
Princeton University
COS 217: Introduction to Programming Systems

A Subset of x86-64 Assembly Language

1. Simplifying Assumptions

Programs define functions that:
• do not use floating point values,
• have parameters that are integers or addresses (but not structures),
• have return values that are integers or addresses (but not structures), and
• have no more than 6 parameters.

2. Assembler Directives

Syntax Description
label: Record the fact that label marks the current location within the current section.
.section ".sectionname" Make the sectionname section the current section.
.skip n Skip n bytes of memory in the current section.
.byte bytevalue1, bytevalue2, ... Allocate one byte of memory containing bytevalue1, one byte of memory

containing bytevalue2, ... in the current section.
.word wordvalue1, wordvalue2, ... Allocate two bytes of memory containing wordvalue1, two bytes of memory

containing wordvalue2, ... in the current section.
.long longvalue1, longvalue2, ... Allocate four bytes of memory containing longvalue1, four bytes of memory

containing longvalue2, ... in the current section.
.quad quadvalue1, quadvalue2, ... Allocate eight bytes of memory containing quadvalue1, eight bytes of memory

containing quadvalue2, ... in the current section.
.ascii "string1", "string2", ... Allocate memory containing the characters from string1, string2, ... in the

current section.
.asciz "string1", "string2", ... Allocate memory containing string1, string2, ..., where each string is '\0'

terminated, in the current section.
.string "string1", "string2", ... Same as .asciz.
.globl label1, label2, ... Mark label1, label2, ... so they are accessible by code generated from other

source code files.
.equ name, expr Define name as a symbolic alias for expr.
.type label,@function Mark label so the linker knows that it denotes the beginning of a function.

Page 1 of 5

3. Assembler Mnemonics

Key: src: a source operand
dest: a destination operand
I: an immediate operand
R: a register operand
M: a memory operand
label: a label operand

For each instruction, at most one operand can be a memory operand.

3.1. Data Transfer Mnemonics

Syntax Semantics Description
mov{q,l,w,b} srcIRM, destRM dest = src; Move. Copy src to dest.Flags affected:

None.
movabsq srcIRM, destR dest = src; Move. Copy src to dest. src can be up to 8

bytes long. Flags affected: None.
movsb{q,l,w} srcRM, destR
movsw{q,l} srcRM, destR
movslq srcRM, destR

dest = src; Move Sign-Extended. Copy src to dest,
extending the sign of src. Flags
affected:None.

movzb{q,l,w} srcRM, destR
movzw{q,l} srcRM, destR

dest = src; Move Zero-Extended. Copy src to dest,
setting the high-order bytes of dest to 0.
Flags affected:None.

cmov{e,ne,
 l,le,g,ge,
 b,be,a,ae}
 srcRM, destR

if (reg[EFLAGS} says so)
 dest = src;

Conditional move. Copy long or word
operand src to long or word register dest iff
the flags in the EFLAGS register indicate
a(n) equal to, unequal to, less than, less
than or equal to, greater than, greater than,
below, below or equal to, above, or above
or equal to (respectively) relationship
between the most recently compared
numbers. The l, le, g, and ge forms are
used after comparing signed numbers; the
b, be, a, and ae forms are used after
comparing unsigned numbers. Flags
affected: None.

push{q,w} srcIRM reg[RSP] = reg[RSP] - {8,2};
mem[reg[RSP]] = src;

Push. Push src onto the stack. Flags
affected: None.

pop{q,w} destRM dest = mem[reg[RSP]];
reg[ESP] = reg[RSP] + {8,2};

Pop. Pop from the stack into dest. Flags
affected: None.

lea{q,l,w} srcM, destR dest = &src; Load Effective Address. Assign the
address of src to dest. That is, determine
the address denoted by src, but don't fetch
data from that address; instead use the
address itself. Flags affected: None.

cqto reg[RDX:RAX] = reg[RAX]; Convert Quad to Oct Register. Sign
extend the contents of register RAX into
the register pair RDX:RAX, typically in
preparation for idivq. Flags affected: None.

cltd reg[EDX:EAX] = reg[EAX]; Convert Long to Double Register. Sign
extend the contents of register EAX into
the register pair EDX:EAX, typically in
preparation for idivl. Flags affected: None.

cwtd reg[DX:AX] = reg[AX]; Convert Word to Double Register. Sign
extend the contents of register AX into the
register pair DX:AX, typically in
preparation for idivw. Flags affected:
None.

cbtw reg[AX] = reg[AL]; Convert Byte to Word. Sign extend the
contents of register AL into register AX,
typically in preparation for idivb. Flags
affected: None.

