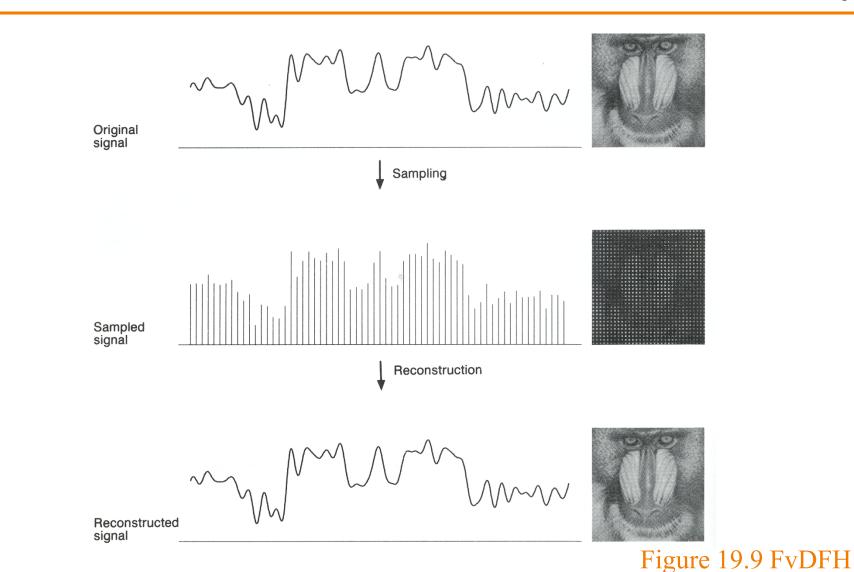
Sampling and Reconstruction



Sampling and Reconstruction



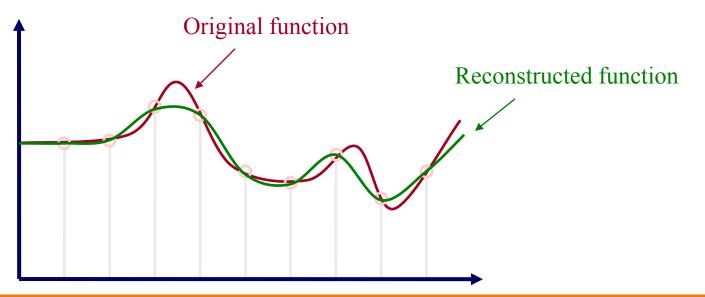
Sampling and Reconstruction



How many samples are enough?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

What happens when we use too few samples?



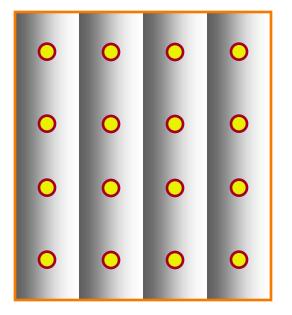
What happens when we use too few samples?Aliasing: high frequencies masquerade as low ones

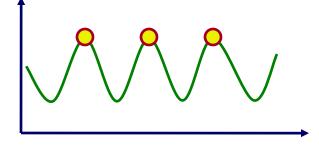
Specifically, in graphics:

- Spatial aliasing
- Temporal aliasing

Figure 14.17 FvDFH

Artifacts due to limited spatial resolution





Spatial Aliasing

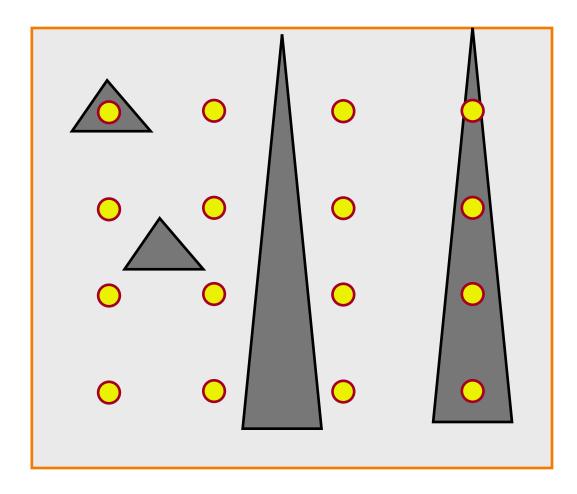
Artifacts due to limited spatial resolution

(Barely) adequate sampling

Inadequate sampling

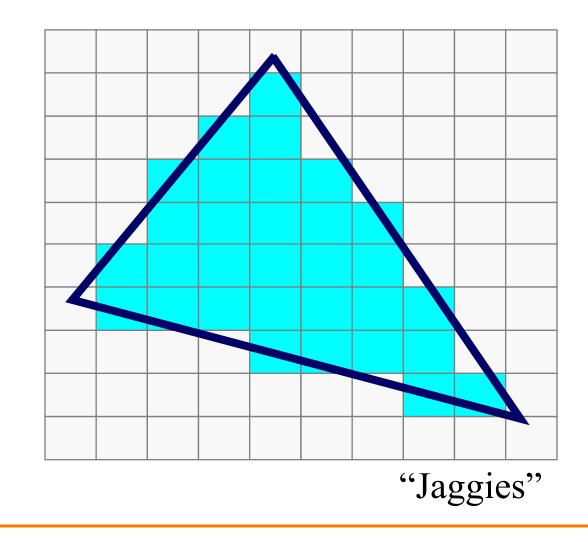
Spatial Aliasing

Artifacts due to limited spatial resolution

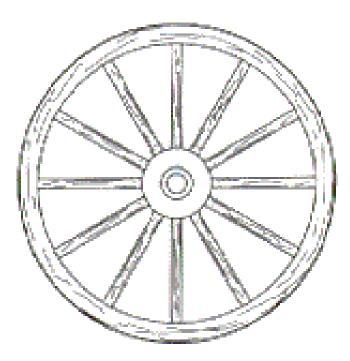


Spatial Aliasing

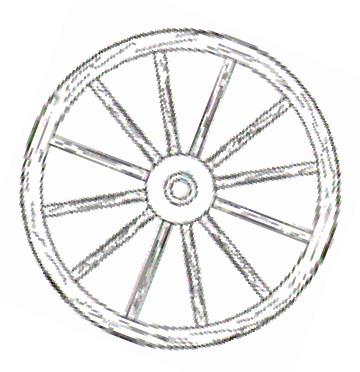
Artifacts due to limited spatial resolution



