

Image Processing

COS 426

What is a Digital Image?

A digital image is a discrete array of samples representing a continuous 2D function

Continuous function

Discrete samples

Limitations on Digital Images

- Spatial discretization
- Quantized intensity
- Approximate color (RGB)
- (Temporally discretized frames for digital video)

Image Processing

- - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - **Histogram equalization**
- Filtering over neighborhoods
 - Blur & sharpen
 - **Detect edges**
 - Median
 - Bilateral filter

- Changing pixel values Moving image locations
 - Scale
 - Rotate
 - Warp
 - Combining images
 - Composite
 - Morph

Similar to Analog / Continuous

- - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Histogram equalization
- Filtering over neighborhoods
 - Blur & sharpen
 - Detect edges
 - Median
 - Bilateral filter

- Changing pixel values Moving image locations
 - Scale
 - Rotate
 - Warp
 - Combining images
 - Composite
 - Morph

Account for Limitations of Digital

- - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Histogram equalization
- Filtering over neighborhoods
 - Blur & sharpen
 - Detect edges
 - Median
 - Bilateral filter

- Changing pixel values Moving image locations
 - Scale
 - Rotate
 - Warp
 - Combining images
 - Composite
 - Morph

New Operations

- - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Histogram equalization
- Filtering over neighborhoods
 - Blur & sharpen
 - Detect edges
 - Median
 - Bilateral filter

- Changing pixel values Moving image locations
 - Scale
 - Rotate
 - Warp
 - Combining images
 - Composite
 - Morph
 - Quantization
 - Spatial / intensity tradeoff
 - Dithering

Digital Image Processing

- - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Histogram equalization
- Filtering over neighborhoods
 - Blur & sharpen
 - Detect edges
 - Median
 - Bilateral filter

- Changing pixel values Moving image locations
 - Scale
 - Rotate
 - Warp
 - Combining images
 - Composite
 - Morph
 - Quantization
 - Spatial / intensity tradeoff
 - Dithering

Adjusting Brightness

Χ

• What must be done to the RGB values to make this image brighter?

Adjusting Brightness

• Simply scale pixel components o Must clamp to range, e.g. [0..1] or [0..255]

Original

Brighter

Note: this is "contrast" on your monitor! "Brightness" adjusts black level (offset)

Adjusting Contrast

- Intuitively, "mid-tone" pixels should stay the same, dark ones get darker, light ones get lighter
- Preserve average *luminance*

Original

More Contrast

What is Luminance?

Measures perceived "gray-level" of pixel L = 0.30*red + 0.59*green + 0.11*blue

Adjusting Contrast

- Compute mean luminance L for all pixels
 o luminance = 0.30*r + 0.59*g + 0.11*b
- Scale deviation from L for each pixel component o Must clamp to range (e.g., 0 to 1)

Original

More Contrast

Adjusting Gamma

Function originally accounting for nonlinearity in cameras and displays

$$I_{out} = I_{in}^{\gamma}$$

Amount of light

 γ depends on camera and monitor

Histogram Equalization

Change distribution of luminance values to cover full range [0-1]

http://en.wikipedia.org/wiki/Histogram_equalization

Convert from color to gray-levels

al Grayscale ("black&white" photo)

Compute luminance L, set every pixel to (L,L,L)

Adjusting Saturation

Increase/decrease color saturation of every pixel

-1.0 0.0 0.5 1.0 2.5

Interpolate / extrapolate between image and grayscale version

Adjust colors so that a given RGB value is mapped to a neutral color

Conceptually:

Provide an RGB value W that should be mapped to white Perform transformation of color space

Von Kries method: adjust colors in LMS color space

 LMS primaries represent the responses of the three different types of cones in our eyes

For each pixel RGB:

1) Convert to XYZ color space

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0.4124 & 0.3576 & 0.1805 \\ 0.2126 & 0.7152 & 0.0722 \\ 0.0193 & 0.1192 & 0.9502 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

2) Convert to LMS color space

[L]		0.40024	0.7076	-0.08081	[<i>X</i>]
М	=	-0.2263	1.16532	0.0457	Y
S_{\perp}		L 0	0	0.91822	$\lfloor Z \rfloor$

3) Divide by L_WM_WS_W
4) Convert back to RGB

Color Histogram Transfer

Adjust colors so that their distribution (histogram) matches a target distribution

Source image Target colors Result Target colors

Result

Fancier version of this idea from "AutoStyle: Automatic Style Transfer from Image Collections to Users' Images" by Princeton student Yiming Liu et al.