Page 2 of 5

3.2. Arithmetic Mnemonics

Syntax Semantics Description
add{q,l,w,b} srcIRM,
 destRM

dest = dest + src; Add. Add src to dest. Flags affected: O, S,
Z, A, C, P.

adc{q,l,w,b} srcIRM,
 destRM

dest = dest + src + C; Add with Carry. Add src and the C flag to
dest. Flags affected: O, S, Z, A, C, P.

sub{q,l,w,b} srcIRM,
 destRM

dest = dest - src; Subtract. Subtract src from dest. Flags
affected: O, S, Z, A, C, P.

inc{q,l,w,b} destRM dest = dest + 1; Increment. Increment dest. Flags affected:
O, S, Z, A, P.

dec{q,l,w,b} destRM dest = dest - 1; Decrement. Decrement dest. Flags
affected: O, S, Z, A, P.

neg{q,l,w,b} destRM dest = -dest; Negate. Negate dest. Flags affected: O, S,
Z, A, C, P.

imul{q,l,w} srcIRM, destR dest = dest * src; Multiply. Multiply dest by src. Flags
affected: O, S, Z, A, C, P.

imulq srcRM reg[RDX:RAX] = reg[RAX]*src; Signed Multiply. Multiply the contents of
register RAX by src, and store the product
in registers RDX:RAX. Flags affected: O,
S, Z, A, C, P.

imull srcRM reg[EDX:EAX] = reg[EAX]*src; Signed Multiply. Multiply the contents of
register EAX by src, and store the product
in registers EDX:EAX. Flags affected: O,
S, Z, A, C, P.

imulw srcRM reg[DX:AX] = reg[AX]*src; Signed Multiply. Multiply the contents of
register AX by src, and store the product in
registers DX:AX. Flags affected: O, S, Z,
A, C, P.

imulb srcRM reg[AX] = reg[AL]*src; Signed Multiply. Multiply the contents of
register AL by src, and store the product in
AX. Flags affected: O, S, Z, A, C, P.

idivq srcRM reg[RAX] = reg[RDX:RAX]/src;
reg[RDX] = reg[RDX:RAX]%src;

Signed Divide. Divide the contents of
registers RDX:RAX by src, and store the
quotient in register RAX and the remainder
in register RDX. Flags affected: O, S, Z, A,
C, P.

idivl srcRM reg[EAX] = reg[EDX:EAX]/src;
reg[EDX] = reg[EDX:EAX]%src;

Signed Divide. Divide the contents of
registers EDX:EAX by src, and store the
quotient in register EAX and the remainder
in register EDX. Flags affected: O, S, Z, A,
C, P.

idivw srcRM reg[AX] = reg[DX:AX]/src;
reg[DX] = reg[DX:AX]%src;

Signed Divide. Divide the contents of
registers DX:AX by src, and store the
quotient in register AX and the remainder
in register DX. Flags affected: O, S, Z, A,
C, P.

idivb srcRM reg[AL] = reg[AX]/src;
reg[AH] = reg[AX]%src;

Signed Divide. Divide the contents of
register AX by src, and store the quotient
in register AL and the remainder in register
AH. Flags affected: O, S, Z, A, C, P.

mulq srcRM reg[RDX:RAX] = reg[RAX]*src; Unsigned Multiply. Multiply the contents
of register RAX by src, and store the
product in registers RDX:RAX. Flags
affected: O, S, Z, A, C, P.

mull srcRM reg[EDX:EAX] = reg[EAX]*src; Unsigned Multiply. Multiply the contents
of register EAX by src, and store the
product in registers EDX:EAX. Flags
affected: O, S, Z, A, C, P.

mulw srcRM reg[DX:AX] = reg[AX]*src; Unsigned Multiply. Multiply the contents
of register AX by src, and store the product
in registers DX:AX. Flags affected: O, S,
Z, A, C, P.

mulb srcRM reg[AX] = reg[AL]*src; Unsigned Multiply. Multiply the contents
of register AL by src, and store the product
in AX. Flags affected: O, S, Z, A, C, P.