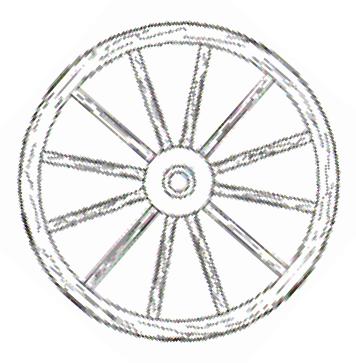
- Strobing
- Flickering



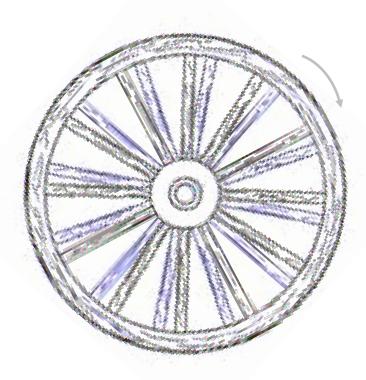
- Strobing
- Flickering



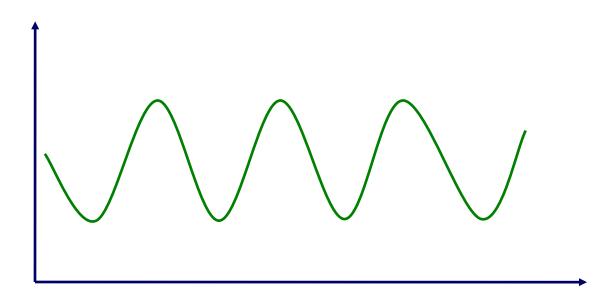
- Strobing
- Flickering



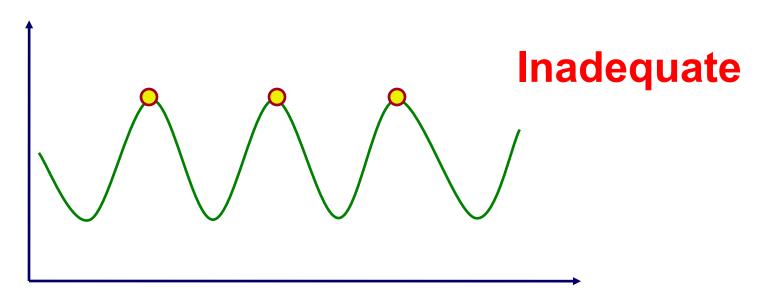
- Strobing
- Flickering



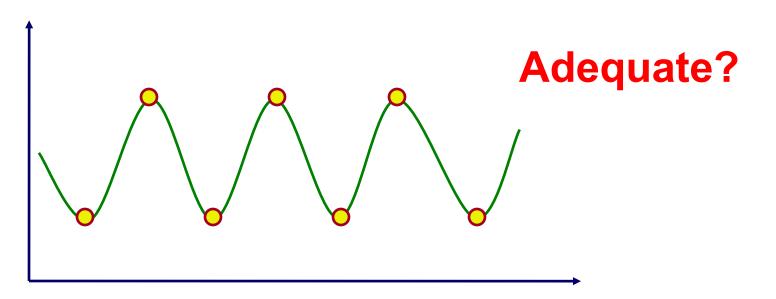
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



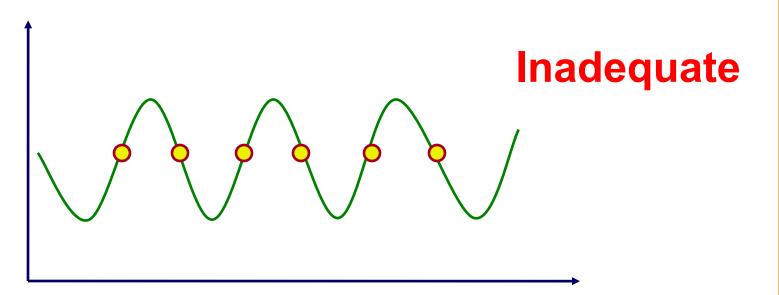
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



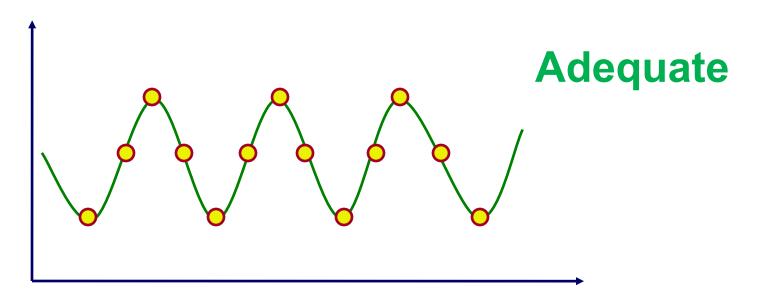
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



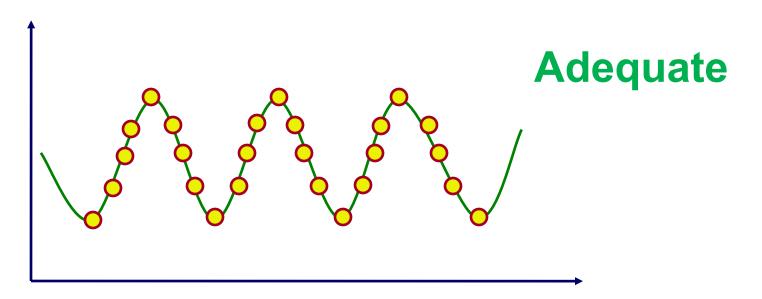
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



Sampling Theory

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



Spectral Analysis

- Spatial domain:
 - Function: f(x)
 - Filtering: convolution

- Frequency domain:
- o Function: F(u)
- o Filtering: multiplication



Any signal can be written as a sum of periodic functions.

Fourier Transform

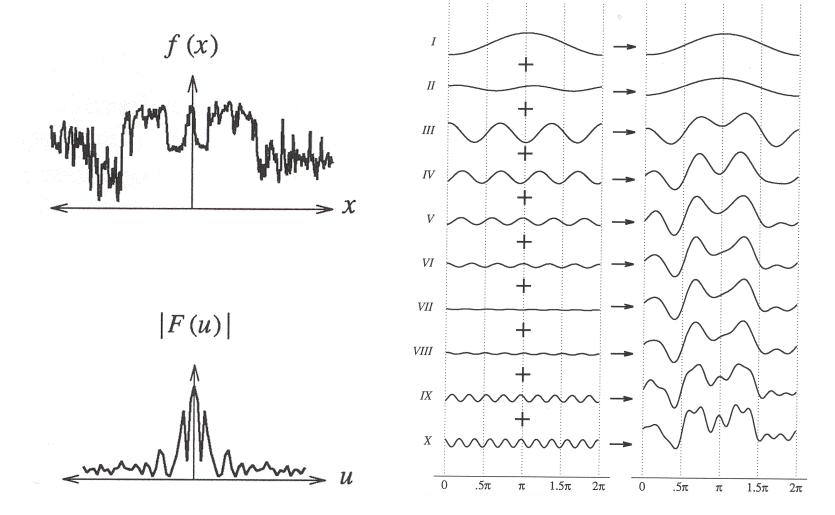


Figure 2.6 Wolberg

Fourier Transform

• Fourier transform:

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi x u} dx$$

• Inverse Fourier transform:

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{+i2\pi u x} du$$

Sampling Theorem

- A signal can be reconstructed from its samples iff it has no content ≥ ½ the sampling frequency – Shannon
- The minimum sampling rate for a bandlimited function is called the "Nyquist rate"

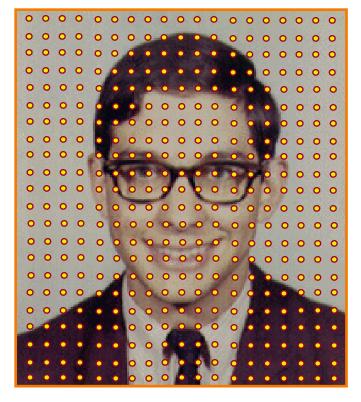
A signal is *bandlimited* if its highest frequency is bounded. That frequency is called the bandwidth.

