
Princeton University
COS 217: Introduction to Programming Systems

Spring 2017 Final Exam Preparation

The exam is a three-hour, closed-book, closed-notes, closed-handouts exam. The exam is cumulative, but
emphasizes second-half material. During the exam you may not use a "cheat-sheet." During the exam you
may not use computers, calculators, or other electronic devices.

Topics

You are responsible for all material covered in lectures, precepts, assignments, and required readings. This
is a nonexhaustive list of topics that were covered. Topics that were not covered on the midterm exam are in
boldface.

1. Number Systems

The binary, octal, and hexadecimal number systems
Finite representation of unsigned integers

Operations on unsigned integers
Finite representation of signed integers

Signed magnitude, ones' complement, two's complement
Operations on signed integers

2. C Programming

The program preparation process: preprocess, compile, assemble, link
Program structure: multi-file programs using header files
Process memory layout: text, stack, heap, rodata, data, bss sections
Data types
Variable declarations and definitions
Variable scope, linkage, and duration/extent
Constants: #define, constant variables, enumerations
Operators
Statements
Function declarations and definitions
Pointers and arrays

Call-by-reference, arrays as parameters, strings
Command-line arguments

Input/output facilities for standard streams and files, and for text and binary data
getchar(), fgetc(), putchar(), fputc(), gets(), fgets(), puts(), fputs(),
scanf(), fscanf(), printf(), fprintf(), fopen(), fclose(), fwrite(),
putc()

Structures
Dynamic memory management

malloc(), calloc(), realloc(), free()
Common errors: dereference of dangling pointer, memory leak, double free

Abstract objects
Abstract data types; opaque pointers
Generic data structures and functions

Void pointers
Function pointers and function callbacks

Parameterized macros and their dangers (see King Section 14.3)

Page 1 of 5

3. Programming-in-the-Large

Testing
External testing taxonomy: statement, path, boundary, stress, white-box, black-box
Internal testing techniques: validate parameters, check invariants, check function return
values, change code temporarily, leave testing code intact
General testing strategies: automate the tests, test incrementally, let debugging drive
testing (fault injection)

Building
Separate independent paths before link
Motivation for make, make fundamentals, macros, abbreviations, pattern rules

Program and programming style
Bottom-up design, top-down design, least-risk design

Debugging
General heuristics for debugging: understand error messages, think before writing, look
for familiar bugs, divide and conquer, add more internal tests, display output, use a
debugger, focus on recent changes
Heuristics for debugging dynamic memory management: look for common DMM bugs,
diagnose seg faults using gdb, manually inspect malloc() calls, comment-out
free() calls, use Meminfo, use Valgrind

Data Structures and algorithms
Linked lists
Hash tables: hashing algorithms, defensive copies, key ownership

Modularity
Abstract data types
Module qualities: encapsulates data, is consistent, has a minimal interface, detects and
handles/reports errors, establishes contracts, strong cohesion, weak coupling

Performance improvement
Case study: buzz
When to improve performance
Improving execution (time) efficiency: do timing studies, identify hot spots, use a
better algorithm or data structure, enable compiler speed optimization, tune the
code
Improving memory (space) efficiency: use a smaller data type, compute instead of
storing, enable compiler space optimization

4. Under the Hood: Language Levels Tour

Language levels
High-level vs. assembly vs. machine language

Computer architecture
The Von Neumann architecture

RAM
CPU: control unit, ALU, registers

Big-endian vs. little-endian byte order
CISC vs. RISC architectures

x86-64 computer architecture
General purpose registers: RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP, R8, R9,
R10, R11, R12, R13, R14, R15
Sub-registers: RAX, EAX, AX, AH, AL, …
Special purpose registers: EFLAGS, RIP

x86-64 assembly language
Instructions: directives and mnemonics

Defining data
Transferring data
Performing arithmetic

Page 2 of 5

Manipulating bits
Instruction operands

Immediate vs. register vs. memory
Control flow

Unconditional jumps
Conditional jumps

Condition code bits in EFLAGS register
Set by cmp instruction (and other instructions)
Examined by conditional jump instructions