Page 3 of 5

divq srcRM reg[RAX] = reg[RDX:RAX]/src;
reg[RDX] = reg[RDX:RAX]%src;

Unsigned Divide. Divide the contents of
registers RDX:RAX by src, and store the
quotient in register RAX and the remainder
in register RDX. Flags affected: O, S, Z, A,
C, P.

divl srcRM reg[EAX] = reg[EDX:EAX]/src;
reg[EDX] = reg[EDX:EAX]%src;

Unsigned Divide. Divide the contents of
registers EDX:EAX by src, and store the
quotient in register EAX and the remainder
in register EDX. Flags affected: O, S, Z, A,
C, P.

divw srcRM reg[AX] = reg[DX:AX]/src;
reg[DX] = reg[DX:AX]%src;

Unsigned Divide. Divide the contents of
registers DX:AX by src, and store the
quotient in register AX and the remainder
in register DX. Flags affected: O, S, Z, A,
C, P.

divb srcRM reg[AL] = reg[AX]/src;
reg[AH] = reg[AX]%src;

Unsigned Divide. Divide the contents of
register AX by src, and store the quotient
in register AL and the remainder in register
AH. Flags affected: O, S, Z, A, C, P.

3.3. Bitwise Mnemonics

Syntax Semantics Description
and{q,l,w,b} srcIRM, destRM dest = dest & src; And. Bitwise and src into dest. Flags

affected: O, S, Z, A, C, P.
or{q,l,w,b} srcIRM, destRM dest = dest | src; Or. Bitwise or src nito dest. Flags affected:

O, S, Z, A, C, P.
xor{q,l,w,b} srcIRM, destRM dest = dest ^ src; Exclusive Or. Bitwise exclusive or src

into dest. Flags affected: O, S, Z, A, C, P.
not{q,l,w,b} destRM dest = ~dest; Not. Bitwise not dest. Flags affected:

None.
sal{q,l,w,b} srcIR, destRM dest = dest << src; Shift Arithmetic Left. Shift dest to the left

src bits, filling with zeros. If src is a
register, then it must be the CL register.
Flags affected: O, S, Z, A, C, P.

sar{q,l,w,b} srcIR, destRM dest = dest >> src; Shift Arithmetic Right. Shift dest to the
right src bits, sign extending the number. If
src is a register, then it must be the CL
register. Flags affected: O, S, Z, A, C, P.

shl{q,l,w,b} srcIR, destRM (Same as sal) Shift Left. (Same as sal.)
shr{q,l,w,b} srcIR, destRM (Same as sar) Shift Right. Shift dest to the right src bits,

filling with zeros. If src is a register, then it
must be the CL register. Flags affected: O,
S, Z, A, C, P.

3.4. Control Transfer Mnemonics

Syntax Semantics Description
cmp{q,l,w,b} srcIRM,
 destRM

reg[EFLAGS] =
 dest comparedWith src;

Compare. Compute dest - src and set flags
in the EFLAGS register based upon the
result. Flags affected: O, S, Z, A, C, P.

test{q,l,w,b} srcIRM,
 destRM

reg[EFLAGS] = dest & src; Test. Compute dest & src and set flags in
the EFLAGS register based upon the
result. Flags affected: S, Z, P (O and C set
to 0).

Page 4 of 5

set{e,ne,
 l,le,g,ge,
 b,be,a,ae} destRM

if (reg[EFLAGS] appropriate)
 dest = 1;
else
 dest = 0;

Set. Set one-byte dest to 1 if the flags in
the EFLAGS register indicate a(n) equal
to, unequal to, less than, less than or equal
to, greater than, greater than, below, below
or equal to, above, or above or equal to
(respectively) relationship between the
most recently compared numbers.
Otherwise set destRM to 0. The l, le, g, and
ge forms are used after comparing signed
numbers; the b, be, a, and ae forms are
used after comparing unsigned numbers.
Flags affected: None.

jmp label reg[RIP] = label; Jump. Jump to label. Flags affected:
None.

jmp *srcRM reg[RIP] = reg[src]; Jump indirect. Jump to the address in src.
Flags affected: None.

j{e,ne,
 l,le,g,ge,
 b,be,a,ae} label

if (reg[EFLAGS] appropriate)
 reg[RIP] = label;