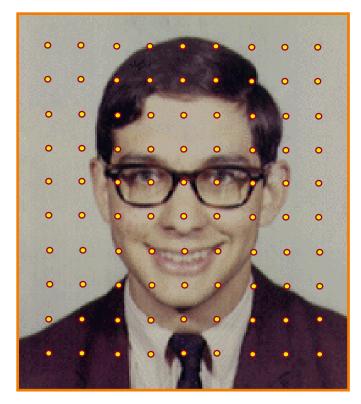
Antialiasing

- Sample at higher rate
 - Not always possible
 - Doesn't always solve the problem
- Pre-filter to form bandlimited signal
 - Use low-pass filter to limit signal to < 1/2 sampling rate
 - Trades blurring for aliasing

Image Processing

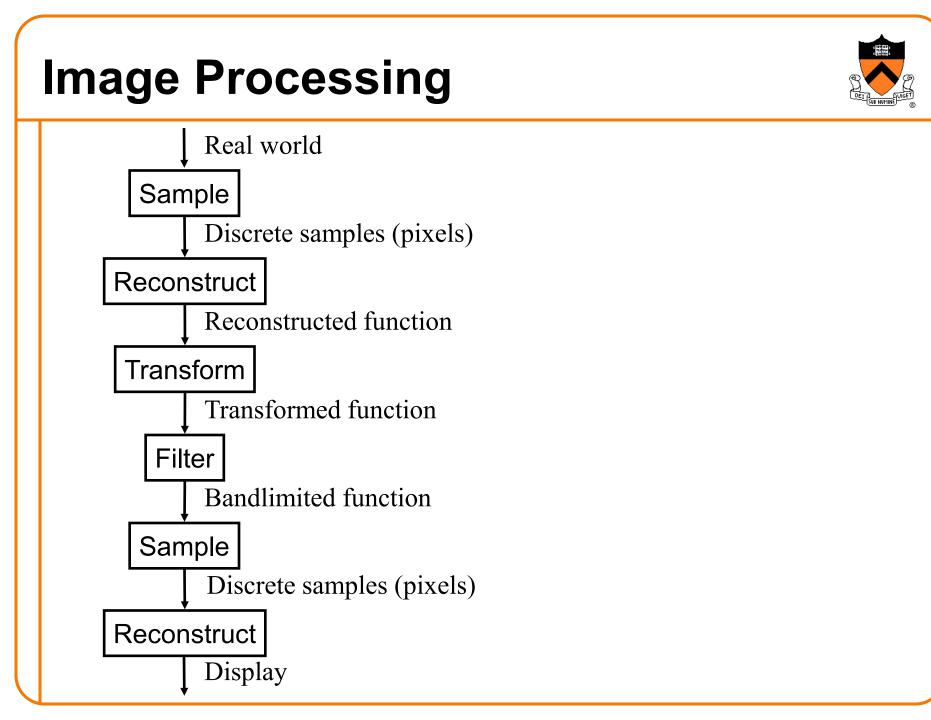
Consider scaling the image (or, equivalently, reducing resolution)