Conditional jumps with signed data
Conditional jumps with unsigned data

Data structures
Arrays
Full form of memory operands

Direct, indirect, base+displacement, indexed, scaled-indexed
addressing

Structures
Padding

Local variables
The stack section and the RSP register

x86-64 function call conventions
Calling and returning

The call and ret instructions
Passing arguments

Registers: RDI, RSI, RDX, RCX, R8, R9
Returning a value

Register: RAX
Optimization

Caller-saved regs: RDI, RSI, RDX, RCX, R8, R9, RAX, R10, R11
Used for parameters and scratch
Caller must save, if it wants

Callee-saved regs: RBX, RBP, R12, R13, R14, R15
Used for local variables
Callee must save

x86-64 machine language
Instruction format: prefix, opcode, modR/M, SIB, displacement, immediate fields
Machine language after assembly

Data section, rodata section, bss section, text section, relocation records
Machine language after linking

Resolution: fetch library code
Relocation: use relocation records to patch code
Output: data section, rodata section, bss section, text section

5. Under the Hood: Service Levels Tour

Exceptions and processes
Exceptions

Synchronous vs. asynchronous
Interrupts, traps, faults, and aborts

Traps and system-level functions in x86-64
The process abstraction
The illusion of private address space

Reality: virtual memory via page faults
The illusion of private control flow

Reality: context switches during exception handling
Storage management

Page 3 of 5

Locality of reference and caching
Typical storage hierarchy: registers vs. cache vs. memory vs. local secondary
storage vs. remote secondary storage
Virtual memory

Implementation of virtual memory
Virtual addresses vs. physical addresses
Page tables, page faults

Benefits of virtual memory
Dynamic memory management (DMM)

The need for DMM
DMM using the heap section

The brk() and sbrk() system-level functions
Internal and external fragmentation
Free-list, doubly-linked free list, bin implementations

DMM using virtual memory
The mmap() and munmap() system-level functions

Process management
Creating processes

The getpid() and fork() system-level function
Waiting for (reaping, harvesting) processes

The wait() system-level function
Executing new programs

The execvp() system-level functions
The system() function

I/O management
The file abstraction
Linux I/O

File descriptors, file descriptor tables, file tables
The creat(), open(), close(), read(), write() system calls

Standard C I/O
Buffering
Implementing standard C I/O using Linux I/O

Redirecting standard files
The dup() and dup2() system-level functions

Signals and alarms
Sending signals

Via keystrokes, the kill command, and the raise() and kill() functions
Handling signals

The signal() function
The SIG_IGN and SIG_DFL arguments to signal()

Alarms
The alarm() function

6. Program Verification

Famous and infamous bugs, common bugs
Reasoning about programs
Program verification
Automatic program verification

7. Ethics of Performance Tuning

Buffer overrun attacks and responses
Extreme performance tuning

Page 4 of 5

8. Applications

De-commenting
Lexical analysis using finite state automata
String manipulation
Symbol tables, linked lists, hash tables
Dynamically expanding arrays
High-precision addition
Buffer overrun attacks
Heap management
Linux shells

9. Tools: The Linux/GNU programming environment

Linux
bash
emacs
gcc
gdb for C
make
oProfile
gdb for assembly language
objdump

Readings

As specified by the course "Schedule" Web page.

Required:
C Programming (King): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.1, 22
Computer Systems (Bryant & O'Hallaron): 1, 3 (OK to skip 3.11), 8.1-5, 9
The C Programming Language (Kernighan & Ritchie) 8.7

Recommended:
Computer Systems (Bryant & O'Hallaron): 2, 5, 6, 7, 10
The Practice of Programming (Kernighan & Pike): 1, 2, 4, 5, 6, 7, 8
Unix Tutorial for Beginners (website)
GNU Emacs Tutorial (website)
Linux Pocket Guide (Barrett)
Deterministic Finite Automaton Wikipedia article (website)
GNU GDB Tutorial (website)
GNU Make Tutorial (website)

Recommended, for reference only:
OProfile Manual (website)
Intel 64 and IA-32 Architectures Software Developer's Manual: Vol 1: Basic Architecture
Intel 64 and IA-32 Architectures Software Developer's Manual: Vol 2: Instruction Set
Reference
Intel 64 and IA-32 Architectures Software Developer's Manual: Vol 3: System Prog. Guide
Intel 64 and IA-32 Architectures Optimization Reference Manual
Using As

Copyright © 2017 by Robert M. Dondero, Jr.

Page 5 of 5

	Princeton University
	COS 217: Introduction to Programming Systems
	Spring 2017 Final Exam Preparation
	Topics
	Readings