Conditional Jump. Jump to label iff the
flags in the EFLAGS register indicate a(n)
equal to, unequal to, less than, less than or
equal to, greater than, greater than or equal
to, below, below or equal to, above, or
above or equal to (respectively)
relationship between the most recently
compared numbers. The l, le, g, and ge
forms are used after comparing signed
numbers; the b, be, a, and ae forms are
used after comparing unsigned numbers.
Flags affected: None.

call label reg[RSP] = reg[RSP] - 8;
mem[reg[RSP]] = reg[RIP];
reg[RIP] = label;

Call. Call the function that begins at label.
Flags affected: None.

call *srcRM reg[RSP] = reg[RSP] - 8;
mem[reg[RSP]] = reg[RIP];
reg[RIP] = reg[src];

Call indirect. Call the function whose
address is in src. Flags affected: None.

ret reg[RIP] = mem[reg[RSP]];
reg[RSP] = reg[RSP] + 8;

Return. Return from the current function.
Flags affected: None.

int srcIRM Generate interrupt number src Interrupt. Generate interrupt number src.
Flags affected: None.

Copyright © 2016 by Robert M. Dondero, Jr.

Page 5 of 5

	1. Simplifying Assumptions
	2. Assembler Directives
	Syntax
	Description
	3. Assembler Mnemonics

	Semantics

	Move. Copy src to dest.Flags affected: None.
	Move. Copy src to dest. src can be up to 8 bytes long. Flags affected: None.
	Move Sign-Extended. Copy src to dest, extending the sign of src. Flags affected:None.
	Move Zero-Extended. Copy src to dest, setting the high-order bytes of dest to 0.
	Flags affected:None.
	cmov{e,ne,
	l,le,g,ge,
	b,be,a,ae}
	srcRM, destR
	Conditional move. Copy long or word operand src to long or word register dest iff the flags in the EFLAGS register indicate a(n) equal to, unequal to, less than, less than or equal to, greater than, greater than, below, below or equal to, above, or above or equal to (respectively) relationship between the most recently compared numbers. The l, le, g, and ge forms are used after comparing signed numbers; the b, be, a, and ae forms are used after comparing unsigned numbers. Flags affected: None.
	Push. Push src onto the stack. Flags affected: None.
	Pop. Pop from the stack into dest. Flags affected: None.
	lea{q,l,w} srcM, destR
	Load Effective Address. Assign the address of src to dest. That is, determine the address denoted by src, but don't fetch data from that address; instead use the address itself. Flags affected: None.
	Convert Quad to Oct Register. Sign extend the contents of register RAX into the register pair RDX:RAX, typically in preparation for idivq. Flags affected: None.
	Convert Long to Double Register. Sign extend the contents of register EAX into the register pair EDX:EAX, typically in preparation for idivl. Flags affected: None.
	Convert Word to Double Register. Sign extend the contents of register AX into the register pair DX:AX, typically in preparation for idivw. Flags affected: None.
	Convert Byte to Word. Sign extend the contents of register AL into register AX, typically in preparation for idivb. Flags affected: None.
	Semantics