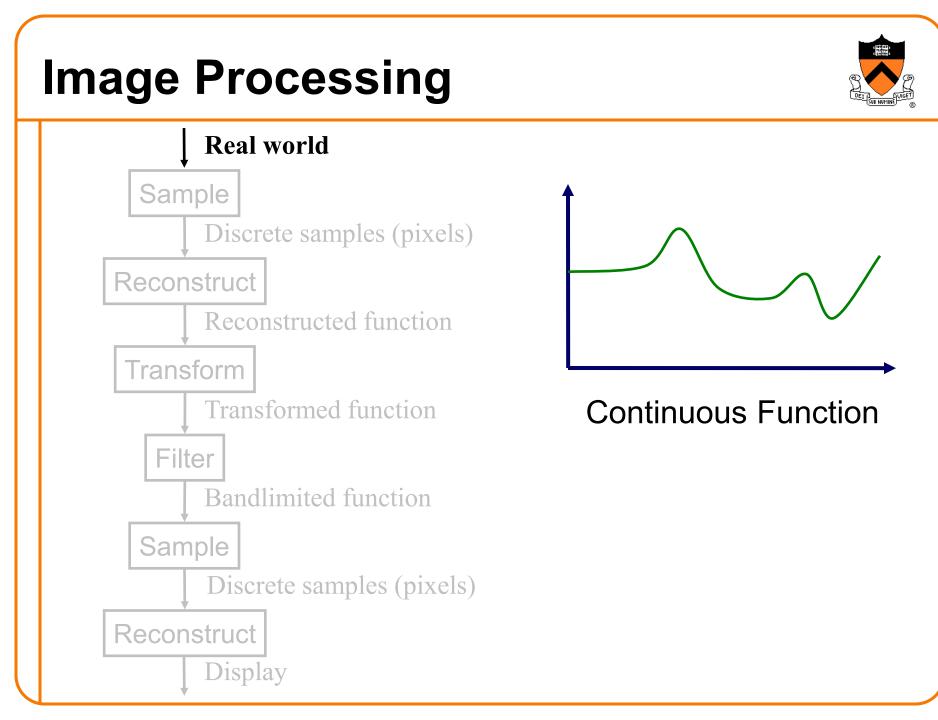


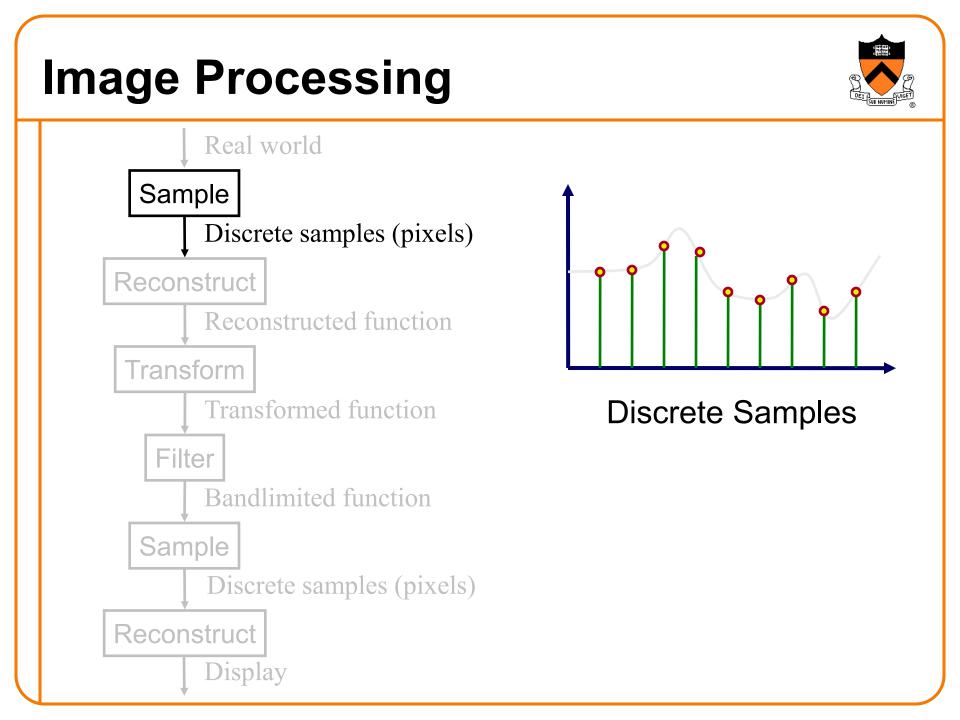


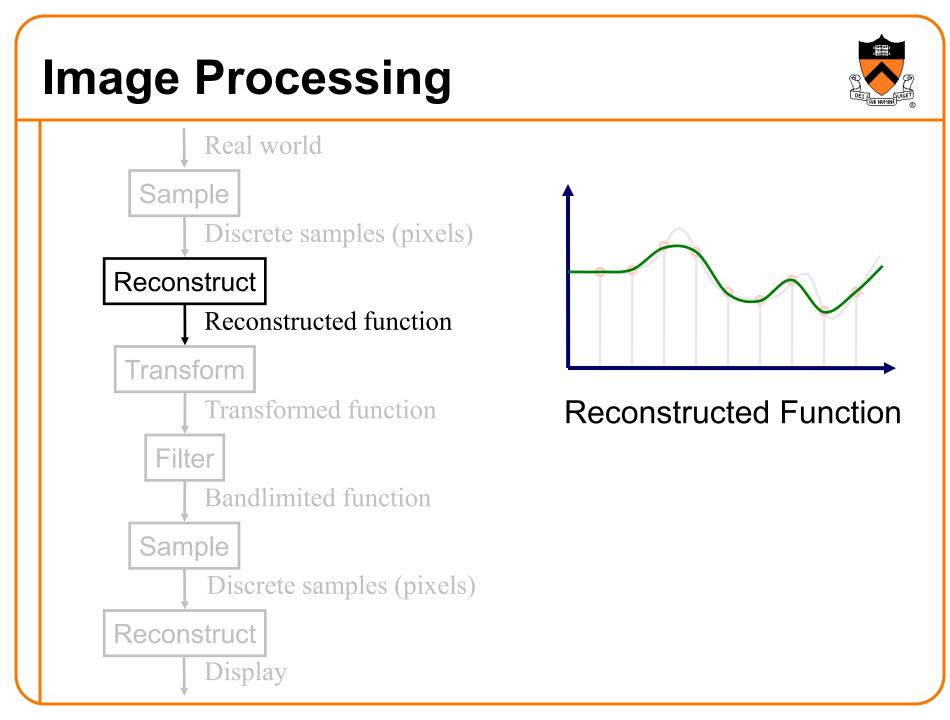
Original image

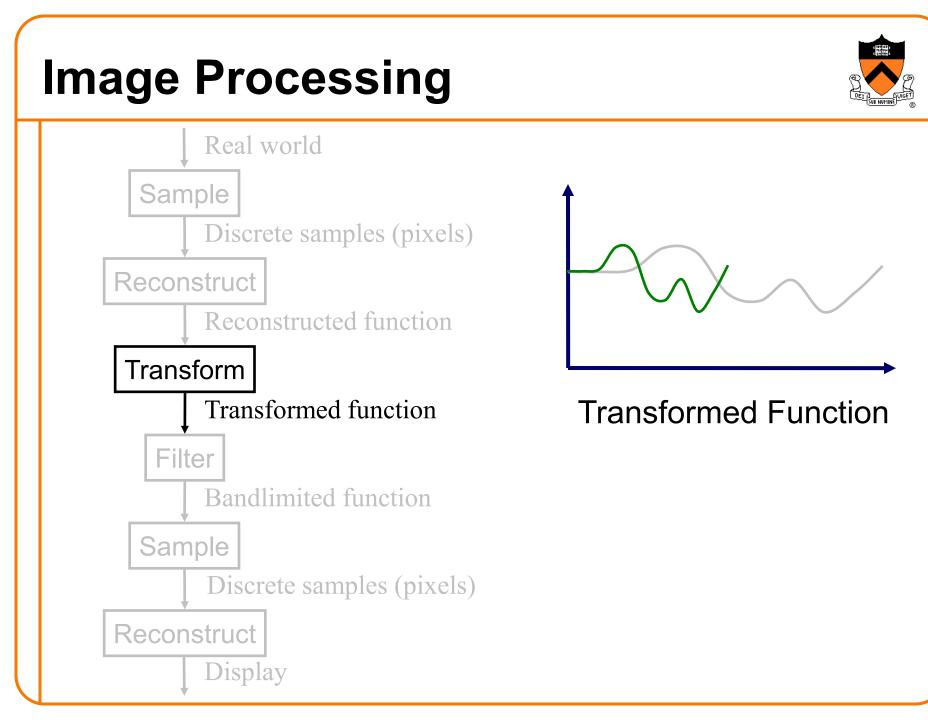
1/4 resolution

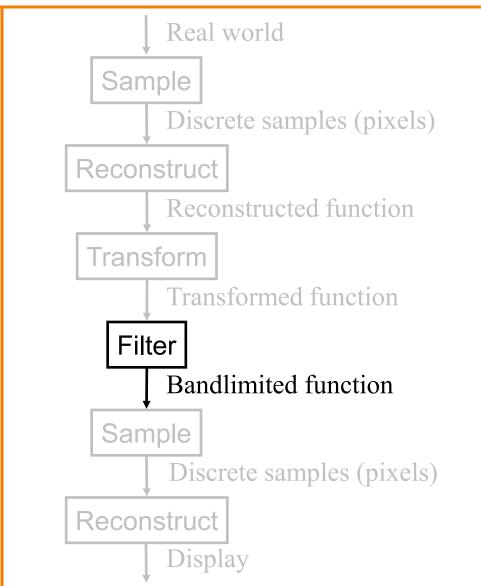


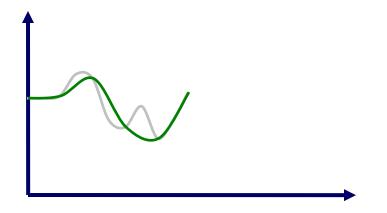






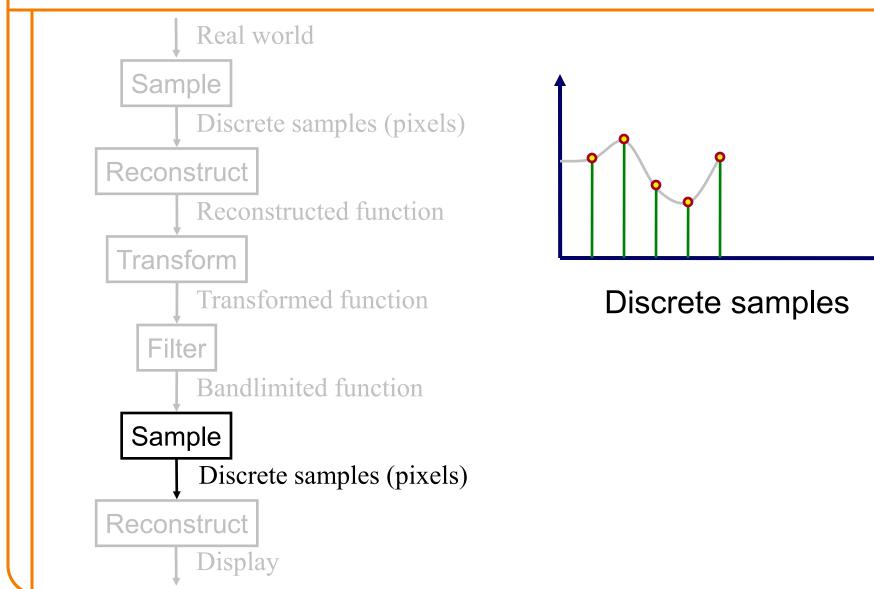


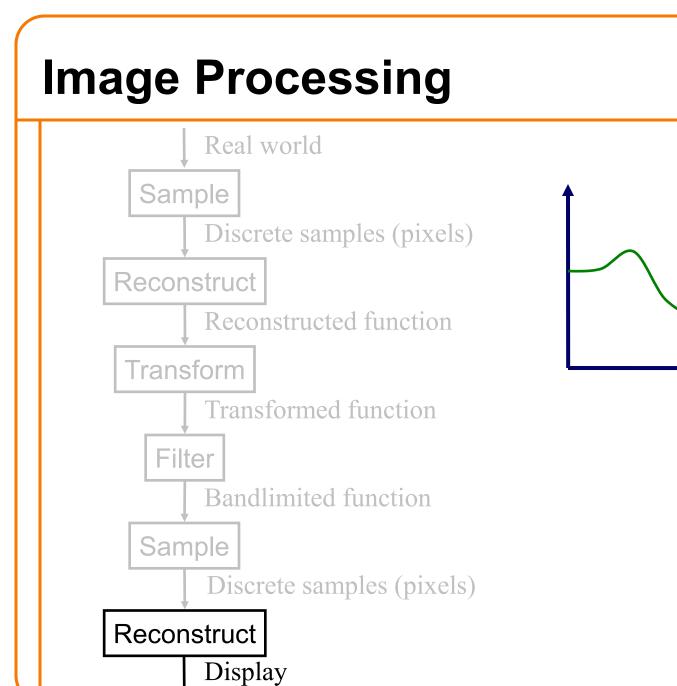