Digital Image Processing

- - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Histogram equalization
- Filtering over neighborhoods
 - Blur & sharpen
 - Detect edges
 - Median
 - Bilateral filter

- Changing pixel values Moving image locations
 - Scale
 - Rotate
 - Warp
 - Combining images
 - Composite
 - Morph
 - Quantization
 - Spatial / intensity tradeoff
 - Dithering

Blur

What is the basic operation for each pixel when blurring an image?

Basic Operation: Convolution

Output value is weighted sum of values in neighborhood of input image

Pattern of weights is the "filter" or "kernel"

What if filter extends beyond boundary?

Convolution with a Gaussian Filter What if filter extends beyond boundary? **Modified Filter** Input Output

Output contains samples from smoothed input

2D Convolution

 Ballin Star Star Star	
 (\mathbf{X})	
 VY ·····	
 ·····	
 Eilton	
 ГШЕГ	

2D Convolution

2D Convolution

2D Convolution

2D Convolution

Gaussian Blur

- Many interesting linear filters
 - Blur
 - Edge detect
 - Sharpen
 - Emboss
 - etc.

Edge Detection

Convolve with a 2D Laplacian filter that finds differences between neighbor pixels

Original

Filter =
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & +8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Sharpen

Sum detected edges with original image

Original

Filter =
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & +9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Emboss

Convolve with a filter that highlights gradients in particular directions

Original

Embossed

Filter =
$$\begin{bmatrix} -1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Side Note: Separable Filters

Some filters are separable (e.g., Gaussian)

- First, apply 1-D convolution across every row
- Then, apply 1-D convolution across every column
- HUGE impact on performance (when kernel is big)

Non-Linear Filtering

Each output pixel is a non-linear function of input pixels in neighborhood (filter depends on input)

Original

Stained Glass

Median or "Despeckling" Filter

Each output pixel is median of input pixels in neighborhood

original image

1px median filter

3px median filter

10px median filter

Bilateral Filter

Gaussian blur uses same filter for all pixels Blurs across edges as much as other areas

Gaussian Blur

Bilateral Filter

Original

Gaussian blur uses same filter for all pixels Prefer a filter that preserves edges (adapts to content)

Bilateral Filter

Recall: Gaussian Blur

Combine Gaussian filtering in both spatial domain and color domain

$$Bilateral[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}} (\|I_{\mathbf{p}} - I_{\mathbf{q}}\|) I_{\mathbf{q}}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$Spatial \qquad Color$$

$$Proximity \qquad Proximity$$

$$Weight \qquad Weight$$

Bilateral Filter

Combine Gaussian filtering in both spatial domain and color domain

Bilateral Filtering

input

 $\sigma_{\rm s}=2$

 $\sigma_{\rm s}=6$

 $\sigma_{\rm r}=0.1$ $\sigma_{\rm r} = 0.25$

 $\sigma_{\rm r} = \infty$ (Gaussian blur)

 $\sigma_{s} = 18$

Digital Image Processing

- - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Histogram equalization
- Filtering over neighborhoods
 - Blur & sharpen
 - Detect edges
 - Median
 - Bilateral filter

- Changing pixel values Moving image locations
 - Scale
 - Rotate
 - Warp
 - Combining images
 - Composite
 - Morph
 - Quantization
 - Spatial / intensity tradeoff
 - Dithering

Quantization

Reduced intensity resolution

- o Frame buffers have limited number of bits per pixel
- o Physical devices have limited dynamic range

Effects of Quantization

8 bits / pixel / color

6 bits / pixel / color

Marc Levoy / Hanna-Barbera

Effects of Quantization

5 bits / pixel / color

4 bits / pixel / color

Marc Levoy / Hanna-Barbera

Dithering

Distribute errors among pixels

- o Exploit spatial integration in our eye
- o Display greater range of perceptible intensities
- o Trade off spatial resolution for intensity resolution

Original (8 bits)

Floyd-Steinberg Dither (1 bit)

Classical Halftoning

Use dots of varying size to represent intensities o Area of dots proportional to intensity in image

Classical Halftoning

From Town Topics, Princeton

Digital Halftone Patterns

Use cluster of pixels to represent intensity

Figure 14.37 from H&B

Error Diffusion Dither

Spread quantization error over neighbor pixels o Error dispersed to pixels right and below o Floyd-Steinberg weights:

3/16 + 5/16 + 1/16 + 7/16 = 1.0

Figure 14.42 from H&B

Error Diffusion Dither

Original (8 bits)

Uniform Quantization (1 bit)

Floyd-Steinberg Dither (1 bit)

Next Time...

- - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Histogram equalization
- Filtering over neighborhoods
 - Blur & sharpen
 - Detect edges
 - Median
 - Bilateral filter

- Changing pixel values Moving image locations
 - Scale
 - Rotate
 - Warp
 - Combining images
 - Composite
 - Morph
 - Quantization
 - Spatial / intensity tradeoff
 - Dithering