	Add. Add src to dest. Flags affected: O, S, Z, A, C, P.
	Add with Carry. Add src and the C flag to dest. Flags affected: O, S, Z, A, C, P.
	dest = dest - src;
	Subtract. Subtract src from dest. Flags affected: O, S, Z, A, C, P.
	Increment. Increment dest. Flags affected: O, S, Z, A, P.
	dest = dest - 1;
	Decrement. Decrement dest. Flags affected: O, S, Z, A, P.
	Negate. Negate dest. Flags affected: O, S, Z, A, C, P.
	Multiply. Multiply dest by src. Flags affected: O, S, Z, A, C, P.
	Signed Multiply. Multiply the contents of register RAX by src, and store the product in registers RDX:RAX. Flags affected: O, S, Z, A, C, P.
	Signed Multiply. Multiply the contents of register EAX by src, and store the product in registers EDX:EAX. Flags affected: O, S, Z, A, C, P.
	Signed Multiply. Multiply the contents of register AX by src, and store the product in registers DX:AX. Flags affected: O, S, Z, A, C, P.
	Signed Multiply. Multiply the contents of register AL by src, and store the product in AX. Flags affected: O, S, Z, A, C, P.
	Signed Divide. Divide the contents of registers RDX:RAX by src, and store the quotient in register RAX and the remainder in register RDX. Flags affected: O, S, Z, A, C, P.
	Signed Divide. Divide the contents of registers EDX:EAX by src, and store the quotient in register EAX and the remainder in register EDX. Flags affected: O, S, Z, A, C, P.
	Signed Divide. Divide the contents of registers DX:AX by src, and store the quotient in register AX and the remainder in register DX. Flags affected: O, S, Z, A, C, P.
	Signed Divide. Divide the contents of register AX by src, and store the quotient in register AL and the remainder in register AH. Flags affected: O, S, Z, A, C, P.
	Unsigned Multiply. Multiply the contents of register RAX by src, and store the product in registers RDX:RAX. Flags affected: O, S, Z, A, C, P.
	Unsigned Multiply. Multiply the contents of register EAX by src, and store the product in registers EDX:EAX. Flags affected: O, S, Z, A, C, P.
	Unsigned Multiply. Multiply the contents of register AX by src, and store the product in registers DX:AX. Flags affected: O, S, Z, A, C, P.
	Unsigned Multiply. Multiply the contents of register AL by src, and store the product in AX. Flags affected: O, S, Z, A, C, P.
	Unsigned Divide. Divide the contents of registers RDX:RAX by src, and store the quotient in register RAX and the remainder in register RDX. Flags affected: O, S, Z, A, C, P.
	Unsigned Divide. Divide the contents of registers EDX:EAX by src, and store the quotient in register EAX and the remainder in register EDX. Flags affected: O, S, Z, A, C, P.
	Unsigned Divide. Divide the contents of registers DX:AX by src, and store the quotient in register AX and the remainder in register DX. Flags affected: O, S, Z, A, C, P.
	Unsigned Divide. Divide the contents of register AX by src, and store the quotient in register AL and the remainder in register AH. Flags affected: O, S, Z, A, C, P.
	Semantics

	And. Bitwise and src into dest. Flags affected: O, S, Z, A, C, P.
	Or. Bitwise or src nito dest. Flags affected: O, S, Z, A, C, P.
	Exclusive Or. Bitwise exclusive or src into dest. Flags affected: O, S, Z, A, C, P.
	Not. Bitwise not dest. Flags affected: None.
	Shift Arithmetic Left. Shift dest to the left src bits, filling with zeros. If src is a register, then it must be the CL register. Flags affected: O, S, Z, A, C, P.
	Shift Arithmetic Right. Shift dest to the right src bits, sign extending the number. If src is a register, then it must be the CL register. Flags affected: O, S, Z, A, C, P.
	Shift Left. (Same as sal.)
	Shift Right. Shift dest to the right src bits, filling with zeros. If src is a register, then it must be the CL register. Flags affected: O, S, Z, A, C, P.
	Semantics

	Compare. Compute dest - src and set flags in the EFLAGS register based upon the result. Flags affected: O, S, Z, A, C, P.
	Test. Compute dest & src and set flags in the EFLAGS register based upon the result. Flags affected: S, Z, P (O and C set to 0).
	Set. Set one-byte dest to 1 if the flags in the EFLAGS register indicate a(n) equal to, unequal to, less than, less than or equal to, greater than, greater than, below, below or equal to, above, or above or equal to (respectively) relationship between the most recently compared numbers. Otherwise set destRM to 0. The l, le, g, and ge forms are used after comparing signed numbers; the b, be, a, and ae forms are used after comparing unsigned numbers. Flags affected: None.
	Jump. Jump to label. Flags affected: None.
	Jump indirect. Jump to the address in src. Flags affected: None.
	Conditional Jump. Jump to label iff the flags in the EFLAGS register indicate a(n) equal to, unequal to, less than, less than or equal to, greater than, greater than or equal to, below, below or equal to, above, or above or equal to (respectively) relationship between the most recently compared numbers. The l, le, g, and ge forms are used after comparing signed numbers; the b, be, a, and ae forms are used after comparing unsigned numbers.
	Call. Call the function that begins at label. Flags affected: None.
	Call indirect. Call the function whose address is in src. Flags affected: None.
	Return. Return from the current function. Flags affected: None.
	Interrupt. Generate interrupt number src. Flags affected: None.