Bandlimited Function

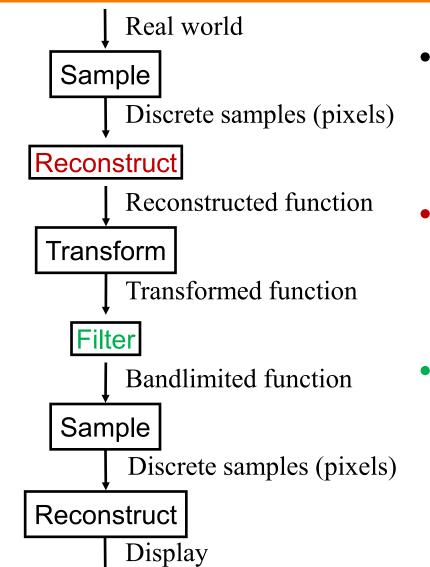
Image Processing





Display

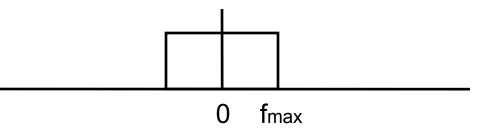
Image Processing



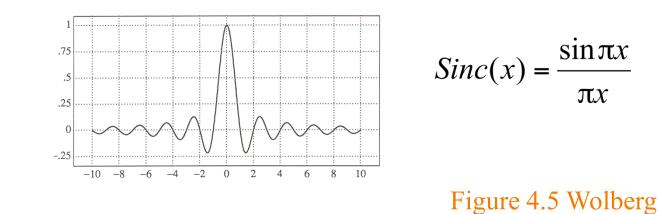
- Ideal resampling requires correct filtering to avoid artifacts
- Reconstruction filter especially important when magnifying
- Bandlimiting filter especially important when minifying

Ideal Image Processing Filter

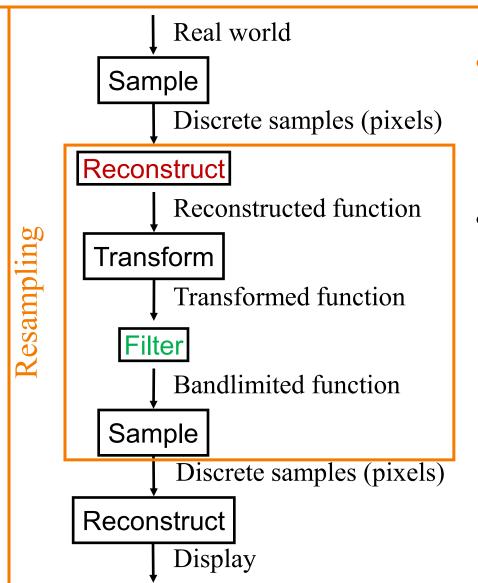
Frequency domain



• Spatial domain



Practical Image Processing

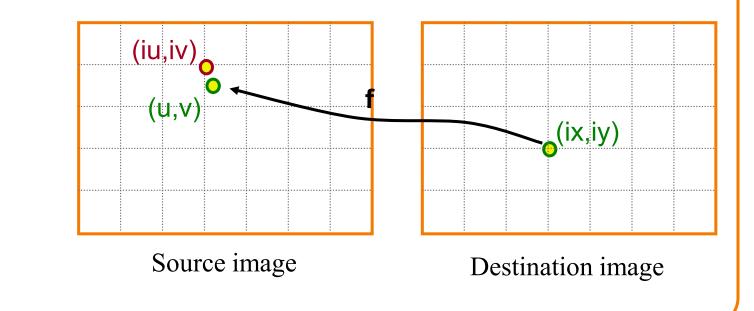


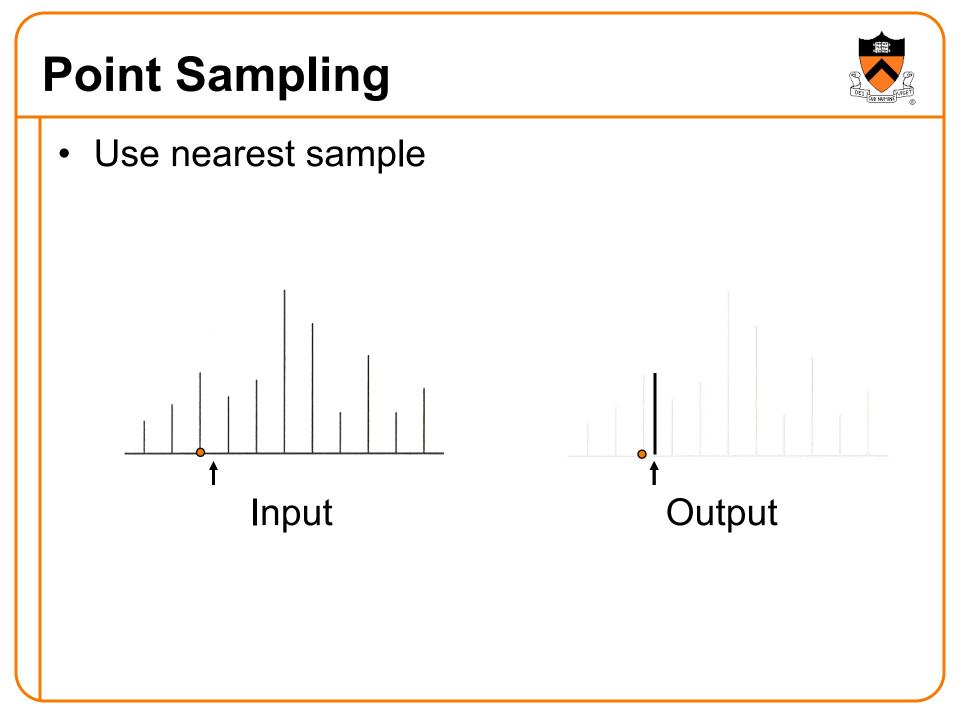
- Resampling: effectively (discrete) convolution to prevent artifacts
- Finite low-pass filters
 - Point sampling (bad)
 - Box filter
 - Triangle filter
 - Gaussian filter

Point Sampling

• Possible (poor) resampling implementation:

```
float Resample(src, u, v, k, w) {
    int iu = round(u);
    int iv = round(v);
    return src(iu,iv);
}
```





Point Sampling

Point Sampled: Aliasing!

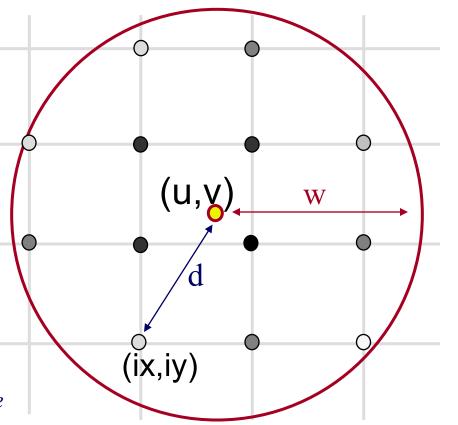
Correctly Bandlimited

Resampling with Filter

• Output is weighted average of inputs:

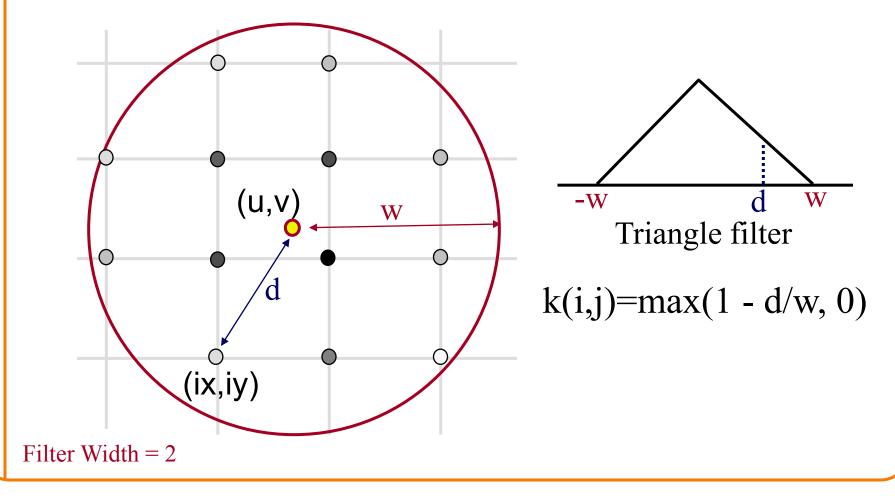
```
float Resample(src, u, v, k, w)
  float dst = 0;
  float ksum = 0;
  int ulo = u - w; etc.
  for (int iu = ulo; iu < uhi; iu++) {
    for (int iv = vlo; iv < vhi; iv++) {
      dst += k(u,v,iu,iv,w) * src(u,v)
      ksum += k(u,v,iu,iv,w);
  return dst / ksum;
                                              (ix,iy)
                           Source image
                                        Destination image
```


- Compute weighted sum of pixel neighborhood
 - Output is weighted average of input, where weights are normalized values of filter kernel (k)

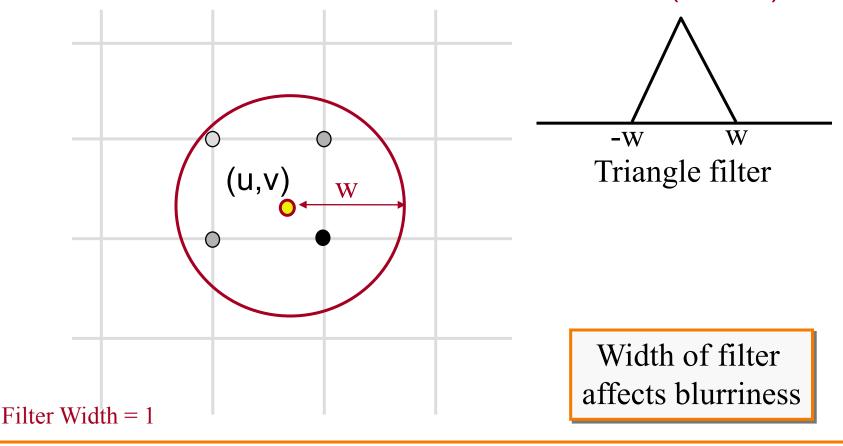


k(*ix*,*iy*) *represented by gray value*

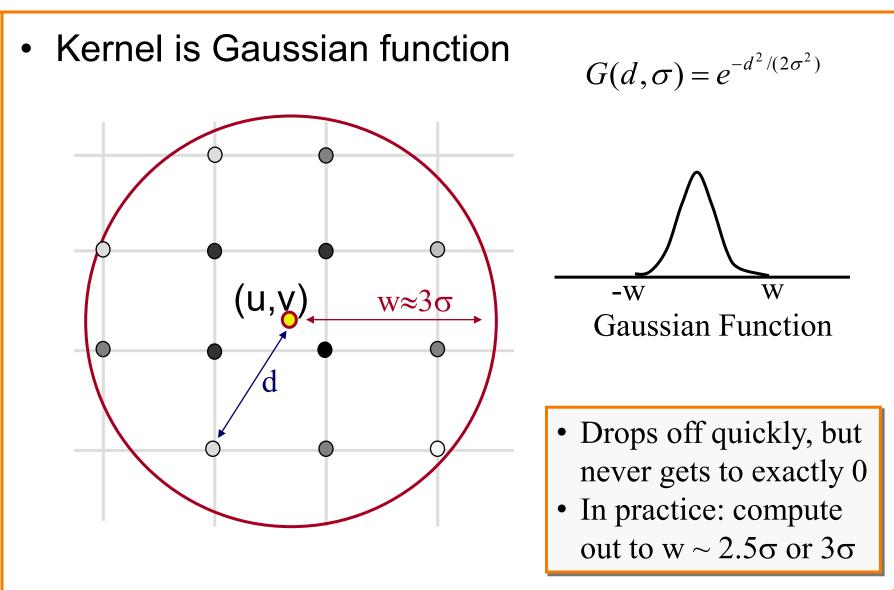
 For isotropic Triangle and Gaussian filters, k(ix,iy) is function of d and w



- For isotropic Triangle and Gaussian filters, k(ix,iy) is function of d and w
 - Filter width chosen based on scale factor (or blur)



Gaussian Filtering

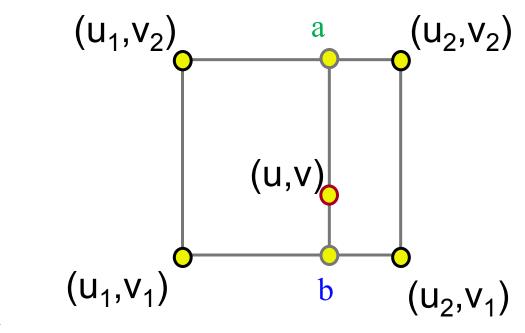


• What if width (w) is smaller than sample spacing?



Image Resampling (with width < 1)

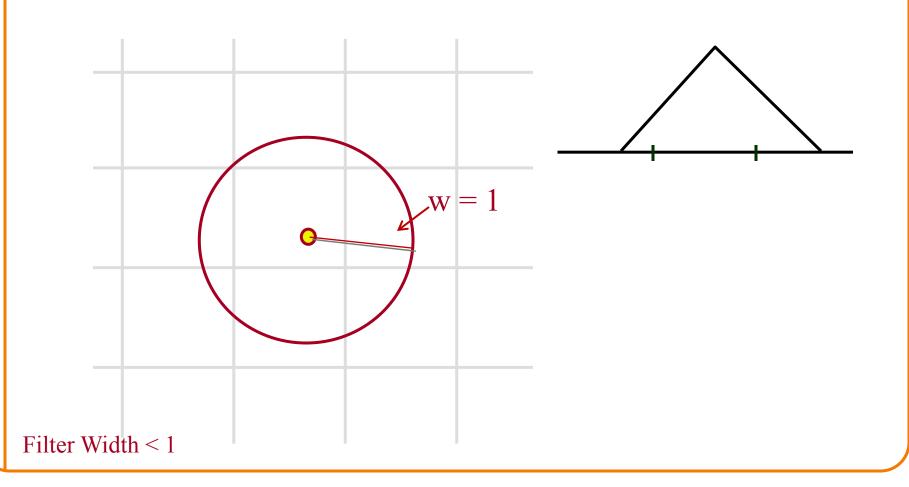
- Reconstruction filter: Bilinearly interpolate four closest pixels
 - a = linear interpolation of $src(u_1, v_2)$ and $src(u_2, v_2)$
 - **b** = linear interpolation of $src(u_1, v_1)$ and $src(u_2, v_1)$
 - dst(x,y) = linear interpolation of "a" and "b"



Filter Width < 1

Image Resampling (with width < 1)

• Alternative: force width to be at least 1



Putting it All Together

• Possible implementation of image scale:

```
Scale(src, dst, sx, sy) {
  w \approx \max(1/sx, 1/sy);
  for (int ix = 0; ix < xmax; ix++) {
    for (int iy = 0; iy < ymax; iy++) {
      float u = ix / sx;
      float v = iy / sy;
      dst(ix,iy) = Resample(src,u,v,k,w);
                             (U,V)
                                                (ix,iy)
                            Source image
                                          Destination image
```

Putting it All Together

• Possible implementation of image rotation:

```
Rotate(src, dst, \Theta) {
  w \approx 1
  for (int ix = 0; ix < xmax; ix++) {
     for (int iy = 0; iy < ymax; iy++) {
       float u = ix \cdot \cos(-\Theta) - iy \cdot \sin(-\Theta);
       float v = ix * sin(-\Theta) + iy * cos(-\Theta);
       dst(ix,iy) = Resample(src,u,v,k,w);
          0
            0
                             • Rotate
```


Sampling Method Comparison

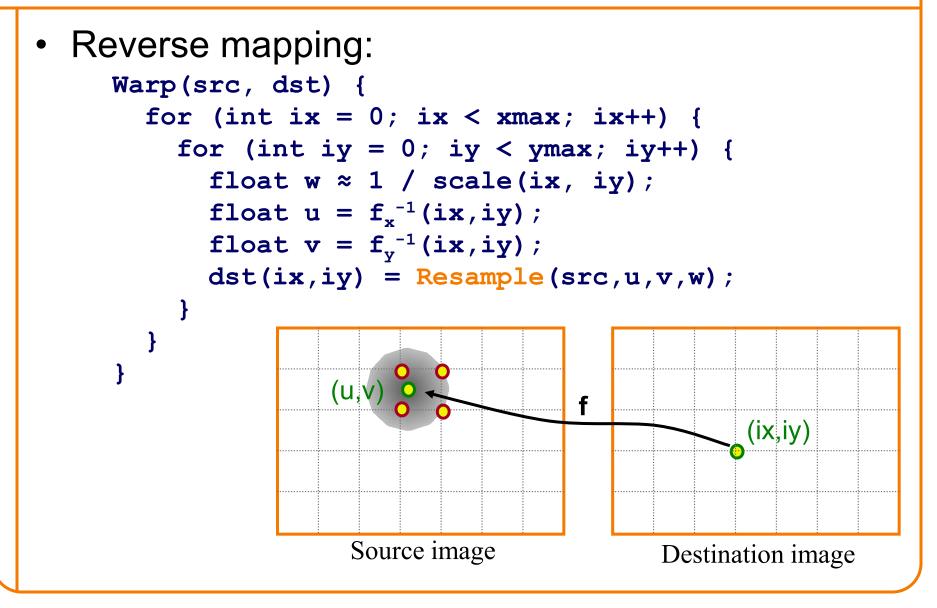
- Trade-offs
 - Aliasing versus blurring
 - Computation speed

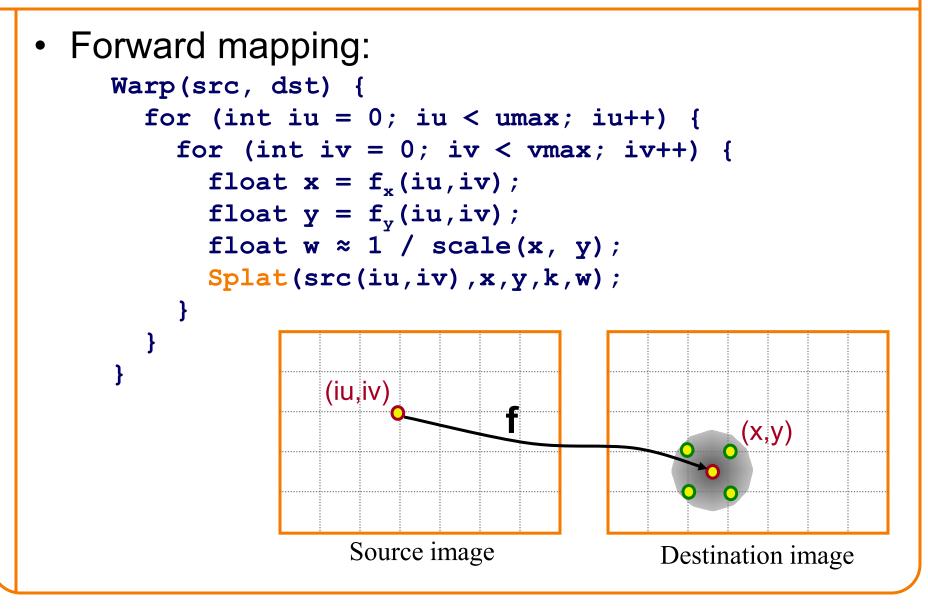


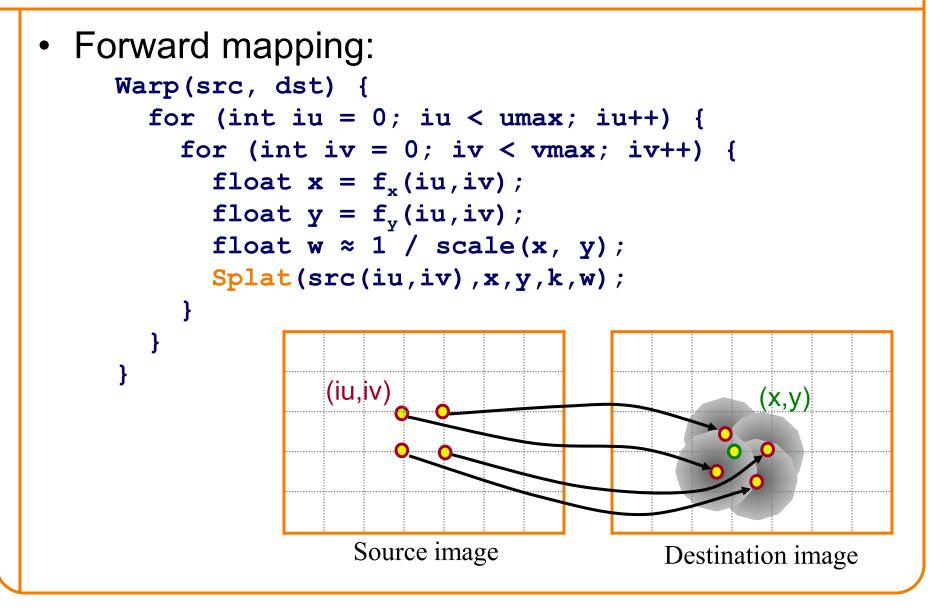
Point

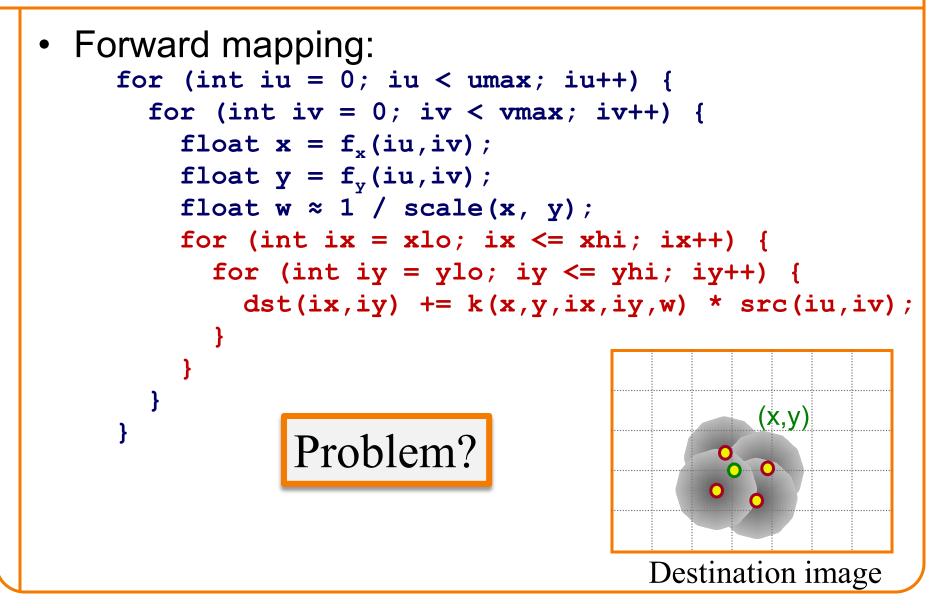
Triangle

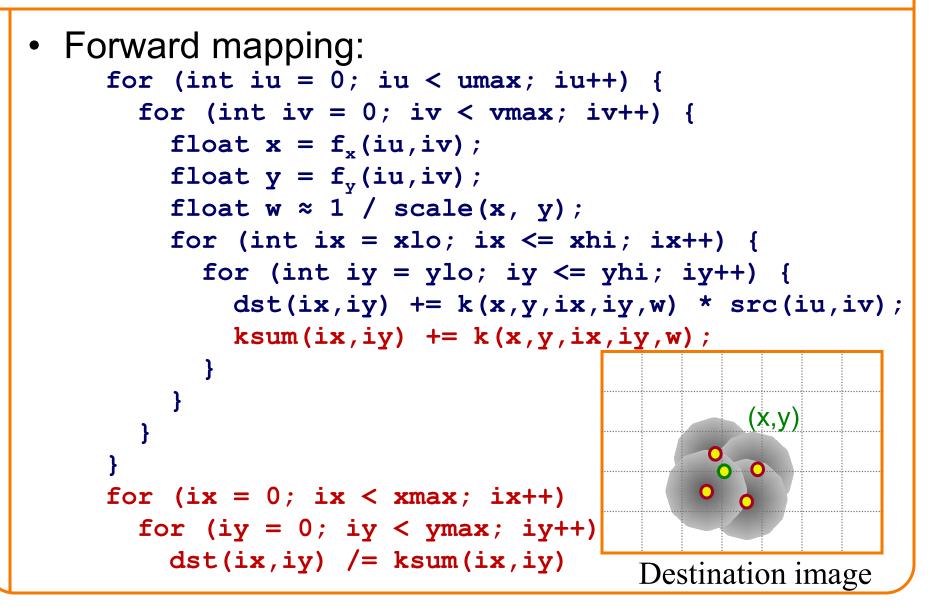
Gaussian











• Tradeoffs?

- Tradeoffs:
 - Forward mapping:
 - Requires separate buffer to store weights
 - Reverse mapping:
 - Requires inverse of mapping function, random access to original image

Summary

- Mapping
 - Forward vs. reverse
 - Parametric vs. correspondences
- Sampling, reconstruction, resampling
 - Frequency analysis of signal content
 - Filter to avoid undersampling: point, triangle, Gaussian
 - Reduce visual artifacts due to aliasing
 - » Blurring is better than aliasing

Next Time...

- - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Histogram equalization
- Filtering over neighborhoods
 - Blur & sharpen
 - Detect edges
 - Median
 - Bilateral filter

- Changing pixel values
 Moving image locations
 - Scale
 - Rotate
 - Warp
 - Combining images
 - Composite
 - Morph
 - Quantization
 - Spatial / intensity tradeoff
 - Dithering